首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reassociation kinetics of DNA fragments obtained from the major components of the mouse and human genomes (recently isolated in our laboratory) have been investigated. It has been found that the relative amounts of interspersed repeated and unique sequences strikingly differ in the different major components of each genome and in the corresponding major components of the two genomes. Furthermore, within each major component, the interspersed repeated and unique sequences do not differ in dG + dC contents. These findings lead to the general conclusion that the sequence organization of mammalian genomes is not uniform in different chromosomal regions and that it exhibits remarkable variations in different mammals.  相似文献   

2.
We have studied the distribution of CR1, a family of short interspersed repeats, in the chicken genome; this family is homologous to the AluI family of man and to the B1-B2 families of mouse. Hybridization with a suitable probe showed that the vase majority of CR1 are located on the heaviest major component (1.708) of the genome which only represents 9% of chicken DNA. Some repeats were also found on the 1.702 and 1.704 components, but none on the 1.699 component (components are denoted by their buoyant densities in CsCl). The GC content of the repeats, 48%, matches that, 47%, of the major component mainly harboring it.  相似文献   

3.
We have studied the distribution of CR1, a family of short interspersed repeats, in the chicken genome; this family is homologous to the AluI family of man and to the B1-B2 families of mouse. Hybridization with a suitable probe showed that the vast majority of CR1 are located on the heaviest major component (1.708) of the genome which only represents 9% of chicken DNA. Some repeats were also found on the 1.702 and 1.704 components, but none on the 1.699 component (components are denoted by their buoyant densities in CsCl). The GC content of the repeats, 48%, matches that, 47%, of the major component mainly harboring it.  相似文献   

4.
The essential oils of Lavandula viridis were analysed by GC and GC-MS. Comparisons were made between three types of plant material from the same clone: field-grown plant, in vitro shoot cultures and micropropagated plants of the same clone. The most common components usually found in lavender oils were present in the oil samples analysed and more than 45 constituents were identified, representing more than 80% of the essential oil. The essential oils analysed consisted mainly of monoterpenes (75.4-76.3%), where oxygenated and hydrocarbons identified ranged from 41.8 to 57.3% and 18.1 to 34.2%, respectively. The major components found were 1.8-cineole (18.2-25.1%), camphor (9.1-15.7%), alpha-pinene (8.8-14.1%), borneol (4.1-4.8%), beta-pinene (1.2-5.6%), delta 3-carene (1.0-6.5%) and alpha-terpineol (0.8-4.2%). The monoterpene fraction of the in vitro shoot cultures showed different relative amounts of hydrocarbons and oxygenated components in relation to the parent plant and to micropropagated plants. In the sesquiterpene hydrocarbon fraction of the oil samples analysed (6.1-8.2%), 7-epi-alpha-selinene (1.6-4.8%) was the most important component and the oxygenated sesquiterpenes were found in small amounts (1.1-1.7%). The essential oils from field-grown plants of L. viridis, when compared with those obtained from in vitro shoot cultures or micropropagated plants of the same clone, demonstrated that the same major components were found without significant compositional variations.  相似文献   

5.
A new approach has been used to examine DNA sequence organization in the chicken genome. The interspersion pattern was determined by studying the fraction of labelled DNA fragments of different lengths that hybridized to an excess of short chicken repeated DNA sequences. The results indicate that chicken DNA has a pattern of sequence organization quite different than the standard ‘Xenopus’ or ‘Drosophila’ patterns. Two classes of unique sequences are found. One, 34% of the genome, consists of unique sequences approx. 4 kb long interspersed with repeated sequences. The second, non-interspersed fraction, 38% of the genome, consists of unique sequences found in long tracts, a minimum of approx. 22 kb in length. In an attempt to determine whether a relationship exists between DNA sequence organization and the distribution of structural genes we have isolated chicken DNA sequences belonging to different interspersion classes and tested each for the presence of structural genes by hybridization to excess poly(A)+ mRNA. Sequences complementary to poly(A)+ mRNA can be found with approximately the same frequency in both the non-interspersed fraction of the genome and a repeat-contiguous fraction enriched for interspersed sequences.  相似文献   

6.
By means of renaturation kinetics of DNA of the three avian species Cairina domestica, Gallus domesticus and Columba livia domestica the following major DNA repetition classes were observed: a very fast reannealing fraction comprising about 15% of the DNA, a fast or intermediate reannealing fraction that makes up 10%, and a slow reannealing fraction of about 70%, which apparently renatures with single copy properties. — Comparing the reassociation behaviour of short (0.3 kb) and long (>2 kb) DNA fragments of duck and chicken it becomes apparent that only 12% (duck) and 28% (chicken) of the single copy DNA are interspersed with repetitive elements on 2 to 3 kb long fragments. The lengths of the repetitive sequences were estimated by optical hyperchromicity measurements, by agarose A-50 chromatography of S1 nuclease resistant duplexes and by electron microscopic measurements of the S1 nuclease resistant duplexes. It was found that in the case of the chicken DNA the single copy sequences alternating with middle repetitive ones are at least 2.3 kb long; the interspersed moderate repeats have a length average of at least 1.5 kb. The sequence length of the moderate repeats in duck DNA is smaller. The results show that the duck and the chicken genomes do not follow the short period interspersion pattern of genome organisation, characteristic of the eucaryotic organisms studied so far.  相似文献   

7.
Summary The compositional properties of DNAs from 122 species of fishes and from 18 other coldblooded vertebrates (amphibians and reptiles) were compared with those from 10 warm-blooded vertebrates (mammals and birds) and found to be substantially different. Indeed, DNAs from cold-blooded vertebrates are characterized by much lower intermolecular compositional heterogeneities and CsCl band asymmetries, by a much wider spectrum of modal buoyant densities in CsCl, by generally lower amounts of satellites, as well as by the fact that in no case do buoyant densities reach the high values found in the GC-richest components of DNAs from warm-blooded vertebrates.In the case of fish genomes, which were more extensively studied, different orders were generally characterized by modal buoyant densities that were different in average values as well as in their ranges. In contrast, different families within any given order were more often characterized by narrow ranges of modal buoyant densities, and no difference in modal buoyant density was found within any single genus (except for the genusAphyosemion, which should be split into several genera).The compositional differences that were found among species belonging to different orders and to different families within the same order are indicative of compositional transitions, which were shown to be essentially due to directional base substitutions. These transitions were found to be independent of geological time. Moreover, the rates of directional base substitutions were found to be very variable and to reach, in some cases, extremely high values, that were even higher than those of silent substitutions in primates. The taxonomic and evolutionary implications of these findings are discussed.  相似文献   

8.
Structural genes adjacent to interspersed repetitive DNA sequences   总被引:2,自引:0,他引:2  
The observation that repetitive and single copy sequences are interspersed in animal DNAs has suggested that repetitive sequences are adjacent to single copy structural gene sequences. To test this concept, single copy DNA sequences contiguous to interspersed repetitive sequences were prepared from sea urchin DNA by hydroxyapatite fractionation (repeat-contiguous DNA fraction). These single copy sequences included about one third of the total nonrepetitive sequence in the genome as determined by the amounts recovered during the hydroxyapatite fractionation and by reassociation kinetics. 3H-labeled mRNA from sea urchin gastrula was prepared by puromycin release from polysomes and used in DNA-driven hybridization reactions. The kinetics of mRNA hybridization reactions with excess whole DNA were carefully measured, and the rate of hybridization was found to be 3–5 times slower than the corresponding single copy DNA driver reassociation rate. The mRNA hybridized with excess repeat-contiguous DNA with similar kinetics relative to the driver DNA. At completion 80% of that mRNA hybridizable with whole DNA (approximately 65%) had reacted with the repeat-contiguous DNA fraction (50%). This result shows that 80–100% of the mRNA molecules present in sea urchin embryos are transcribed from single copy DNA sequences adjacent to interspersed repetitive sequences in the genome.  相似文献   

9.
Isolation and characterization of six different chicken actin genes.   总被引:14,自引:4,他引:10       下载免费PDF全文
Genes representing six different actin isoforms were isolated from a chicken genomic library. Cloned actin cDNAs as well as tissue-specific mRNAs enriched in different actin species were used as hybridization probes to group individual actin genomic clones by their relative thermal stability. Restriction maps showed that these actin genes were derived from separate and nonoverlapping regions of genomic DNA. Of the six isolated genes, five included sequences from both the 5' and 3' ends of the actin-coding area. Amino acid sequence analysis from both the NH2- and COOH-terminal regions provided for the unequivocal identification of these genes. The striated isoforms were represented by the isolated alpha-skeletal, alpha-cardiac, and alpha-smooth muscle actin genes. The nonmuscle isoforms included the beta-cytoplasmic actin gene and an actin gene fragment which lacked the 5' coding and flanking sequence; presumably, this region of DNA was removed from this gene during construction of the genomic library. Unexpectedly, a third nonmuscle chicken actin gene was found which resembled the amphibian type 5 actin isoform (J. Vandekerckhove, W. W. Franke, and K. Weber, J. Mol. Biol., 152:413-426). This nonmuscle actin type has not been previously detected in warm-blooded vertebrates. We showed that interspersed, repeated DNA sequences closely flanked the alpha-skeletal, alpha-cardiac, beta-, and type 5-like actin genes. The repeated DNA sequences which surround the alpha-skeletal actin-coding regions were not related to repetitious DNA located on the other actin genes. Analysis of genomic DNA blots showed that the chicken actin multigene family was represented by 8 to 10 separate coding loci. The six isolated actin genes corresponded to 7 of 11 genomic EcoRI fragments. Only the alpha-smooth muscle actin gene was shown to be split by an EcoRI site. Thus, in the chicken genome each actin isoform appeared to be encoded by a single gene.  相似文献   

10.
The compositional distributions of large (main-band) DNA fragments from eight birds belonging to eight different orders (including both paleognathous and neognathous species) are very broad and extremely close to each other. These findings, which are paralleled by the compositional similarity of homologous coding sequences and their codon positions, support the idea that birds are a monophyletic group.The compositional distribution of third-codon positions of genes from chicken, the only avian species for which a relatively large number of coding sequences is known, is very broad and bimodal, the minor GC-richer peak reaching 100% GC. The very high compositional heterogeneity of avian genomes is accompanied (as in the case of mammalian genomes) by a very high speciation rate compared to cold-blooded vertebrates which are characterized by genomes that are much less heterogeneous. The higher GC levels attained by avian compared to mammalian genomes might be correlated with the higher body temperature (41–43°C) of birds compared to mammals (37°C).A comparison of GC levels of coding sequences and codon positions from man and chicken revealed very close average GC levels and standard deviations. Homologous coding sequences and codon positions from man and chicken showed a surprisingly high degree of compositional similarity which was, however, higher for GC-poor than for GC-rich sequences. This indicates that GC-poor isochores of warm-blooded vertebrates reflect the composition of the isochores of the genome of the common reptilian ancestor of mammals and birds, which underwent only a small compositional change at the transition from cold- to warm-blooded vertebrates. In contrast, the GC-rich isochores of birds and mammals are the result of large compositional changes at the same evolutionary transition, where were in part different in the two classes of warm-blooded vertebrates.Correspondence to: G. Bernaadi  相似文献   

11.
The sequence organization in the DNA of chicken (Gallus domesticus) was studied using hydroxyapatite-monitored reassociation kinetics. DNA 320-nucleotides long reassociates as though it is composed of three components, i.e., a very rapidly reacting fold-back fraction, a component composed of sequences repeated an average of 640 times in the genome, and a large unique fraction representing about 80% of the genome. The sizes of the fold back and repeated components increase only moderately with large increases in fragment size, indicating that these sequences are not extensively interspersed in the genome. Even at a fragment size of 4500 nucleotides, the unique component represents 68% of the DNA. Thus, the chicken genome is not organized in the short-period (Xenopus) interspersion pattern described for a large number of other organisms; rather, the DNA-sequence organization of this vertebrate bears more resemblance to the long-period interspersion pattern of Drosophila.  相似文献   

12.
Summary The compositional distribution of coding sequences from five vertebrates (Xenopus, chicken, mouse, rat, and human) is shifted toward higher GC values compared to that of the DNA molecules (in the 35–85-kb size range) isolated from the corresponding genomes. This shift is due to the lower GC levels of intergenic sequences compared to coding sequences. In the cold-blooded vertebrate, the two distributions are similar in that GC-poor genes and GC-poor DNA molecules are largely predominant. In contrast, in the warm-blooded vertebrates, GC-rich genes are largely predominant over GC-poor genes, whereas GC-poor DNA molecules are largely predominant over GC-rich DNA molecules. As a consequence, the genomes of warm-blooded vertebrates show a compositional gradient of gene concentration. The compositional distributions of coding sequences (as well as of DNA molecules) showed remarkable differences between chicken and mammals, and between mouse (or rat) and human. Differences were also detected in the compositional distribution of housekeeping and tissue-specific genes, the former being more abundant among GC-rich genes.  相似文献   

13.
We have identified and sequenced two members of a chicken middle repetitive DNA sequence family. By reassociation kinetics, members of this family (termed CRl) are estimated to be present in 1500-7000 copies per chicken haploid genome. The first family member sequenced (CRlUla) is located approximately 2 kb upstream from the previously cloned chicken Ul RNA gene. The second CRl sequence (CRl)Va) is located approximately 12 kb downstream from the 3' end of the chicken ovalbumin gene. The region of homology between these two sequences extends over a region of approximately 160 base pairs. In each case, the 160 base pair region is flanked by imperfect, but homologous, short direct repeats 10-15 base pairs in length. When the CRl sequences are compared with mammalian ubiquitous interspersed repetitive DNA sequences (human Alu and Mouse Bl families), several regions of extensive homology are evident. In addition, the short nucleotide sequence CAGCCTGG which is completely conserved in ubiquitous repetitive sequence families from several mammalian species is also conserved at a homologous position in the chicken sequences. These data imply that at least certain aspects of the sequence and structure of these interspersed repeats must predate the avian-mammalian divergence. It seems that the CRl family may possibly represent an avian counterpart of the mammalian ubiquitous repeats.  相似文献   

14.
15.
Rat cells infected with the B77 strain of avian sarcoma virus [R(B77) cells] produced no virus-like particles but contained information for the production of infectious B77 virus. (3)H-labeled deoxyribonucleic acid (DNA) product of the B77 virus endogenous DNA polymerase system was used to determine the relative amounts of B77 virus-specific ribonucleic acid (RNA) in B77 virus-infected chicken and R(B77) cells. R(B77) cells were found to contain much less B77 virus RNA than did B77 virus-infected chicken cells. Ribonuclease-sensitive DNA polymerase activity was present in high-speed pellet fractions from Nonidet extracts of B77 virus-infected rat cells. Similar preparations from some uninfected rat cells contained lesser amounts of a similar ribonuclease-sensitive DNA polymerase activity. The endogenous template for the DNA polymerase activity in high-speed pellet fractions from R(B77) cells was not related to B77 virus RNA or to RNA of a rat C-type virus. The DNA product of the endogenous DNA polymerase in high-speed pellet fractions of R(B77) cells hybridized to a small extent with RNA from the same fraction and to a similar extent with RNA from uninfected rat cells.  相似文献   

16.
17.
The quantitative tissue specificity of the high mobility group (HMG) chromosomal proteins was investigated. Perchloric acid (PCA) extracts of four different chicken tissues and erythrocytes contained three proteins which comigrated on NaDodSO4-polyacrylamide gels with the HMG's 1,2, and E from erythrocyte nuclei. These three HMG's from embryonic skeletal muscle and erythrocytes also comigrated on two-dimensional gels, employing an acid-urea system in the first dimension and an NaDodSO4 system in the second. Interpretation of the two-dimensional gels suggested that the two low molecular weight proteins of this triplet arose from the HMG 2 band of the acid-urea gels. These have been designated HMG 2A and HMG 2B. Three proteins of similar molecular weights were also found in the PCA extracts of calf thymus. They were arranged in a similar but not identical pattern on two-dimensional gels. Thus, these three HMG's appear to be neither tissue nor species specific. In addition, the 2.0% PCA extracts of all chicken tissues examined contain a 38 000-dalton (38K) nuclear protein which coisolates with the HMG's. These four proteins are found in different relative amounts in each of the four chicken tissues and erythrocytes. They are found in the same relative amounts, however, in embryonic skeletal muscles from different chicken strains with widely different highly repetitive sequence content, suggesting that none of these individual proteins is selectively localized to constitutive heterochromatin. The quantitative tissue specificity of the HMG's and the 38K protein, however, suggests that they may participate in regulating cell-specific gene expression.  相似文献   

18.
We have investigated the association of viral DNA with cell DNA in chicken embryo kidney (CEK) cells productively infected with chicken embryo lethal orphan (CELO) virus and in human (HEK) cells infected with mutants ts36 and ts125 of human adenovirus type 5 under permissive and restrictive conditions. Cell and viral DNA molecules were separated after CELO virus infection of CEK cells by alkaline sucrose gradient centrifugation, network formation, and CsCl density gradient centrifugation, methods that rely on different properties of the DNA. The cell DNA was then tested for viral sequences by DNA reannealing kinetics. Between 500 and 1,000 viral genome equivalents per cell were found at 36 h postinfection associated with cell DNA purified by each method. These values greatly exceeded the amount of free viral DNA found contaminating cell DNA prepared by the same methods from uninfected cells to which CELO virus DNA had been added. Quantitative agreement in the amounts of viral DNA found associated with cell DNA purified by these different methods suggests that CELO virus DNA is integrated into chick cell DNA during lytic infection. Similar experiments in HEK cells using mutants ts36 and ts125 of adenovirus type 5 at both restrictive and permissive temperatures showed that the same proportion of viral DNA is associated with cell DNA in the absence of viral DNA replication, and this suggests that the difference in the frequency with which cells are transformed by these mutants is not due to a difference in the frequency integration.  相似文献   

19.
In meiotic prophase I, chromatin fibrils attached to the lateral elements of the synaptonemal complexes (SC) form loops. SCAR DNA (synaptonemal complex associated regions of DNA) is a family of genomic DNA tightly associated with the SC and located at the chromatin loop basements. Using the hybridization technique, it was demonstrated that localization of SCAR DNA was evolutionarily conserved in the isochore compositional fractions of the three examined genomes of warm-blooded vertebrates—human, chicken, and golden hamster. The introduction of the concept of the comparative loops (CL) of DNA that form of chromatin attach to SC in the isochore compositional fractions provided the calculation of their length. An inverse proportional relationship between the length of CL DNA and the GC level in the isochore compartments of the studied warm-blooded vertebrate genomes was revealed. An exception was the GCpoorest L1 isochore family. For different compositional isochores of the human and chicken genomes, the number of genes in the CL DNA was evaluated. A model of the formation of GC-rich isochores in vertebrate genomes, according to which there was not only an increase in the GC level but also the elimination of functionally insignificant noncoding DNA regions, as well as joining of isochores decreasing in size, was suggested.  相似文献   

20.
Thirteen highly inbred chicken lines were analysed at the DNA level by DNA fingerprinting (DFP) and by polymerase chain reaction (PCR) using random primers. In general, the DFP patterns of individuals within a line were identical. The DFP band-sharing (BS) values among lines from different breeds (Leghorn, Fayoumi, Spanish) ranged from 0.10 to 0.20. The DFP BS values among Leghorn lines from different genetic backgrounds ranged from 0.42 to 0.79. The DFP BS values among lines selected for different major histocompatibility complex serotypes from a common genetic background ranged from 0.70 to 0.95. Some randomly amplified polymorphic DNA (RAPD) PCR products were specific to a single line, some to all lines from the same genetic base, and some to all lines from the same breed. The RAPD-PCR band-sharing values ranged from 0.66 to 0.99 for all between-line comparisons. Thus, the ability to detect biodiversity at the DNA level was greater in this study for DFP than for RAPD-PCR. The possible origin of line-specific bands, relative advantages of detecting biodiversity by using different molecular screening techniques and uses of highly inbred chicken lines in molecular analysis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号