首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Abstract. Secondary succession and seed bank formation was studied in a formerly grazed, abandoned, eastern Hungarian sandy steppe‐meadow (Pulsatillo‐Festucetum). The vegetation was sampled at different elevations of a sand dune which became partly invaded by the tree Robinia pseudo‐acacia ca. 10 yr ago. Pre‐abandonment vegetation records were used as historic references. Though composition of the non‐invaded grassland only changed moderately, dominance of tall grasses (Elymus hispidus, Poa angustifolia) increased significantly at the cost of annuals and low stature perennials. In the stand invaded by Robinia most grassland species were lost and replaced by nitrophytes. Vertical position influenced species abundance, but affected the composition only moderately. Fine‐scale zonation of the vegetation also changed with time. Species richness of the above‐ground vegetation and the seed density of soil samples at the lower elevation were slightly greater than at the higher sites. Seed banks of sensitive grassland specialists (e.g. Pulsatilla pratensis subsp. hungarica) disappeared during grass encroachment. Following extinction from above‐ground vegetation, restoration must rely on dispersal from adjacent areas. In contrast, several annuals and perennials, which survived this degradation stage in the above‐ground vegetation, possessed seed banks. Many of these species became extinct from the vegetation during the Robinia invasion but left viable persistent seeds. This fact is promising for restoration of the Potentillo‐Festucetum sandy pasture. Competitive weedy species and sprouting Robinia can, however, limit seedling establishment.  相似文献   

2.
Abstract. Vegetation samples from 15 successional seres in various disturbed habitats in the western part of the Czech Republic were analysed to detect possible trends. For particular seres, data on species cover were available from the onset to 10–76 yr of succession. All seres started on bare ground. Species which attained at least 1% cover in any sere in any year were used as input data for Canonical Correspondence Analysis, assessing the effect of time as the environmental variable, for Detrended Correspondence Analysis and TWINSPAN classification. Two distinct groups ofseres were distinguished: ‘ruderal’, occurring in agricultural, industrial or urban landscapes altered by men, usually on fertile sites; and ‘non‐ruderul’, occurring in less altered, mostly forested landscapes, usually on acid, nutrient‐poor and wetter soils. The former type of succession starts with ruderal annuals, being followed by ruderal perennials. In the latter case non‐ruderal clonal perennials prevail from the onset of succession. The landscape frame is emphasized, beside site environmental conditions, as influencing the type of succession. The character of species attaining dominance in succession, participation of dominant woody plants and the character of late successional stages, i.e. features important from the point of view of potential restoration of human‐disturbed habitats, are discussed.  相似文献   

3.
Succession of bee communities on fallows   总被引:4,自引:0,他引:4  
Wild bee communities were studied on one- to five-year-old set-aside fields with naturally developed vegetation (n = 20). and old orchard meadows (n = 4) to analyse effects of secondary succession on species diversity, resource use and associated life history traits. General theory predicts a steady increase of species richness with age of succession. In contrast, we found a first maximum in species richness of bees on two-year-old set-aside fields and a second on old meadows. Successional changes of bee communities were related to changes of vegetation. The transition from pioneer successional stages, dominated by annuals, to early successional stages, dominated by perennials, resulted in the highest species richness of flowering plants in the second year within the first five years of succession. Species richness of flowering plants was the best predictor variable for species richness of bees, whereas the cover of flowering plants correlated with the abundance of bees. Annual plants were visited more often and perennials less often than expected from their flower cover. Halictidae tended to prefer flowers of annuals, whereas Megachilidae. Apidae and Anthophoridae significantly preferred perennials. In departure from successional theory, body size, proportion of specialised bees and proportion of parasitic bees did not significantly increase with successional age, but number of generations and the proportion of soil-nesting bees decreased with successional age. Comparison of different management types showed that set-aside fields with naturally developed vegetation supported much more specialised and endangered bee species than set-aside fields sown with Phacelia tanacetifolia.  相似文献   

4.
Whether successional forests converge towards an equilibrium in species composition remains an elusive question, hampered by high idiosyncrasy in successional dynamics. Based on long‐term tree monitoring in second‐growth (SG) and old‐growth (OG) forests in Costa Rica, we show that patterns of convergence between pairs of forest stands depend upon the relative abundance of species exhibiting distinct responses to the successional gradient. For instance, forest generalists contributed to convergence between SG and OG forests, whereas rare species and old‐growth specialists were a source of divergence. Overall, opposing trends in taxonomic similarity among different subsets of species nullified each other, producing a net outcome of stasis over time. Our results offer an explanation for the limited convergence observed between pairwise communities and suggest that rare species and old‐growth specialists may be prone to dispersal limitation, while the dynamics of generalists and second‐growth specialists are more predictable, enhancing resilience in tropical secondary forests.  相似文献   

5.
Aims Alien species are commonly considered as harmful weeds capable of decreasing native biodiversity and threatening ecosystems. Despite this assumption, little is known about the long-term patterns of the native–alien relationships associated with human disturbed managed landscapes. This study aims to elucidate the community dynamics associated with a successional gradient in Chilean Mediterranean grasslands, considering both native and alien species.Methods Species richness (natives and aliens separately) and life-form (annuals and perennials) were recorded in four Chilean post-agricultural grazed grasslands each covering a broad successional gradient (from 1 to 40 years since crop abandonment). A detrended correspondence analysis (DCA), mixed model effects analyses and correlation tests were conducted to assess how this temporal gradient influenced natives and aliens through community dynamics.Important findings Our results show different life-form patterns between natives and aliens over time. Aliens were mainly represented by annuals (especially ruderals and weeds), which were established at the beginning of succession. Annual aliens also predominated at mid-successional stages, but in old grasslands native species were slightly more representative than alien ones within the community. In the late successional states, positive or no correlations at all between alien and native species richness suggested the absence of competition between both species groups, as a result of different strategies in occupation of the space. Community dynamics over time constitute a net gain in biodiversity, increasing natives and maintaining a general alien pool, allowing the coexistence of both. Biotic interactions including facilitation and/or tolerance processes might be occurring in Chilean post-agricultural grasslands, a fact that contradicts the accepted idea of the alien species as contenders.  相似文献   

6.
Permanent plots were created in different seasons (autumn and spring) and filled with two substrates: nutrient-rich topsoil and nutrient-poor ruderal soil (n = 5 for each treatment). My objectives were to assess the influence of starting season on initial species composition, whether differences at the start cause divergent or convergent pathways of succession and which mechanisms are operating during vegetation development. Mean species richness (number of species per plot) and mean total cover of herb layer differed significantly between substrates and changed significantly during 10 year succession, but there were no significant differences with respect to starting season. However, seasonal as well as substrate effects were evident for particular dominant species and for the pattern of successional sequences. When succession on topsoil plots started in spring, first summer annuals dominated, then monocarpic and polycarpic perennial herbs, then herbaceous perennials together with woody perennials, and at the end of the decade woody perennials. When succession started in autumn, polycarpic perennial herbs dominated from the beginning, and then were replaced by woody perennials in the second half of the decade. On ruderal soil, there was a less rapid but continuous increase of polycarpic perennial herbs and woody species, both on spring and on autumn plots, whereas short-lived plants were more abundant in the first years and then decreased. Species turnover was very high from the first to the second year for all treatments (except topsoil plots starting in autumn), but slowed down during succession. Priority effects due to starting season caused high dissimilarity at the start on the nutrient-rich substrate, but convergent succession towards the end of the first decade. The main mechanisms during early succession on the nutrient-rich topsoil were tolerance based on different life-history traits and inhibition due to reduced light availability. There was no evidence for obligate facilitation. However, an indirect facilitative effect by annuals, which slowed the development of herbaceous perennials down, and thus facilitated growth of woody species, could be seen on topsoil when succession started in spring.  相似文献   

7.
Tropical secondary forests form an important part of the landscape. Understanding functional traits of species that colonize at different points in succession can provide insight into community assembly. Although studies on functional traits during forest succession have focused on trees, lianas (woody vines) also contribute strongly to forest biomass, species richness, and dynamics. We examined life history traits of lianas in a forest chronosequence in Costa Rica to determine which traits vary consistently over succession. We conducted 0.1 ha vegetation inventories in 30 sites. To examine the establishment of young individuals, we only included small lianas (0.5–1.5 cm diameter at 1.3 m height). For each species, we identified seed size, dispersal mode, climbing mode, and whether or not the seedling is self‐supporting. We found a strong axis of variation determined by seed size and seedling growth habit, with early successional communities dominated by small‐seeded species with abiotic dispersal and climbing seedlings, while large‐seeded, animal‐dispersed species with free‐standing seedlings increased in abundance with stand age. Contrary to previous research and theory, we found a decrease in the abundance of stem twiners and no decrease in the abundance of tendril‐climbers during succession. Seed size appears to be a better indicator of liana successional stage than climbing mode. Liana life history traits change predictably over succession, particularly traits related to seedling establishment. Identifying whether these trait differences persist into the growth strategies of mature lianas is an important research goal, with potential ramifications for understanding the impact of lianas during tropical forest succession.  相似文献   

8.
Abstract. A spatio‐temporal variation of vegetation during spontaneous succession was studied in 56 basalt quarries spread over 1800 km2 in the ?eské st?edoho?í Hills (NW Czech Republic, Central Europe). Differences in the particular habitats inside a quarry, i.e. steep rocky slopes, bottoms and levels; dumps; and screes were considered. The habitats ranged in age from 1 to 78 yr since abandonment. Macroclimate (mean annual temperature and precipitation) significantly influenced the course of succession, which led to a formation of shrubby grassland, shrubby woodland or tall woodland. Participation of target species typical of steppe‐like communities significantly depended on the occurrence of the communities in the vicinity, up to a distance of 30 m from a quarry. Disused quarries may become refugia for rare plant species. Spontaneous successional processes led in the reasonable time of ca. 20 yr to semi‐natural vegetation. Thus, they can be successfully exploited in restoration programs scheduled for the disused quarries.  相似文献   

9.
Abstract. We used a forest chronosequence at the Barro Colorado Nature Monument (BCNM) to examine changes in the abundance and species composition of seeds in the soil during forest succession. At each of eight sites varying from 20 yr to 100 yr since abandonment, and at two old-growth (> 500 yr) forest stands, we established two 160-m transects and sampled the surface 0–3 cm of soil in cores collected at each 5 m interval. Seed densities were estimated from the number of seedlings germinated from the soil over a six-week period. Contrary to expectation, neither the density of the soil seed bank, nor species richness or diversity were directly related to age since abandonment, but the density of the soil seed bank was correlated with the abundance of seed-bank-forming species in the standing vegetation. In marked contrast to published studies, herbaceous taxa were rare even in the youngest stands, and the common tree species, which accounted for most seeds in the soil, were present in all stands. The pioneer tree Miconia argentea (Melastomataceae) was the single most common species in the seed bank, accounting for 62% of seeds and present in 92% of soil samples. Rapid recovery of the vegetation of young regrowth stands on BCNM, when compared to sites elsewhere may be partly due to allochthonous seed rain from nearby mature forest stands and the lack of seed inputs of weeds and grasses from agricultural and pasture lands which may inhibit forest succession.  相似文献   

10.
Question: Knowledge of the interaction between understorey herb and overstorey tree layer diversity is mostly restricted to temperate forests. How do tree layer diversity and environmental variables affect herb layer attributes in subtropical forests and do these relationships change in the course of succession? Do abundance and diversity of woody saplings within the herb layer shift during succession? Location: Subtropical broad‐leaved forests in southeast China (29°8′18″‐29°17′29″N, 118°2′14″118°11′12″E). Methods: A full inventory of the herb layer including all plants below 1‐m height was done in 27 plots (10 × 10 m) from five successional stages (<20, <40, <60, <80 and ≥80 yr). We quantified the contribution of different life forms (herbaceous, woody and climber species) to herb layer diversity and productivity and analysed effects of environmental variables and tree layer diversity on these attributes. Results: Herb layer composition followed a successional gradient, as revealed by non‐metric multidimensional scaling (NMDS), but diversity was not correlated to the successional gradient. There was no correlation of diversity across layers. Herb layer productivity was neither affected by tree layer diversity nor by herb layer diversity. Although abundance of woody species in the herb layer decreased significantly during succession, woody species contributed extraordinarily to herb layer species diversity in all successional stages. All environmental factors considered had little impact on herb layer attributes. Conclusions: The subtropical forest investigated displays an immense richness of woody species in the herb layer while herbaceous species are less prominent. Species composition of the herb layer shows a clear successional pattern, however, the presence or absence of certain species appears to be random.  相似文献   

11.
Early succession of butterfly and plant communities on set-aside fields   总被引:9,自引:0,他引:9  
 Hypotheses on secondary succession of butterfly and plant communities were tested using naturally developed 1- to 4-year-old set-aside fields (n = 16), sown fields (n = 8) and old meadows (n = 4) in 1992 in South Germany. Pioneer successional fields (1st and 2nd year of succession, dominated by annuals) and early successional fields (3rd and 4th year of succession where perennials, especially grasses became dominant) had fewer plant species than mid-successional fields (old meadows). In contrast to established hypotheses, mean number of plant species decreased from 1- to 4-year-old set-aside fields. Species richness of butterfly communities did not change during the first four years of succession, but species composition changed greatly. Pioneer successional fields were characterized by (1) specialized butterflies depending on annual pioneer foodplants (e.g. Issoria lathonia), and (2) species preferring the pioneer successions despite their host plants being more abundant on early and mid-successional fields (e.g. Papilio machaon). The variability in butterfly species richness was best explained by flower abundance which was closely correlated with plant species richness. Species whose abundance was correlated with habitat connectivity were significantly smaller than species which correlated with flower abundance. Numbers of caterpillar species were correlated with numbers of adult butterfly species. Life-history features of butterflies changed significantly from pioneer to early and mid-successional fields. We found decreasing body size and migrational ability, decreasing numbers of species hibernating as imago, decreasing numbers of generations and increasing larval stage duration with age of succession, but, contrary to expectation, host plant specialization, numbers of egg-cluster laying species and egg diameter did not change with successional age. Received 18 September 1995 / Accepted: 17 July 1996  相似文献   

12.
The relationship between forest succession and microfungal diversity has been poorly studied. Fungi provide important ecosystem services that may deteriorate in deforested or highly disturbed forests. To determine the possible effects of deforestation and forest succession on microfungi, species diversity of hypocrealean fungi (Ascomycota) was compared in forest stands in Eastern Costa Rica representing three stages of succession: 1–2, 25–27 yr old, and an old growth forest. Species diversity in a second‐growth forest fragment surrounded by timber plantations and second‐growth forest was also compared to that of a stand surrounded by old growth forest. The results show that the overall diversity of hypocrealean fungi was inversely proportional to the age of the forest stand, and each family showed different successional trends. Clavicipitaceae was more diverse in the old‐growth forest and was positively related to the age of the forest stand. Nectriaceae was highly diverse in the 1‐ to 2‐yr‐old stand and less diverse in the old‐growth stand. Saprobic and plant pathogenic fungal species were more diverse in the 1‐ to 2‐yr‐old stand and their diversity was inversely proportional to the age of the forest stand. The diversity of insect pathogens was positively related to the age of the forest stand. The 20‐ to 22‐yr‐old forest fragment had the lowest number of species overall. Based on the data gathered in this study, hypocrealean fungal species diversity is related to the successional stage and fragmentation of tropical forest.  相似文献   

13.
Abstract. In seasonally dry regions of the world fire is a recurring disturbance but little is known of how fire interacts with granite outcrop vegetation. We hypothesize that the floristic composition in granite vegetation, usually attributed to the edaphic environment, may also reflect the impact of disturbances such as fire. Dramatic differences in floristic composition and cover over 13 years and two fires were observed in vegetation on a Western Australian granite outcrop. This was very marked in the first year following the two fires, with annuals and geophytes showing the greatest turnover of species. Even among the perennial shrubs there was considerable turnover in a number of obligate seeders. After the first fire the number of species declined for woody perennials, herbaceous perennials and annuals, remained unchanged for perennial grasses and sedges, and varied with highest richness 4 yr after fire for geophytes. Demographic studies of two endemic woody obligate seeders and three endemic mallee eucalypt resprouters similarly showed dramatic differences within and between species in seedling recruitment following the two fires. Fire does have a significant impact on the floristic composition of semi‐arid granite outcrop vegetation communities. Studies on other granite outcrop systems are needed to test the generality of this conclusion.  相似文献   

14.
To the discussion on secondary succession in tropical forests, we bring data on three under‐addressed issues: understory as well as overstory changes, continuous as opposed to phase changes, and integration of forest succession with indigenous fallow management and plant uses. Changes in vegetation structure and species composition were analyzed in secondary forests following swidden agriculture in a semideciduous forest of Bolivian lowlands. Twenty‐eight fallows, stratified by four successional stages (early = 1–5 yr, intermediate = 6–10 yr, advanced = 12–20 yr, and older = 22–36 yr), and ten stands of mature forests were sampled. The overstory (plants ≥5 cm diameter at breast height [DBH]) was sampled using a 20 × 50 m plot and the understory (plants <5 cm DBH) in three nested 2 × 5 m subplots. Semistructured interviews provided information on fallow management. Canopy height, basal area, and liana density of the overstory increased with secondary forest age. The early stage had the lowest species density and diversity in the overstory, but the highest diversity in the understory. Species composition and abundance differentiated mature forests and early successional stage from other successional stages; however, species showed individualistic responses across the temporal gradient. A total of 123 of 280 species were useful with edible, medicinal, and construction plants being the most abundant for both over‐ and understories. Most of Los Gwarayo preferred mature forests for making new swidden, while fallows were valuable for crops, useful species, and regenerating timber species.  相似文献   

15.
Dynamics of vesicular-arbuscular mycorrhizae during old field succession   总被引:8,自引:0,他引:8  
Summary The species composition of vesicular-arbuscular mycorrhizal (VAM) fungal communities changed during secondary succession of abandoned fields based on a field to forest chronosequence. Twenty-five VAM fungal species were identified. Seven species were clearly early successional and five species were clearly late successional. The total number of VAM fungal species did not increase with successional time, but diversity as measured by the Shannon-Wiener index tended to increase, primarily because the community became more even as a single species, Glomus aggregatum, became less dominant in the older sites. Diversity of the VAM fungal community was positively correlated with soil C and N. The density of VAM fungi, as measured by infectivity and total spore count, first increased with time since abandonment and then decreased in the late successional forest sites. Within 12 abandoned fields, VAM fungal density increased with increasing soil pH, H2O soluble soil C, and root biomass, but was inversely related to extractable soil P and percent cover of non-host plant species. The lower abundance of VAM fungi in the forest sites compared with the field sites agrees with the findings of other workers and corresponds with a shift in the dominant vegetation from herbaceous VAM hosts to woody ectomycorrhizal hosts.  相似文献   

16.
Bonet  Andreu  Pausas  Juli G. 《Plant Ecology》2004,174(2):257-270
We analyse changes in plant cover and species richness along a 60-year chronosequence in semi-arid Mediterranean old-fields of southeastern Spain. The objectives were: (i) to study patterns of species richness along the abandonment gradient in semi-arid conditions (e.g., to test the “humped-back model” in our system); (ii) to test whether different broad life forms (annuals, forbs, grasses and woody species) showed different patterns along the abandonment gradient, and (iii) to examine to what extent plants with different dispersal strategies dominate at different stages of succession. The explained variance of the regression relating species richness to years since abandonment is improved when considering different life forms. The results suggest that cover and richness of different functional groups show a non-linear unimodal (often positive-skewed) pattern along the gradient (age since abandonment). Maximum total richness is found at young stages of abandonment (<20 years), when most life forms and dispersal strategies coexist. Annuals and perennial forbs reached their maximum richness during the first 10 years of abandonment. About 45% of total woody species richness is reached at this time as a consequence of early colonization of zoochorous shrubs. While the results showed a tendency towards a life-form replacement sequence, the pattern is not so clear when looking at the different dispersal strategies. The results complement previous results in Mediterranean conditions and emphasise the importance of considering different functional types when studying successional patterns. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
In order to determine the effect of prior land use on secondary succession, woody plant species abundances were determined on the Lake Erie Islands in 21 sites 20–90 yr post-abandonment: 11 former vineyards, 8 former orchards, and 2 former quarries. Detrended Correspondence Analysis ordination was used to compare the relative abundances of woody plants in the 21 successional sites to each other and to 5 mature upland forests and 3 mature lowland forests. Vineyards 20–45 yr post-abandonment had closed canopies 2–4 m tall and were dominated by the same mix of species dominating mature forests at similar elevations. Abandoned orchards 20–45 yr post-abandonment supported species common in mature forest floras as well as many shade-intolerant, pioneer tree and shrub species not found in mature stands. These differences in successional patterns seem to be related to differences in the suite of colonization sites presented upon abandonment, with orchards being dominated by open, bare ground, and vineyards by shaded ground receiving ca. 20% of full sunlight. Newly abandoned vineyards had appreciable ‘advanced regeneration’ of saplings of shade-tolerant species 3–7 yr old growing among the grapes. While former quarries remained open, marginal habitats with sparse, open canopies dominated by species typical of rocky cliff edges, the community structure of former vineyards and orchards converged toward each other and toward the composition of mature forests at similar elevations. Thus patterns of secondary succession varied with prior land use and were determined by the suite of colonization sites available at the time of abandonment.  相似文献   

18.
Chronosequences, commonly used to assess succession, have been questioned because of their failure to project successional trajectories. Here, we develop a simple analytical approach combining both chronosequence and dynamic data to test the power of age of abandonment and site factors to explain and predict succession. The approach proceeds by first fitting statistical models relating age to attribute values (the chronosequence model) and their observed changes (the dynamic model) to test explanatory power. Predictive power is then tested by bootstrapping the chronosequence model to derive confidence intervals for expected changes and comparing them with the dynamic model. Finally, residuals from both models are tested against site factors. The procedure was applied to six attributes (basal area, plant density, mean plant height, species richness, evenness, and composition) of the woody community (plants >1 cm dbh within 0.1‐ha plots) in nine abandoned cattle pastures (0–12 yr) and three old growth tropical dry forests monitored over 6 yr. Age explained 60–97 percent of the variance in community attributes and only 32–57 percent in observed changes. It significantly overestimated basal area and mean height, while species richness and composition were highly predicted. Besides age, management history also explained successional dynamics. Our results suggest age is not necessarily a reliable predictor of short‐term successional dynamics, and explanatory power is not indicative of predictive power. Because of this low reliability, caution is needed when applying chronosequences to evaluate ecosystem services' recovery. The analytical approach developed here contributes to a better exploration of those possible limitations.  相似文献   

19.
Aim Lowland woodlands in Europe went through dramatic changes in management in the past century. This article investigates the influence of two key factors, abandonment of coppicing and increased pressure of ungulates, in thermophilous oakwoods. We focused on three interconnected topics: (1) Has the assumed successional trend lead to impoverishment of the vegetation assemblages? (2) Has it resulted in vegetation homogenization? (3) Are the thermophilous oakwoods loosing their original character? Location Czech Republic, Central Europe. Methods The vegetation in 46 semi‐permanent plots was recorded three times: firstly, shortly after the abandonment of coppicing (1953) and then, after four to six decades of secondary succession and strong game impact (1992 and 2006). Overall trends and changes in species spectra were analysed. Results There is a marked successional shift towards species‐poorer communities growing in cooler, moister and nutrient‐richer conditions. The change was significantly different in parts affected and unaffected by high numbers of ungulates yet only for herbs, not the woody species. However, observed change in species composition was not accompanied by significant homogenization process that is the general process reported from elsewhere. A sharp decline in plant species typical for thermophilous woodland communities and in endangered species indicates that the original character of the woodland has been gradually lost. Main conclusions Thermophilous oakwoods have been largely replaced by mesic forests. Lowland oakwoods in continental parts of Europe historically depended on active management, which kept the understorey conditions light and warm. Successional processes in the 20th century caused a critical loss of species diversity at various spatial levels. However, artificially high numbers of ungulates, which otherwise have a negative impact, probably held up succession, so that the changes may still be reversible.  相似文献   

20.
Question: How is vegetation succession on coal mine wastes under a Mediterranean climate affected by the restoration method used (topsoil addition or not)? How are plant successional processes influenced by local landscape and soil factors? Location: Reclaimed coal mines in the north of Palencia province, northern Spain (42°47′‐42°50′ N, 4°32′‐4°53′ W). Methods: In Jun–Jul 2008, vascular plant species cover was monitored in 31 coal mines. The mines, which had been restored using two restoration methods (topsoil addition or not), comprised a chronosequence of different ages from 1 to 40 yr since restoration started. Soil and environmental factors at each mine were monitored and related to species cover using a combination of ordination methods and Huisman–Olff–Fresco modeling. Results: Plant succession was affected by restoration method . Where topsoil was added, succession was influenced by age since restoration and soil pH. Where no topsoil was added, soil factors seem to arrest succession. Vegetation composition on topsoiled sites showed a gradient with age, from the youngest, with early colonizing species, to oldest, with an increase in woody species. Vegetation on non‐topsoiled sites comprised mainly early‐successional species. Response to age and pH of 37 species found on topsoiled mines is described. Conclusions: Restoration of coal mines under this Mediterranean climate can be relatively fast if topsoil is added, with a native shrub community developing after 15 yr. However, if topsoil is not used, it takes more than 40 yr. For topsoiled mines, the species found in the different successional stages were identified, and their tolerance to soil pH was derived. This information will assist future restoration projects in the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号