首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boydak  Melih 《Plant Ecology》2004,171(1-2):153-163
Pinus brutia Ten. is a characteristic species of the eastern Mediterranean. P. brutia and P. halepensis Mill. are distinct species; but P. eldarica, P. stankewiczii and P. pityusa are subspecies of P. brutia. Fire is the major disturbance in P. brutia forests, and several adaptations generally contribute to post-fire regeneration of P. brutia; however, P. brutia can also naturally regenerate without fire. Flowering occurs between March and May. Seed distribution occurs throughout the year, with maximum dispersal in August and the great majority of seeds dispersing within the period July-December.P. brutia retains some closed cones and so establishes a natural canopy seed bank. Seed germination occurs in the rainy season with two frequency peaks: the major one in spring and a minor one in autumn. P. brutia seedlings develop rapidly-growing tap roots. Shelterwood, clearcutting and strip clearcut methods can successfully be applied to P. brutia forests, depending on local conditions. Density of P. brutia seedlings was greater and seedlings were more vigorous when the natural regeneration methods were combined with prescribed fire. Clearcutting methods combined with laying cone bearing branches on the surface of the soil and additional seeding increases regeneration success. Ground litter of 2–4 cm creates a medium that reduces evapotranspiration, delays growth of competing vegetation, and increases seedling survival. Successful regeneration must be established by the end of first vegetation period.  相似文献   

2.
This study investigates the genetic structure of brutia pine (Pinus brutia Ten.) stands that were exposed to wild fires. A systematic investigation within the species distribution in Greece first identified areas of frequent wild forest fires and then located stands that had experienced ground fires about 20 years ago. In these stands it was possible to sample the pre-fire population that had survived the ground fire event (“mature” population) as well as the post-fire population that has reached reproductive capacity (“young” population). Gel electrophoresis was used in order to study isoenzyme variability in four such populations present in two sites (Kourteri, Lesvos island and Mytilineoi, Samos island). Results indicated absence of notable differences in genetic diversity among the remnant mature populations and the young populations after regeneration. No significant inbreeding was detected and genetic identity among young and mature stands was high. However, some differences were observed in the frequencies of rare alleles and in the presence of interspecific (P. brutia x halepensis) hybrids in the young populations. This paper discusses the above results in the context of the evolution of brutia pine and the maintenance of its genetic variation.  相似文献   

3.
P. Petrou 《Plant biosystems》2013,147(3):522-533
Abstract

The present study was carried out in abandoned fields in central Cyprus. The main objective was to examine the impact of the regeneration environment on the establishment and survival of Pinus brutia seedlings. Sixty-four permanent plots of 16 m2 were randomly established in two distinct sites. Four regeneration environments were recorded: (a) bare soil under the crown of a P. brutia tree, (b) soil under the canopy of a P. brutia tree and low shrubs, (c) bare soil in open areas, and (d) soil under the canopy of low shrubs in open areas. All P. brutia seedlings were classified in categories according to their regeneration environment. In all plots, the density of the P. brutia seedlings was measured in three different seasons (spring, summer, autumn). Soil temperatures were recorded, samples of surface soil were taken and the percentage of soil organic matter was measured. The main conclusions drawn from this research were the following: (1) the mature P. brutia trees and low shrubs facilitate the establishment and especially the survival of P. brutia seedlings, as all seedlings in bare vegetation ground had died by the end of the growing season, and (2) the importance of facilitation increases as abiotic stress rises.  相似文献   

4.
Abstract. Large‐scale disturbances, notably fire and grazing, structure grass and shrubland dynamics in semi‐arid environments. We studied early post‐fire succession in two burned grasslands, one unburned grassland, and one shrubland near the burned area. We observed three processes: (1) establishment of a ‘phantom’ community comprised of fugitive species. Although transient, these species increase diversity and recharge the seed bank before the next disturbance; (2) regeneration of the original community by persistence of resprouter species and by auto‐replacement; (3) early stages of invasion by seedlings of the shrub Fabiana imbricata, which germinate next to shrubland and create new F. imbricata patches. Weed invasion was principally due to the ruderal exotic species Verbascum thapsus from the nearby road verge and by rapid increase of Rumex acetosella cover, another exotic species present before the fire. Although post‐fire climatic conditions are particularly important in semi‐arid environments, succession depends greatly on the regeneration strategies and dispersal abilities of the species present in the burned area. The phantom community occurs only at the first stage of succession when there is little competition for resources. We could call this process ‘the race for occupation of the area’. The second stage, when competition for resources becomes progressively more important, could be called ‘the effort to maintain space’.  相似文献   

5.
Abstract. This paper presents results of a long-term study on natural forest dynamics in the Bia?owieza National Park (BNP), northeastern Poland. Five permanent sample areas were used, each consisting of a transect of varying width (40 - 60 m) and length (200 - 1380 m). The total sample area is 14.9 ha. The study covers the period 1936–1992. During this period measurements were made on five occasions at approximately 10-yr intervals. On each measurement date all trees with DBH > 5 cm were identified and their spatial location, diameter, crown condition and position in the canopy determined. During the study period the stands underwent noticeable changes, mainly in terms of tree species composition. The major change was a quantitative increase of the late-successional species: Tilia cordata and Carpinus betulus, also to a lesser degree Fraxinus excelsior and, in the last period, of the early successional Alnus glutinosa. Declining species included both early- and late-succession species. Among the latter group, Picea abies ranked first. This species lost much of its importance during the last few decades. P. abies was followed by Pinus sylvestris which is an important component of the climax vegetation under the conditions prevailing in Bialowieza, at least on more oligotrophic sites. Still, this species has not been able to regenerate during the whole study period. Some other late-succession species, Acer platanoides and Quercus robur, were also amongst the declining species. Although the basal area of Q. robur increased, its population was getting older and the process of natural regeneration was markedly impeded. All typical pioneer, short-lived species: Betula pendula and B. pubescens, Salix caprea and Populus tremula also decreased, which was probably caused by a lack of major disturbances during the study period. In general, the results obtained for the semi-natural conditions of Bialowieza during the 56-yr observation period suggest a rather high compositional instability of the forest stands there. A more precise identification of the role of particular factors in the observed stand dynamics is difficult because of the paucity of appropriate historical and environmental data which refer directly to the study plots; moreover, the data are generally incompatible and of different resolution.  相似文献   

6.
Pinus pumila (Dall.) Regel, a rare conifer and key species in high latitude and high altitude mountains, has an important role in soil and water conservation. This evergreen shrub grows 3–6 m high in P. pumila – larch (Larix gmelini) open forest at altitudes of 800–1200 m in the Greater Kingan Mountain Range (Daxing’an Mountain). Forest fires are major natural hazards to P. pumila – larch forest. The unique ecological role of this community gives important theoretical and practical significance to research on P. pumila – larch forest restoration after fires. Literature concerning factors influencing early vegetation restoration in burned areas in this habitat is sparse. We studied these factors, especially those related to P. pumila seedling establishment. The results showed fires in P. pumila – larch forest usually resulted in severe burns. Typically almost no P. pumila survived after fires. Nearly all ground fuels were consumed. Second growth after fires exhibited low species richness. The dominant tree/shrub seedlings found after fires were birch (Betula platyphylla) and larch, with small number of P. pumila. Other shrub seedlings found were Ledum palustre, Vaccinium vitis-idaea, Betula fruticosa, and Rubus arcticus. The main herb species found were Deyeuxia langsdorffii, and Chamaenerion angustifolium. Important factors influencing early vegetation restoration after fires included seed dispersal, fire size, and site condition. Seed dispersal in birch and larch is higher than in P. pumila; more seedlings of birch and larch were found in burned areas than seedlings of P. pumila. Most seeds germinated in the first year following a fire. The extent of the burned area influences seedling distribution patterns, especially in species with limited seed dispersal ability. Birch and larch seedlings were evenly distributed in the entire burned area, while seedlings of P. pumila were found only at the fire edge. No P. pumila seedlings were found more than 50 m away from seed source trees. Site condition significantly influenced seed germination and growth in birch and larch; these seedlings only grew well in burned areas with good site conditions (shallow slopes, thick soils, etc.). They did not grow well in burned areas with poor site conditions (steep slopes, thin soils, etc.). However, P. pumila seedlings could grow well in burned areas with either good or poor site conditions. The strong vitality of P. pumila seedlings gives this species an enormous ecological advantage in soil conservation and environmental restoration and conservation. We conclude that the main factor influencing seedling establishment in P. pumila is its weak seed dispersal ability. Although the P. pumila seeds can germinate in all burned areas, natural regeneration rarely restores burned areas to the original P. pumila – larch forest. Planting seeds and/or seedlings may facilitate burned area restoration to P. pumila – larch forest. Because P. pumila seedlings grow very slowly, the restoration process may take decades.  相似文献   

7.
Invasive species can increase fire frequency and intensity, generating favorable conditions for their self-perpetuation. Mediterranean south-central Chile may be especially prone to the effects of invasive species on fire regimes because it is less adapted to fire and it contains a highly endemic flora. Teline monspessulana (L.) K. Koch (syn. Cytisus monspessulanus L.; Genista monspessulana (L.) L.A.S. Johnson) is an introduced shrub that forms monotypic stands or is present as an understory species in native forests as well as in forestry plantations. Dense T. monspessulana stands are completely destroyed by fire, generating the conditions for it seeds to germinate and establish an abundant regeneration, with up to 900 plants/m2. We report key evidence on abundance and biomass in adult stands, and patterns of seed bank and regeneration after fire in stands of T. monspessulana around the city of Concepción, Chile. We estimated living biomass in pure stands and underneath Eucalyptus plantations. In burned areas, we assessed T. monspessulana seed bank and studied regeneration patterns. We found that T. monspessulana densities reaches 52,778 plants/ha and 8.92 ton/ha in pure stands and 34,223 plants/ha and 2.31 ton/ha underneath Eucalyptus plantations. T. monspessulana generates small caliper fuel and acts as a ladder-fuel. Large soil seed banks allow for abundant regeneration after fire, with mean densities of 877,111 plants/ha, but an overall mortality of 37.2% in the first year after the fire. The high values of regeneration compared to final densities in adult stands suggest that density-dependent mortality. Our results indicate that T. monspessulana regeneration is not only favored by fires, but also that the species creates favorable conditions for intense and continuous fires, both under pure conditions, but also associated to exotic tree plantations. To understand the implications of positive feedbacks between invaders and fire, we recommend focusing in the mechanisms by which they increases fuel accumulation and fuel flammability, and how higher fire frequency and intensity favors invasive species recruitment over native species. Comprehension of this dynamics will allow for better management and control of these invasions which have major ecological, economical and social implications.  相似文献   

8.
Abstract. Germination of Quercus ilex L. in coppice stands of this species in the western Mediterranean Basin was examined and a germination inhibitory process is proposed to explain some germination traits. Germination rate and seedling biomass of Q. ilex were greatly modified by watering acorns with various concentrations of aqueous soil extracts from a Q. ilex coppice stand but also when the acorns were sown in soil from Q. ilex coppice stands. In the aqueous extract experiment, Q. ilex germination and seedling weight both decreased as the aqueous extract concentration increased. In the soil type experiment, Q. ilex soil decreased the Q. ilex germination rate. Comparative studies with Q. pubescens germination (this species, replaced by Q. ilex around 5 000 B.P., is assumed to form the climax vegetation of the region) revealed that Q. pubescens was less sensitive to the aqueous extracts and soils of Q. ilex coppice stands. Inhibition of Q. ilex seed germination could be a major reason for the poor seed regeneration and suggested a possible comeback of Q. pubescens.  相似文献   

9.
Abstract. The post-fire regeneration of a 45-yr-old Pinus halepensis (Aleppo pine) forest, burned in July 1989, has been studied on Mount Párnis, Attiki, Greece. Four experimental plots at various slopes and exposures were established at altitudes of 400 - 450 m, and monitored for 3 yr at 3-month intervals. Early regeneration took place abundantly, through both resprouting and seed germination of mostly hard-seeded herbs and shrubs; the floristic richness was high with 80 taxa. Pine seedling emergence took place during the winter of the first post-fire year. The mean pine seedling density by the end of the recruitment period (March 1990) was 5–6 seedlings/m2. This density decreased slightly during late spring and considerably during summer. During the second post-fire year only a relatively slight decline was observed; thereafter the density was stabilized to 1 - 2 seedlings/m2. Mortality follows a negative exponential curve that levels off at ca. 20 %. Height distributions throughout the three post-fire years were all positively skewed as a result of the presence of few very tall saplings. A considerable fraction (20 %) of very short (5–15 cm) saplings were still alive 39 months after the fire; these may constitute the sapling bank. Based on the analysis of height distribution curves, it is concluded that the taller seedlings survived significantly better than the shorter ones.  相似文献   

10.
Abstract. The characteristics of microhabitats of established Pinus sylvestris and Betula seedlings were studied in a small windthrow gap in a mature P. sylvestris-dominated forest in the Petkeljärvi National Park in eastern Finland. Seedlings were strongly clustered in disturbed microhabitats, particularly uprooting pits and mounds, formed by tree falls. They covered 3% of the 0.3.ha study area consisting of the gap and some of the forest edge. Although Betula occurred only as scattered individuals in the dominant canopy layer of the forest, it accounted for 30% of the seedlings found in the study area. Betula regeneration was almost completely restricted to pits and mounds, where 91% of the seedlings were found. Uprooting spots were also the most important regeneration microhabitats for Pinus, where 60% of the seedlings grew, even though the seedlings were found in other substrates as well, particularly on sufficiently decomposed coarse wood. Undisturbed field- and bottom-layer vegetation had effectively hindered tree seedling establishment, which emphasises the role of soil disturbance for regeneration. While the establishment of seedlings was found to be clearly determined by the availability of favourable regeneration microhabitats, the early growth of seedlings was affected by a complex interaction of environmental variables, including the type of microhabitat, radiation environment and interferences caused by competing seedlings and adjacent trees. In the most important regeneration microhabitats, i.e. in uprooting pits and on mounds, the distributions of the local elevations of Pinus and Betula seedlings were different. Pinus seedlings occurred closer to ground level, i.e. on the fringes of pits and lower on mounds, while Betula seedlings grew deeper in pits and higher on mounds. The position of the Betula seedlings indicate that they may have a competitive advantage over Pinus seedlings in the dense seedling groups occurring in uprooting spots. We suggest that this initial difference in Pinus and Betula establishment may affect the subsequent within-gap tree species succession and can, in part, explain the general occurrence of Betula in conifer-dominated boreal forests.  相似文献   

11.
Plants respond to feeding by herbivorous insects by producing volatile organic chemicals, which mediate interactions between herbivores and plants. Yet, few studies investigated whether such plant responses to herbivory differ between historical host and novel plants. Here, we investigated whether herbivory by the pine weevil Hylobius abietis causes a release of volatile organic chemicals from a novel tree Pinus brutia and compared the relative amounts of volatiles released from herbivore's historical hosts and P. brutia. We collected volatiles emitted from P. brutia seedlings that were either subjected to feeding by H. abietis or no feeding. Our results indicated that feeding increased emission of volatile compounds, composed of monoterpenes and sesquiterpenes, and that the emission was several fold higher in the damaged seedlings than in undamaged seedlings. In particular, emission of monoterpenes and sesquiterpenes increased by 4.4‐and 10‐fold in the damaged plants, respectively. Strikingly, individual monoterpenes and sesquiterpenes showed much greater dissimilarity between damaged and undamaged seedlings. Furthermore, several minor monoterpenes showed negative relationships with the weevil gnawed area. We discussed these results with the results of previous studies focused on historical host plants of H. abietis and hypothesized the ecological relevance and importance of our results pertaining relevance to the plant–herbivory interactions.  相似文献   

12.
The European black poplar (Populus nigra L.) is a major species of riparian softwood forests. Due to human influences, it is one of the most threatened tree species in Europe. For restoration purposes, remaining stands may act as source populations. We analysed a natural population of P. nigra for genetic diversity and spatial genetic structure using seven microsatellite markers. For the first time, paternity analysis of seedlings as well as juveniles from a restricted area of natural regeneration was used to quantify pollen- and seed-mediated gene flow, respectively. In both cases, cultivated P. x canadensis trees in vicinity could act as potential parents. Spatial genetic patterns of the adult tree population suggest small-scale isolation by distance due to short-distance gene flow, the major part of which (i.e. 70%) takes place within distances of less than 1 km. This helps to explain the reduced diversity in the juveniles. It has implications for the spatial management of natural regeneration areas within in situ conservation measures.  相似文献   

13.
Abstract

The aim of this study was (a) to analyse natural Fagus sylvatica L. s.l. regeneration in low elevation stands located in the central part of Evros region in northeastern Greece in relation to factors such as site productivity, type of silvicultural treatment and regeneration origin and (b) to determine whether or not sprout origin regeneration is significant for the maintenance of beech stands. One hundred and twenty plots (3 m × 3 m) were established in areas where thinnings and regeneration fellings had taken place, and in two site productivity regimes. In each plot, the number of beech seedlings, saplings, and stump or root sprouts (regeneration plants) with a height of up to 3 m was counted, and their height measured. Our findings indicate that even though reproduction by seed is the predominant regeneration mechanism in our stands, in the medium productivity sites sprouts represent a significant percentage of the total number of plants. Moreover, sprouting functions as a mechanism of maintenance of beech stands in medium productivity sites. During the regeneration fellings practised in this area, it is advisable to cut the seedlings and saplings of the advanced regeneration in order to supplement the seed-derived plants with seedling sprouts.  相似文献   

14.
《Acta Oecologica》2000,21(1):13-20
The natural, postfire regeneration of Pinus brutia forests has been studied in two 40–60-year-old forests of Thasos island, North Aegean sea, Greece, burned in the summers of 1985 and 1989. Within the latter burned area (5 700 ha), forty experimental sites of various aspects and site index values were established and successively monitored for 5 years, at 6-month intervals. Pine seedling emergence took place late in spring (due to a long drought in that particular year) but exclusively during the first postfire year. By the end of the recruitment period (May 1990), mean pine seedling density was considerably high (2–6 seedlings.m–2) while a significant drop in the first summer was observed. Thereafter, a relatively smooth decline was obtained and the density was almost stabilized to about 0.6–2 seedlings.m–2 after 5 years: the kinetics of survival was found to follow a rectangular hyperbola. Significant differences in seedling density values were detected among site groups of varying aspect or site index: north-facing and index I sites showed the highest density values while south-facing and index V ones the lowest. Similarly, height kinetics showed a significant divergence among site groups; again, the north-facing and the index I sites were the fastest growing. Annual height growth showed a linear regression kinetics throughout the 5- (and conceivably 9-) year-long postfire period of study, with a yearly increment of 17 cm. Starting at an age of 4–6 years, an increasing fraction of the sapling population became reproductive so that after 9 years a considerable portion (5–15 %) had already produced cones with fully germinable seeds.  相似文献   

15.
  • One of the most important threats to peatland ecosystems is drainage, resulting in encroachment of woody species. Our main aim was to check which features – overstorey or understorey vegetation – are more important for shaping the seedling bank of pioneer trees colonising peatlands (Pinus sylvestris and Betula pubescens). We hypothesised that tree stand parameters will be more important predictors of natural regeneration density than understorey vegetation parameters, and the former will be negatively correlated with species diversity and richness and also with functional richness and functional dispersion, which indicate a high level of habitat filtering.
  • The study was conducted in the ‘Zielone Bagna’ nature reserve (NW Poland). We assessed the structure of tree stands and natural regeneration (of B. pubescens and P. sylvestris) and vegetation species composition. Random forest and DCA were applied to assess relationships between variables studied.
  • Understorey vegetation traits affected tree seedling density (up to 0.5‐m height) more than tree stand traits. Density of older seedlings depended more on tree stand traits. We did not find statistically significant relationships between natural regeneration densities and functional diversity components, except for functional richness, which was positively correlated with density of the youngest tree seedlings.
  • Seedling densities were higher in plots with lower functional dispersion and functional divergence, which indicated that habitat filtering is more important than competition. Presence of an abundant seedling bank is crucial for the process of woody species encroachment on drained peatlands, thus its dynamics should be monitored in protected areas.
  相似文献   

16.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

17.
Tsitsoni  T.  Ganatsas  P.  Zagas  T.  Tsakaldimi  M. 《Plant Ecology》2004,171(1-2):165-174
This paper deals with the dynamics of postfire regeneration of Pinus brutia Ten. in an artificial forest ecosystem of North Greece, after a fire in 1982. The following issues are studied: the natural development of P. brutia stands 20 years after the fire, the current stand structure, and the influence of thinning treatment on stand population dynamics and tree growth patterns. The present work summarises and updates data taken during the years 1987–2002. The results show that the postfire regeneration was successful and contributed to the re-establishment of the pre-fire forest not only at the sites of good quality but at the medium quality sites as well. Regarding the postfire development, it is observed that an abundant P. brutia re-establishment is followed by a natural and gradual reduction of tree population caused by the influence of the physical environment during the early postfire years and caused by self-thinning later. The stands have entered the stem exclusion stage and they are growing at a narrow spacing in all cases. The evolution pattern and the stand structure were affected by thinning, which resulted in the improvement of tree quality and growth and accelerated their early fruition, thus contributing to higher ecosystem resilience.  相似文献   

18.
Species composition, diversity and tree population structure were studied in three stands of the tropical wet evergreen forest in and around Namdapha National Park, Arunachal Pradesh, India. Three study stands exposed to different intensities of disturbances were identified, viz., undisturbed (2.4 ha) in the core zone of the park, moderately disturbed (2.1 ha) in the periphery of the park and highly disturbed (2.7 ha) outside the park area. In total 200 plant species belonging to 73 families were recorded in three stands. Tree density and basal area showed a declining trend with the increase in disturbance intensity. The densities of tree saplings and seedlings were lower in the disturbed stands than in the undisturbed stand. Species like Altingia excelsa, Olea dioica, Terminalia chebula, Mesua ferrea and Shorea assamica in the undisturbed stand and Albizia procera alone in the moderately disturbed stand contributed more than 50% of the total tree density in respective stands. The undisturbed stand contained young tree population. In the highly disturbed stand, the tree density was scarce, but had uncut trees of higher girth class (>210 cm GBH). Low shrub density was recorded in both disturbed stands due to frequent human disturbances; the broken canopy and direct sunlight enhanced the abundance of herbs in these stands. With a species rarity (species having <2 individuals) of ca. 50%, the tropical wet evergreenforests of the Namdapha National Park and its adjacent areas warrant more protection from human intervention and also eco-development to meet the livelihood requirements of the local inhabitants in the peripheral areas of the Namdapha National Park in order to reduce the anthropogenic pressure on the natural resources of the park.  相似文献   

19.
The removal of conifers from aspen (Populus tremuloides) stands is being undertaken throughout the western United States to restore aspen for local‐ and landscape‐level biodiversity. Current practices include mechanically removing conifers or hand thinning, piling, and burning cut conifers in and adjacent to aspen‐conifer stands. To evaluate the effectiveness of restoration treatments, we examined tree regeneration and herbaceous vegetation cover in thinned, thinned and pile burned, and non‐thinned control stands. Growth rates of small conifer saplings threatening to outcompete and replace aspen were also measured. Two to four years after pile burning, herbaceous vegetation cover within the footprint of burned piles (i.e. burn scars) was 35–73% of that in adjacent areas. Aspen was more likely to regenerate inside burn scars where fewer surrounding trees were true firs. Conifer seedlings were more likely to regenerate in burn scars where more of the surrounding trees were conifers (pine or fir) as opposed to aspen. Fir saplings had much slower growth than did aspen saplings. Overall, our findings show that restoration treatments are promoting desirable outcomes such as enhancing aspen regeneration but that follow‐up treatments will be needed to remove numerous conifer seedlings becoming established after restoration activities. Eliminating conifers, while they are small, growing slowly, and contributing little to fuel loads may be an economical way to prolong restoration treatment effectiveness.  相似文献   

20.
We provide a quantitative analysis of postoutbreak wildfire frequency within the confluence of the Yenisei and Angara rivers affected by the Siberian Silkmoth (Dendrolimus sibiricus Tschetv.). A catastrophic outbreak was observed in 1993–1996. It expanded to about 1 million ha and caused stand mortality on an area of about 460000 ha. For the outbreak area, the fire frequency was about 7 times higher when compared to the reference area; on the burned area, it was 20 times higher. The peak of fire activity within outbreak areas occurs in May–June, while that for undamaged coniferous stands is in July. The number of fires is correlated with the mean monthly air temperature (r = 0.65) of June. The area of fires displays a negative correlation with moisture conditions: precipitation (r =–0.53), drought index (SPEI: r =–0.57), and ground-cover moisture content (r =–0.57). Extensive fires prevail within outbreak areas (S > 1000 ha), while within the control there is a smaller area of fires. Multiple (reoccurring) wildfires are typical for pest outbreak areas. The area of these fires is related to their reoccurrence by logarithmic dependence (17% of the territory twice burned by forests fires, 5% on that burned three times, and 0.5% on that burned four times). Wildfires in the outbreak areas surpress the initial forest recovery by destroying the regeneration of conifers: 20 years after the outbreak, >90% of disturbed areas are occupied by grass–bush and small-leaved cenoses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号