首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Grazing by domestic livestock in native woodlands can have major effects on ecosystem functioning by the removal of plant species that form important functional groups. This paper documents the changes in floristics in a large group of remnants of native woodland left after agricultural clearing in southwestern Australia. Species richness and diversity were significantly reduced in remnants and the proportion of exotic species increased. Detrended Correspondence Analysis (DCA) was used to identify floristic and environmental patterns among plots and identified two distinct groups based on grazing intensity. This indicated that the significance of the relationship between grazing effects and DCA floristic axes was greater than edaphic characteristics that normally influence floristic patterns. Floristic characteristics of sites that were influencing the position of plots on the ordination diagram included proportion of exotic species and proportion of native perennial shrubs and herbs. Numbers of species of native shrubs and perennial herbs were significantly reduced in grazed plots and numbers of exotic annual grasses and herbs were significantly higher. Other life form groups such as native perennial grasses and geophytes were not significantly affected by grazing. Reproductive strategies of perennial species showed a significant decrease in numbers of resprouters and a significant increase in numbers of facultative seeder/sprouters. Exclosure plots showed increases in number and cover of perennial shrubs and herbs after three years whereas number and cover of exotic species did not change. Time series DCA showed that the floristic composition of exclosure plots in grazed sites became closer to that of the ungrazed sites.  相似文献   

2.
Abstract Stock grazing has degraded many riparian ecosystems around the world. However, the potential for ecosystem recovery following the removal of grazing stock is poorly known. We developed a conceptual model to predict the responses of native and exotic herbaceous plants to grazing exclusion, based on site productivity and the degree of initial vegetation degradation. The effects of excluding grazing stock on richness, cover and composition of herbaceous plants were examined over 12 years in the degraded understorey of a riparian forest in Gulpa Island State Forest in south‐eastern Australia. We predicted that grazing exclusion would lead to limited changes in vegetation cover, richness and composition, owing to presumed low site productivity and the high degree of understorey degradation. Results showed that the cover, richness and composition of native and exotic species varied significantly among years. Over all plots, regions and years, total cover was slightly but significantly lower in grazed than in ungrazed plots (43.4% vs. 50.8%). While the cover of native plants increased over time in both treatments, the rate of increase was slightly greater in ungrazed plots. Grazing exclusion had no effect on the richness of native or exotic species, but had a significant but minor impact on plant composition, with different common species (mostly exotics) being promoted or diminished in ungrazed plots. The composition of grazed and ungrazed areas did not become more different over time. Overall, the effects that could be attributed to grazing exclusion were relatively minor and transient. Results are consistent with predictions based on site productivity and initial degradation, and should not be extrapolated to other more productive, or less degraded, riparian systems.  相似文献   

3.
The effects of stock grazing on native grassy ecosystems in temperate southern Australia are well documented. However, less is known about the potential of ecosystems to recover after a long history of stock grazing and, in particular, whether the removal of stock will have positive, negative or neutral impacts on biodiversity. We examined the response of understorey vegetation to the removal of sheep grazing in a herb‐rich Eucalyptus camaldulensis (red gum) woodland in western Victoria. Using a space‐for‐time chronosequence, woodlands were stratified into groups based on their time‐since‐grazing removal; these were long‐ungrazed (>20 years), intermediate‐time‐since‐grazing (9–14 years), recently ungrazed (5 years) and continuously grazed. We found significantly higher species density in long‐ungrazed sites relative to sites with a more recent grazing history. No differences were found in species density between continuously grazed sites and those ungrazed in the previous 14 years. Species composition differed with time‐since‐grazing removal and indicator species analysis detected several native species (including tall native geophytes and herbs) associated with long‐ungrazed sites that were absent or in low abundance in the more recently grazed sites. Seven of the eight species significantly associated with continuously grazed sites were exotic. Removal of sheep grazing in red gum woodlands can have positive benefits for understorey diversity but it is likely that recovery of key indicators such as native species will be slow.  相似文献   

4.
Habitat fragmentation can leave formerly widespread habitat types represented by only small habitat ‘islands’, and the conservation of these remnants is frequently compromised by ongoing disturbance. In northern Victoria, grazing of woodland remnants by sheep and cattle has profound effects on the vegetation structure of the woodland by removing understorey and ground vegetation. To investigate the effects of grazing pressure on remnant grey box Eucalyptus microcarpa woodland in northern Victoria, we surveyed the ground invertebrate fauna in ungrazed woodland remnants, grazed woodland remnants, and grazed pasture. The number of invertebrates caught increased from ungrazed woodland to grazed woodland to pasture, but this increase was due primarily to the most abundant orders (Hymenoptera, Coleoptera and Aranaea), and two abundant taxa characteristic of pasture (Orthoptera and Dermaptera). In contrast, most of the less abundant orders followed the opposite pattern, and were caught in higher numbers (and as a higher proportion of the total catch) in ungrazed woodland. Ungrazed woodland had a more diverse ground invertebrate fauna, most likely due to the greater diversity of food and habitat resources provided by the less disturbed vegetation. The differences in invertebrate communities corresponded to differences in vegetation and litter layers. The reduction in biodiversity of remnants due to grazing has implications for conservation management of remnant woodland in agricultural landscapes.  相似文献   

5.
《新西兰生态学杂志》2011,30(2):209-217
We sampled soils and vegetation within and outside two sheep and rabbit exclosures, fenced in 1979, on steep sunny and shady slopes at 770 m altitude on seasonally-dry pastoral steeplands. The vegetation of sunny aspects was characterised by higher floristic diversity, annual species, and low plant cover. Here the exotic grass Anthoxanthum odoratum dominated on grazed treatments, and the exotic forb Hieracium pilosella on ungrazed. Shady aspects supported fewer, and almost entirely perennial, species. Here Hieracium pilosella dominated grazed treatments, but co-dominated with the exotic forb H. praealtum and the native grass Festuca novae-zelandiae on ungrazed treatments. There was 43% more biomass in exclosures (P < 0.01). Most of the biomass difference (4285 kg/ha) was from greater root mass (2400 kg/ha). 1385 kg/ha of the difference was from herbage and the remainder (500 kg/ha) from litter. Exclosures had 50 to 100% more Ca, Mg, K and P in the biomass (P < 0.05), but the effect on soils was limited to significantly higher concentrations of total N (P < 0.05) and exchangeable Mg (P < 0.01) in 0-7.5 cm soils. We conclude that stopping grazing for 16 years on seasonally-dry steeplands results in greater plant cover, approximately double the biomass of standing vegetation, greater biomass in roots, and more biomass nutrients relative to grazed areas. However, it does not favour native species and has little effect on soil nutrients or soil carbon. Stopping grazing alone therefore cannot be regarded as a comprehensive short- or medium-term vegetation or soil rehabilitation option.  相似文献   

6.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

7.
Summary Fencing incentive programmes have been widely used throughout Australia to assist landholders to fence remnant woodland vegetation, to control grazing and improve native vegetation condition. This study investigated vegetation and soil condition in remnant woodlands fenced for 7–9 years in the Murray catchment area in southern New South Wales. Surveys were undertaken at 42 sites, where vegetation condition was assessed in paired fenced and unfenced sites. Semi‐structured interviews were also conducted with landholders to gather management information. Woodlands surveyed were Yellow Box/Blakely's Red Gum (Eucalyptus melliodora/E. blakelyi, 15 sites), Grey Box (E. microcarpa, 13 sites) and White Cypress Pine (Callitris glaucophylla, 14 sites). Fencing resulted in a range of responses which were highly variable between sites and vegetation types. In general, fenced sites had greater tree regeneration, cover of native perennial grasses, less cover of exotic annual grasses and weeds, and less soil compaction than unfenced sites. However, there was greater tree recruitment in remnants to the west of the study area, and tree recruitment was positively correlated with time since fencing. Within sites, tree recruitment tended to occur in more open areas with a good cover of native perennial grasses, as compared to sites with a dense tree canopy, or dominated by exotic annuals grasses or weeds. Forty‐eight per cent of fenced sites had no tree regeneration. There was a significant decline in native perennial grasses, and increase of several unpalatable weeds in many fenced areas, suggesting certain ecological barriers may be preventing further recovery. However, drought conditions and associated grazing are the most likely cause of this trend. A range of grazing strategies was implemented in fenced sites which require further research as a conservation management tool. Continued long‐term monitoring is essential to detect key threats to endangered woodland remnants.  相似文献   

8.
Preliminary results are presented of sampling the leafhopper assemblages on a field experiment designed to examine the differential effects of rabbits and livestock (mainly sheep) on the vegetation of chalk heath in southern England. Experimental plots that excluded livestock either allowed entry by rabbits or excluded them. Results were compared with those from plots grazed by both livestock and rabbits. After 7 years, exclusion of grazing herbivores had resulted in predictable increases in vegetation height, but no major changes were detected in the species composition of the vegetation. As expected, ungrazed plots had higher species richness and greater abundances of several individual leafhopper species. However, plots grazed only by rabbits had a leafhopper assemblage that was distinct from either ungrazed or mixed grazing plots. It is suggested that rabbit grazing may have subtle effects on grassland invertebrate assemblages that are not necessarily predictable from an examination of the species composition of the vegetation. Chalk heath vegetation contains an unusual mixture of calcicole and calcifuge plant species, but the leafhopper assemblage included a restricted number of calcareous grassland specialist species and only one species strongly associated with acidic grasslands; most leafhoppers recorded were generalist grassland species.  相似文献   

9.
Abstract In eastern Australia the practice of grazing cattle in eucalypt forests and woodlands, as a supplementary activity to farmland grazing, is widespread. It is typically accompanied by burning at frequent intervals by graziers to promote more nutritious and digestible growth of the ground cover for their livestock. Collectively, these forest grazing practices affect understorey structure, which in turn affects other biotic and abiotic components of these ecosystems. In order to test how significant the effects of forest grazing practices are relative to the effects of other management practices and environmental variables and the degree to which grazing practices determine understorey vegetation structure, we surveyed 58 sites on the northern tablelands of New South Wales, Australia. All sites were located in eucalypt forest and were stratified by grazing status (presence or absence): time since logging, time since wildfire, geology, aspect, slope and topographic position. At each site an index of vegetation complexity and the most abundant plant species were recorded. The data were analysed by a backwards stepwise multiple regression. Grazing practices had the greatest influence on understorey vegetation complexity of any of the measured attributes. The grazed sites were characterized by a significantly lower vegetation complexity score, different dominant understorey species, reduced or absent shrub layers, and an open, simplified and more grassy understorey structure compared with ungrazed sites. Time since logging and time since wildfire also significantly affected understorey structure. Our results indicate that cattle grazing practices (i.e. grazing and the associated frequent fire regimes) can have major effects on forest structure and composition at a regional level.  相似文献   

10.
Abstract The majority of existing remnants of wandoo Eucalyptus capillosa woodland in the Western Australian wheatbelt have been grazed by sheep for several decades and are often visibly degraded. A pilot survey was conducted into the effects of sheep on vegetation and soil variables, and the abundance, diversity and species frequency of occurrence of subterranean termite communities. Ten 1/4 ha study plots were used for paired grazed/ungrazed comparisons. Ungrazed plots had more litter mass (dry weight), leaf and woody litter, canopy cover (%) and soil moisture (moisture content <1.2% across study plots); grazed plots had a higher percentage of bare ground. Termites were as abundant, and as diverse, in grazed as in ungrazed plots, and were equally often sampled in the soil and surface wood. Termite species eating sound wood, decayed wood/debris and grass were sampled equally often, and were of equal diversity in sheep-grazed as in ungrazed plots. The mounds of Drepanotermes tamminensis were more abundant in grazed plots. These findings indicate that prolonged sheep grazing in remnants of wandoo woodland of the Western Australian wheatbelt has had no detrimental or beneficial effect on its subterranean termites.  相似文献   

11.
In arid environments, grazing by exotic herbivores, including domestic livestock, can greatly influence native, small vertebrate assemblages. Whether the removal of livestock facilitates passive recovery of these assemblages depends on habitat condition and the species present. We explore changes in small mammal and reptile species richness, abundance, and composition in a degraded chenopod shrubland dominated by Acacia victoriae ssp. and open Acacia aneura (mulga) woodland destocked in 1976 and 1984, respectively. Data were obtained between 1997 and 2007, from two grazed and two ungrazed sites in each community. Species richness increased at a faster rate in ungrazed open A. aneura woodland, but did not differ significantly between ungrazed and grazed degraded chenopod shrubland. Subsequent analyses at a finer‐scale detected disparate responses in richness and abundance for microhabitat. At this scale, a greater number of species‐specific responses were also detected, including increased abundance of generalist species and decreased abundance of species requiring low cover. These results reiterate the potential for species‐specific responses to livestock that are more apparent in particular microhabitats. Furthermore, this investigation provides evidence for the gradual passive recovery of small mammal and reptile assemblages in both communities, which is facilitated by the removal of livestock in open A. aneura woodland in fair condition, but not degraded chenopod shrubland in poor condition.  相似文献   

12.
Rising temperatures due to climate change are pushing the thermal limits of many species, but how climate warming interacts with other anthropogenic disturbances such as land use remains poorly understood. To understand the interactive effects of climate warming and livestock grazing on water temperature in three high elevation meadow streams in the Golden Trout Wilderness, California, we measured riparian vegetation and monitored water temperature in three meadow streams between 2008 and 2013, including two “resting” meadows and one meadow that is partially grazed. All three meadows have been subject to grazing by cattle and sheep since the 1800s and their streams are home to the imperiled California golden trout (Oncorhynchus mykiss aguabonita). In 1991, a livestock exclosure was constructed in one of the meadows (Mulkey), leaving a portion of stream ungrazed to minimize the negative effects of cattle. In 2001, cattle were removed completely from two other meadows (Big Whitney and Ramshaw), which have been in a “resting” state since that time. Inside the livestock exclosure in Mulkey, we found that riverbank vegetation was both larger and denser than outside the exclosure where cattle were present, resulting in more shaded waters and cooler maximal temperatures inside the exclosure. In addition, between meadows comparisons showed that water temperatures were cooler in the ungrazed meadows compared to the grazed area in the partially grazed meadow. Finally, we found that predicted temperatures under different global warming scenarios were likely to be higher in presence of livestock grazing. Our results highlight that land use can interact with climate change to worsen the local thermal conditions for taxa on the edge and that protecting riparian vegetation is likely to increase the resiliency of these ecosystems to climate change.  相似文献   

13.
Ecological restoration provides a means to increase biodiversity in ecosystems degraded by natural and human‐induced changes. In some systems, disturbances such as grazing can be key factors in the successful restoration of biodiversity and ecological function, but few studies have addressed this experimentally, especially over long time periods and at landscape scales. In this study, we excluded livestock grazing from plots within a grassland landscape containing vernal pools in the Central Valley of California for 10 years and compared vernal pool hydrology and plant community composition with areas grazed under an historic regime. In all 10 years, the relative cover of native plant species remained between 5 and 20% higher in the grazed versus ungrazed plots. This effect was particularly prominent on the pool edges, though evidence of invasion into the pool basins was evident later in the study. Native species richness was lower in the ungrazed plots with 10–20% fewer native species found in ungrazed versus grazed plots in all years except the first year of treatment. Ungrazed pools held water for a shorter period of time than pools grazed under an historic regime. By the ninth year of the study, ungrazed pools took up to 2 weeks longer to fill and dried down 1–2 weeks sooner at the end of the rainy season compared to grazed pools. The results of this study confirm that livestock grazing plays a key role in maintaining biodiversity and ecosystem function in vernal pools.  相似文献   

14.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

15.
Worldwide, many areas of agricultural land which were once covered with native vegetation have been converted to tree plantations. Such landscape transformation can influence the dynamics of wildlife populations through, for example, altering rates of predation (e.g. predation of nests of birds). Nest predation can influence reproductive success and, in turn, may alter populations by affecting juvenile recruitment. We quantified predation of bird nests in woodland remnants surrounded by two types of land use, grazing farmland and exotic Radiata pine (Pinus radiata) plantation. We also examined differences in predation rates between artificial and natural nests. We found both artificial and natural nests were more susceptible to nest predation in woodland remnants surrounded by a pine plantation than in woodland remnants located within farmland. Our study suggests that higher levels of nest predation may reduce occupancy of woodland remnants by small‐bodied birds over time, including species of conservation concern. This may have been occurred as a result of the conversion of semi‐cleared grazing land to exotic pine plantation.  相似文献   

16.
Abstract. The first objective of this paper was to assess the effects of grazing on seedling establishment of two species whose relative abundance at the adult stage is affected by grazing in a contrasting fashion. Second, we evaluated the relative importance of seed versus safe-site availability in explaining the effect of grazing on seedling establishment. We monitored seedling establishment on a grazed area, on two areas which had not been grazed for two and seven years, and on plots which had been experimentally defoliated. The species compared were Dan-thonia montevidensis, a native perennial grass which dominates both grazed and ungrazed communities, and Leontodón taraxacoides, an invading exotic rosette species from the Compositae family. Continuous grazing enhanced seedling establishment of both species through its effect on the availability of safe sites. Seed availability accounted for only one, but very important, grazing effect: the lack of response by L. taraxacoides to the defoliation in the seven-year old exclosure. Its seed supply was depleted by exclusion of grazing and, consequently, its short-term regeneration capacity after disturbance was lost.  相似文献   

17.
《新西兰生态学杂志》2011,31(2):232-244
Species abundance, species richness, and ground cover were measured over 10 years on nine paired grazed and exclosure plots in short-tussock grassland in the early stages of invasion by Hieracium species. With and without grazing, H. pilosella and H. caespitosum increased markedly and H. lepidulum increased locally. In contrast, 50% of all other common species and species groups, and total, native, and exotic species richness declined significantly. Exclusion increased or had no effect on rates of increase in Hieracium species and rates of decline in short tussocks, and did not reduce rates of decline in other species. Exclusion had no effect on decline in native species richness, but mainly accelerated declines in total and exotic richness. Declines in 13 key vegetation variables were significantly predicted by increase in Hieracium abundance, suggesting competitive exclusion. With or without grazing, Hieracium species will become more dominant and other species will continue to decline. The effects of large herbivores on plant species diversity can often be predicted from site productivity. Our results indicate the need also to account for species origin, spatial scale, time, and exotic invasion.  相似文献   

18.
Abstract. Spatial heterogeneity, an important characteristic in semi‐arid grassland vegetation, may be altered through grazing by large herbivores. We used Moran's I, a measure of autocorrelation, to test the effect of livestock grazing on the fine scale spatial heterogeneity of dominant plant species in the shortgrass steppe of northeastern Colorado. Autocorrelation in ungrazed plots was significantly higher than in grazed plots for the cover of the dominant species Bouteloua gracilis, litter cover and density of other bunchgrasses. No species had higher autocorrelation in grazed compared to ungrazed sites. B. gracilis cover was significantly auto‐correlated in seven of eight 60‐yr ungrazed exclosures, four of six 8‐yr exclosures, and only three of eight grazed sites. Autocorrelograms showed that B. gracilis cover in ungrazed sites was frequently and positively spatially correlated at lag distances less than 5 m. B. gracilis cover was rarely autocorrelated at any sampled lag distance in grazed sites. The greater spatial heterogeneity in ungrazed sites appeared linked to patches characterized by uniformly low cover of B. gracilis and high cover of C3 grasses. This interpretation was supported by simple simulations that modified data from grazed sites by reducing the cover of B. gracilis in patches of ca. 8 m diameter and produced patterns quite similar to those observed in ungrazed sites. In the one exclosure where we intensively sampled soil texture, autocorrelation coefficients for sand content and B. gracilis cover were similar at lag distances up to 12 m. We suggest that the negative effect of sand content on B. gracilis generates spatial heterogeneity, but only in the absence of grazing. An additional source of heterogeneity in ungrazed sites may be the negative interaction between livestock exclusion and B. gracilis recovery following patchy disturbance.  相似文献   

19.
Question: Can managing disturbance regimes alone or in combination with seeding native species serve to shift the balance from exotic towards native species? Location: Central coast of California, USA. Methods: We measured vegetation composition for 10 yr in a manipulative experiment replicated at three sites. Treatments included no disturbance, grazing and clipping at three frequencies with and without litter removal. We seeded eight native species into clipped plots and compared cover in comparable plots with no seeding. Results: Regardless of frequency, clipping generally shifted community dominance from exotic annual grasses to exotic annual forbs, rather than consistently favoring native species. At one site, perennial grass cover decreased in no‐disturbance plots, but only after 4 yr. Litter removal had minimal impact on litter depth and plant community composition. Grazing had a highly variable effect on the abundance of different plant guilds across sites and years. Seeding increased abundance of only two of eight native species. Conclusions: Managing disturbance regimes alone is insufficient to restore native species guilds in highly‐invaded grasslands and seeding native species has highly variable success.  相似文献   

20.
《农业工程》2020,40(6):425-431
Livestock grazing is one of the main factors of vegetation and soil degradation in arid and semi-arid rangelands of Iran and causes changes in diversity, vegetation, litter and soil characteristics. Therefore, this study has been conducted aimed to examine the effects of exclosure and livestock grazing on vegetation and soil. For this purpose, two grazing areas of medium and high grazing intensity and two exclosure areas (Non-grazing livestock) with duration of 8 and 11 years were selected for sampling. Then, we identified plant species, percentage of coverage of each species, measurement of diversity indices, species similarity and soil chemical properties including electrical conductivity (mho), acidity, organic matter(%), organic carbon (%), nitrogen (%), phosphorus (mg/L) and bulk density (gr/cm3) in each area and they were compared using variance analysis. The results showed that exclosure significantly at 5% level reduced organic matter percentage, electrical conductivity and organic carbon percentage, but it caused a significant increase in soil bulk density at 1% level. Similarity of plant species due to the reduction of livestock grazing intensity and increasing exclosure duration. The results also indicate Livestock grazing increased Coverage of plant family such as Poaceae, Zygophyllacea in the area due to the increase of plant species such as Peganum harmala and Poa bulbosa (non-pleasant species of class III). Based on the results, despite increasing the diversity of plant species in the area over time, increasing diversity does not increase dominant species of the area, as well as companion species increased in the composition of vegetation. It concluded that exclusion has a significant effect on vegetation improvement, vegetation cover percentage, diversity, palatability and litter percentage in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号