首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Every year large proportions of northern Australia's tropical savanna landscapes are burnt, resulting in high fire frequencies and short intervals between fires. The dominant fire management paradigm in these regions is the use of low‐intensity prescribed fire early in the dry season, to reduce the incidence of higher‐intensity, more extensive wildfire later in the year. This use of frequent prescribed fire to mitigate against high‐intensity wildfire has parallels with fire management in temperate forests of southern Australia. However, unlike in southern Australia, the ecological implications of high fire frequency have received little attention in the north. CSIRO and collaborators recently completed a landscape‐scale fire experiment at Kapalga in Kakadu National Park, Northern Territory, Australia, and here we provide a synthesis of the effects of experimental fire regimes on biodiversity, with particular consideration of fire frequency and, more specifically, time‐since‐fire. Two recurring themes emerged from Kapalga. First, much of the savanna biota is remarkably resilient to fire, even of high intensity. Over the 5‐year experimental period, the abundance of most invertebrate groups remained unaffected by fire treatment, as did the abundance of most vertebrate species, and we were unable to detect any effect of fire on floristic composition of the grass‐layer. Riparian vegetation and associated stream biota, as well as small mammals, were notable exceptions to this general resilience. Second, the occurrence of fire, independent of its intensity, was often the major factor influencing fire‐sensitive species. This was especially the case for extinction‐prone small mammals, which have suffered serious population declines across northern Australia in recent decades. Results from Kapalga indicate that key components of the savanna biota of northern Australia favour habitat that has remained unburnt for at least several years. This raises a serious conservation concern, given that very little relatively long unburnt habitat currently occurs in conservation reserves, with most sites being burnt at least once every 2 years. We propose a conservation objective of increasing the area that remains relatively long unburnt. This could be achieved either by reducing the proportion of the landscape burnt each year, or by setting prescribed fires more strategically. The provision of appropriately long unburnt habitat is a conservation challenge for Australia's tropical savanna landscapes, just as it is for its temperate forests.  相似文献   

2.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

3.
Aim To describe the nexus between Aboriginal landscape burning and patterns of habitat use by kangaroos in a tropical savanna habitat mosaic, and to provide evidence to evaluate the claim that Aboriginal landscape burning is a game management tool. Location Central Arnhem Land, a stronghold of traditional Aboriginal culture, in the monsoon tropics of northern Australia. Methods The abundance of kangaroo scats was recorded throughout a landscape burnt by Aboriginal people, and used as a proxy for the intensity of habitat use by kangaroos. Scat abundance was assessed along field traverses totalling 112 km, at three time periods: (1) 1–4 weeks following mid‐dry season burning (July 2003); (2) in the late dry season (November 2003); and (3) in the following mid‐dry season (July 2004). We compared the intensity with which kangaroos used burnt vs. unburnt areas in various habitat types, with time since mid‐dry season burning. Scats were collected from areas that had been burnt to a varying extent and the abundance of carbon and nitrogen stable isotopes (δ13C and δ15N) and carbon to nitrogen ratios (C : N) determined. Results There was clear evidence of an interaction between burning and habitat type on the abundance of kangaroo scats. Scats were much more abundant in burnt vs. unburnt areas in the moist habitats, but the opposite effect was observed in the dry rocky habitats, with higher scat abundance in unburnt areas. This interactive effect of burning and habitat type on scat abundance was observed immediately (< 4 weeks) following fire, and was still present one year later. High concentrations of nitrogen in resprouting grasses indicate that burnt areas may provide kangaroos with greater access to nutrients. The isotopic composition of scats indicates that kangaroos feeding in extensively burnt areas were consuming more grasses, and possibly sedges, than kangaroos feeding in unburnt areas. Main conclusions The fine‐scale mosaic of burnt and unburnt areas created by mid‐dry season Aboriginal landscape burning has clear effects on the distribution of kangaroos. Kangaroos move into burnt moist habitats and away from burnt dry, rocky habitats. Isotopic analysis of scats suggests that the mechanism driving this effect is the increased abundance of nitrogen rich grasses in burnt moist habitats.  相似文献   

4.
In arid Australia, changes to historic fire regimes may now produce more large‐scale wildfire events. The impacts of these fires on fauna communities are poorly known. We sought to test the impacts of fire on the occurrence of two arid‐zone snake species, the desert death adder (Acanthophis pyrrhus) and monk snake (Parasuta monachus), specialist inhabitants of hummock grassland and mulga shrubland, respectively. We also examined the influence of fire on the occurrence of a habitat generalist, the sympatric Stimson's python (Antaresia stimsoni). Under an Information‐Theoretic framework we modelled the occurrence of each species with a range of habitat variables, including fire history, using logistic regression. As predicted, the two habitat specialists were more likely to be encountered at locations that had a lower percentage of surrounding area burnt in the most recent wildfires (2002), while fire variables failed to predict the occurrence of the habitat generalist. Acanthophis pyrrhus, already predisposed to endangerment through a suite of life‐history characteristics, may be at increased risk through accidental and deliberate burning and fragmentation of old‐growth hummock grasslands. We stress the importance of prescribed burning and natural fire breaks in maintaining areas of old‐growth hummock grassland across the landscape.  相似文献   

5.
Wildfire is a major driver of spatio‐temporal variation in terrestrial ecosystems. Large wildfires are predicted to occur more frequently due to climate change. The mechanisms by which post‐fire recovery proceeds are influenced by the abundance of survivors, and their distribution in relation to habitat variability and refugia. Thus, characterising early post‐fire demographic processes is critical to understanding the demographic and community‐level responses of ecosystems to fire. The Black Saturday fires of February 2009 burnt an area of approximately 3500 km2 in Victoria, Australia. We quantified the effects of this high severity forest fire on the habitat, abundance, sex ratio and body mass of two small mammal species, the agile antechinus Antechinus agilis and bush rat Rattus fuscipes. We developed a hypothetical framework to distinguish in situ survival and rapid recolonisation as the processes underlying short‐term post‐fire distributions. These hypotheses were based on expected patterns of abundance over increasing distances from unburnt sources, and the estimated recolonisation capabilities of each species and sex. The agile antechinus and bush rat were present in burnt sites at 30% and 12% of the density observed in unburnt sites. In situ survival, and not recolonisation, was the most plausible explanation for our findings. Abundance and body mass data indicated a greater effect of fire on the bush rat than the agile antechinus. The bush rat showed a shift in topographic association, whereby drainage lines acted as post‐fire refugia. Our findings suggest these species do not depend on recolonisation for recovery, and that the bush rat will follow a nucleated recovery, expanding from topographic refugia. Thus, connectivity‐reducing management activities, such as salvage logging and firebreak and road construction, may not affect the early stages of population recovery in remaining stands of burnt forest. Rather, ongoing recovery is likely to be limited by demographic rates and resource availability.  相似文献   

6.
Fire management attempts to coerce fire into a desired regime using three primary strategies: prescribed burning, fire suppression and ignition management. The West Arnhem Land Fire Abatement project (WALFA), where prescribed Early Dry Season burning is used to reduce unplanned Late Dry Season burning, is heralded as model for prescribed burning. However, a previous analysis found that Late Dry Season area burnt in WALFA had been reduced further than would be expected based purely on the Early Dry Season treatment area. This study investigated whether treatment has reduced the number and size of unplanned fires. Daily burnt area mapping from MODIS satellite sensors was used to identify individual fires to compare fire activity before and after management was introduced in WALFA (2005) and in a control region in East Arnhem Land. Late Dry Season area burnt reduced after treatment in WALFA but also in the control region. The number of fires in August–October increased after treatment. There is a period from early August until late September when human ignitions can cause huge fires. Late Dry Season area burnt was strongly influenced by the size of the largest single fire and only weakly by the number of ignitions. Early Dry Season area burnt had modest effects on both the number and maximum size of Late Dry Season fires. Eliminating the largest fire in each 1600 km2 sample block would have halved the total Late Dry Season area burnt. A similar reduction could be obtained from a 14% annual treatment with Early Dry Season fire, but this may not reduce the overall area burnt. If overall fire frequency is the main threat to biodiversity in the savannas, then the best solution will be to prevent the small subset of fires that have the potential to become very large.  相似文献   

7.
8.
Abstract: Eucalyptus tereticornis seedlings occurring on the edges of grassy balds on the Bunya Mountains were burnt by four separate fires. From the results, a logistic model demonstrated that lignotuber size was positively related and fire temperature negatively related to survivorship. While mortality was high for young seedlings there was no mortality of 5‐year old survivors from these trials subject to repeat burning. The model predicted that burning every 2 years will not substantially limit seedling establishment. This prediction was strengthened by results verifying that management fires on the grassy balds are generally of low intensity. Fire intensity is weakly related to a Fire Danger Index, indicating that the timing of burning in relation to weather conditions will not substantially enhance opportunities for more intense fires. Thus, even with biennial burning under optimal conditions eucalypt forest will replace grassy balds where they adjoin. Regular burning by aborigines may have maintained grassy bald‐rainforest boundaries, but not boundaries with eucalypt forest. Seed dispersal and migration barriers may have limited the expansion of eucalypt forest. It is concluded that under current conditions the long‐term preservation of the grassy balds is only possible where they are entirely surrounded by rainforest and are regularly burnt.  相似文献   

9.
Movement is a trait of fundamental importance in ecosystems subject to frequent disturbances, such as fire‐prone ecosystems. Despite this, the role of movement in facilitating responses to fire has received little attention. Herein, we consider how animal movement interacts with fire history to shape species distributions. We consider how fire affects movement between habitat patches of differing fire histories that occur across a range of spatial and temporal scales, from daily foraging bouts to infrequent dispersal events, and annual migrations. We review animal movements in response to the immediate and abrupt impacts of fire, and the longer‐term successional changes that fires set in train. We discuss how the novel threats of altered fire regimes, landscape fragmentation, and invasive species result in suboptimal movements that drive populations downwards. We then outline the types of data needed to study animal movements in relation to fire and novel threats, to hasten the integration of movement ecology and fire ecology. We conclude by outlining a research agenda for the integration of movement ecology and fire ecology by identifying key research questions that emerge from our synthesis of animal movements in fire‐prone ecosystems.  相似文献   

10.
Aim This study of contemporary landscape burning patterns in the North Kimberley aims to determine the relative influences of environmental factors and compare the management regimes occurring on Aboriginal lands, pastoral leases, national park and crown land. Location The study area is defined at the largest scale by Landsat Scene 108–70 that covers a total land area of 23,134 km2 in the North Kimberley Bioregion of north‐west Australia, including the settlement of Kalumburu, coastline between Vansittart Bay in the west and the mouth of the Berkeley River in the east, and stretching approximately 200 km inland. Methods Two approaches are applied. First, a 10‐year fire history (1990–1999) derived from previous study of satellite (Landsat‐MSS) remote sensing imagery is analysed for broad regional patterns. And secondly, a 2‐year ground‐based survey of burning along major access roads leading to an Aboriginal community is used to show fine‐scale burning patterns. anova and multiple regression analyses are used to determine the influence of year, season, geology, tenure, distance from road and distance from settlement on fire patterns. Results Satellite data indicated that an average of 30.8% (±4.4% SEM) of the study area was burnt each year with considerable variability between years. Approximately 56% of the study area was burnt on three or more occasions over the 10‐year period. A slightly higher proportion of burning occurred on average in the late dry season (17.2 ± 3.6%), compared with the early dry season (13.6 ± 3.3%). The highest fire frequency occurred on basalt substrates, on pastoral tenures, and at distances 5–25 km from roads. Three‐way anova demonstrated that geological substrate and land use were the most significant factors influencing fire history, however a range of smaller interactions were also significant. Analysis of road transects, originating from an Aboriginal settlement, showed that the timing of fire and geology type were the most significant factors affecting the pattern of area burnt. Of the total transect area, 28.3 ± 2.9% was burnt annually with peaks in burning occurring into the dry season months of June, August and September. Basalt uplands (81.2%) and lowlands (30.1%) had greater areas burnt than sandstone (12.3%) and sands (17.7%). Main conclusions Anthropogenic firing is constrained by two major environmental determinants; climate and substrate. Seasonal peaks in burning activity in both the early and late dry season relate to periods of optimal fire‐weather conditions. Substrate factors (geology, soils and physiognomy) influence vegetation‐fuel characteristics and the movement of fire in the landscape. Basalt hills overwhelmingly supported the most frequent wildfire regime in the study region because of their undulating topography and relatively fertile soils that support perennial grasslands. Within these spatial and temporal constraints people significantly influenced the frequency and extent of fire in the North Kimberley thus tenure type and associated land uses had a significant influence on fire patterning. Burning activity is high on pastoral lands and along roads and tracks on some tenure types. While the state government uses aerial control burning and legislation to try to restrict burning to the early dry season across all geology types, in practice burning is being conducted across the full duration of the dry season with early dry season burning focused on sandstone and sand substrates and late dry season burning focused on basalt substrates. There is greater seasonal and spatial variation in burning patterns on landscapes managed by Aboriginal people.  相似文献   

11.
Abstract Riparian habitats are highly important ecosystems for tropical biodiversity, and highly threatened ecosystems through changing disturbance regimes and weed invasion. An experimental study was conducted to assess the ecosystem impacts of fire regimes introduced for the removal of the exotic woody vine, Cryptostegia grandiflora, in tropical north‐eastern Australian woodlands. Experimental sites in subcatchments of the Burdekin River, northern Queensland, Australia, were subjected to combinations of early wet‐season and dry‐season fires, and single and repeated fires, with an unburnt control. Woody vegetation was sampled using permanent quadrats to record and monitor plants species, number and size‐class. Sampling was conducted pre‐fire in 1999 and post‐fire in 2002. All fire regimes were effective in reducing the number and biomass of C. grandiflora shrubs and vines. Few woodland or riparian species were found to be fire‐sensitive and community composition did not change markedly under any fire regime. The more intense dry‐season fires impacted the structure of non‐target vegetation, with large reductions in the number of sapling trees (<5 cm d.b.h.) and reductions in the largest tree size‐class and total tree basal area. Unexpectedly, medium‐sized canopy trees (10–30 cm d.b.h.) appear to have been significantly benefited by fires, with decreases in number of trees of this size‐class in the absence of fire. Although the presence of C. grandiflora as a vine in riparian forest canopies changed the nature and intensity of crown combustion patterns, this did not lead to the initiation of a self‐perpetuating weed–fire cycle, as invaders were unable to take advantage of gaps caused by fire. Low intensity, early wet‐season burning, or early dry‐season burning, is recommended for control of C. grandiflora in order to minimize the fire intensity and risk of the loss of large habitat trees in riparian habitats.  相似文献   

12.
A new fire model is proposed which estimates areas burnt on a macro‐scale (10–100 km). It consists of three parts: evaluation of fire danger due to climatic conditions, estimation of the number of fires and the extent of the area burnt. The model can operate on three time steps, daily, monthly and yearly, and interacts with a Dynamic Global Vegetation Model (DGVM), thereby providing an important forcing for natural competition. Fire danger is related to number of dry days and amplitude of daily temperature during these days. The number of fires during fire days varies with human population density. Areas burnt are calculated based on average wind speed, available fuel and fire duration. The model has been incorporated into the Lund‐Potsdam‐Jena Dynamic Global Vegetation Model (LPJ‐DGVM) and has been tested for peninsular Spain. LPJ‐DGVM was modified to allow bi‐directional feedback between fire disturbance and vegetation dynamics. The number of fires and areas burnt were simulated for the period 1974–94 and compared against observations. The model produced realistic results, which are well correlated, both spatially and temporally, with the fire statistics. Therefore, a relatively simple mechanistic fire model can be used to reproduce fire regime patterns in human‐ dominated ecosystems over a large region and a long time period.  相似文献   

13.
Patch mosaic burning, in which fire is used to produce a mosaic of habitat patches representative of a range of fire histories (‘pyrodiversity’), has been widely advocated to promote greater biodiversity. However, the details of desired fire mosaics for prescribed burning programs are often unspecified. Threatened small to medium-sized mammals (35 g to 5.5 kg) in the fire-prone tropical savannas of Australia appear to be particularly fire-sensitive. Consequently, a clear understanding of which properties of fire mosaics are most instrumental in influencing savanna mammal populations is critical. Here we use mammal capture data, remotely sensed fire information (i.e. time since last fire, fire frequency, frequency of late dry season fires, diversity of post-fire ages in 3 km radius, and spatial extent of recently burnt, intermediate and long unburnt habitat) and structural habitat attributes (including an index of cattle disturbance) to examine which characteristics of fire mosaics most influence mammals in the north-west Kimberley. We used general linear models to examine the relationship between fire mosaic and habitat attributes on total mammal abundance and richness, and the abundance of the most commonly detected species. Strong negative associations of mammal abundance and richness with frequency of late dry season fires, the spatial extent of recently burnt habitat (post-fire age <1 year within 3 km radius) and level of cattle disturbance were observed. Shrub cover was positively related to both mammal abundance and richness, and availability of rock crevices, ground vegetation cover and spatial extent of ≥4 years unburnt habitat were all positively associated with at least some of the mammal species modelled. We found little support for diversity of post-fire age classes in the models. Our results indicate that both a high frequency of intense late dry season fires and extensive, recently burnt vegetation are likely to be detrimental to mammals in the north Kimberley. A managed fire mosaic that reduces large scale and intense fires, including the retention of ≥4 years unburnt patches, will clearly benefit savanna mammals. We also highlighted the importance of fire mosaics that retain sufficient shelter for mammals. Along with fire, it is clear that grazing by introduced herbivores also needs to be reduced so that habitat quality is maintained.  相似文献   

14.
In the spring and summer of 2019–2020, the ‘Black Summer’ bushfires burned more than 97 000 km2 of predominantly Eucalyptus dominated forest habitat in eastern Australia. The Black Summer bushfires prompted great concern that many species had been imperilled by the fires. Here, we investigate the effects that fire severity had on the habitat and abundance of a cool climate lizard Eulamprus tympanum that was identified as a species of concern because 37% of its habitat was burnt in the Black Summer bushfires. We quantified habitat structure and the abundance of E. tympanum at sites which were unburnt, burnt at low severity and at high severity 10, 15 and 23 months after the fires. Our classification of fire severity based on scorch height and canopy status corresponded well with the Australian Government Google Earth Engine Burnt Area Map (AUS GEEBAM) fire severity layer. Ten months after the fires, sites burnt at high severity had less canopy cover, more bare ground and less fine fuel than sites burnt at low severity or unburnt sites. The abundance of E. tympanum varied with survey occasion and was greatest during the warmest sampling period and lowest during the coolest sampling period. The abundance of E. tympanum was consistently lower on sites burnt at high severity than sites burnt at low severity or unburnt sites. Our findings show that higher severity fires had a greater effect on E. tympanum than low severity fires. Our results suggest that E. tympanum were likely to have persisted in burnt sites, with populations in low severity and unburnt sites facilitating population recovery in areas burnt at high severity. Our results also suggest that wildfire impacts on E. tympanum populations will increase because the frequency and extent of severe fires are expected to increase due to climate change.  相似文献   

15.
Fire has a varied influence on plant and animal species through direct (e.g. fire‐induced mortality) and indirect (e.g. modification of habitat) effects. Our understanding of the influence of fire regime on invertebrates and their response to fire‐induced modifications to habitat is poor. We aimed to determine the response of a beetle family (Coleoptera: Cerambycidae) to varying fire treatments and hypothesised that the abundance of cerambycid beetles is influenced by fire frequency due to modifications in habitat associated with the fire treatments. Arthropods were sampled across 3 months in annually and triennially burnt areas (treatments starting in 1952 and 1973 respectively), an area unburnt since 1946, and a former unburnt treatment, burnt by wildfire in 2006. Eleven different cerambycid taxa were collected using flight intercept panel traps, dominated by three species (Ipomoria tillides, Adrium sp. and Bethelium signiferum) which made up 99% of individuals collected. Over the sampling period the long unburnt treatment had significantly lower species richness than the triennial and wildfire treatments. Cerambycid abundance was significantly higher in the triennially burnt treatment than in all other fire treatments. Ipomoria tillides was more abundant in both frequently burnt treatments, Adrium sp. was more common in triennially burnt areas, whereas B. signiferum, was more common in the wildfire affected treatment. Some, but not all, cerambycid beetles were more common in areas with a more open understorey (i.e. resulting from frequent burning), and lower tree basal area, as this likely influences their ability to fly easily between food sources. Cerambycid abundance was positively related to the volume of coarse woody debris and healthy tree crowns. Cerambycid beetles were clearly influenced by historic fire regime, suggesting that changes in fire regime can potentially have a profound influence on arthropod assemblages, and subsequent influences on ecosystem processes, which are currently poorly understood.  相似文献   

16.
Ecosystems managed with contrasting fire regimes provide insight into the responses of vegetation and soil. Heathland, woodland and forest ecosystems along a gradient of resource availability were burnt over four decades in approximately 3- or 5-year intervals or were unburnt for 45–47 years (heathland, woodland), or experienced infrequent wildfires (forest: 14 years since the last fire). We hypothesized that, relative to unburnt or infrequent fires, frequent burning would favour herbaceous species over woody species and resprouting over obligate seeder species, and reduce understorey vegetation height, and topsoil carbon and nitrogen content. Our hypothesis was partially supported in that herbaceous plant density was higher in frequently burnt vegetation; however, woody plant density was also higher in frequently burnt areas relative to unburnt/infrequently burnt areas, across all ecosystems. In heathland, omission of frequent fire resulted in the dominance of fern Gleichenia dicarpa and subsequent competitive exclusion of understorey species and lower species diversity. As hypothesized, frequent burning in woodland and forest increased the density of facultative resprouters and significantly reduced soil organic carbon levels relative to unburnt sites. Our findings confirm that regular burning conserves understorey diversity and maintains an understorey of lower statured herbaceous plants, although demonstrates the potential trade-off of frequent burning with lower topsoil carbon levels in the woodland and forest. Some ecosystem specific responses to varied fire frequencies were observed, reflecting differences in species composition and fire response traits between ecosystems. Overall, unburnt vegetation resulted in the dominance of some species over others and the different vegetation types were able to withstand relatively high-frequency fire without the loss of biodiversity, mainly due to high environmental productivity and short juvenile periods.  相似文献   

17.
Question: What is the effect of frequent low intensity prescribed fire on foliar nutrients and insect herbivory in an Australian eucalypt forest? Location: Lorne State Forest (Bulls Ground Frequent Burning Study), mid‐north coast, New South Wales, Australia. Methods: Eighteen independent sites were studied representing three experimental fire regimes: fire exclusion (at least 45 years), frequently burnt (every 3 years for 35 years) and fire exclusion followed by the recent introduction of frequent burning (two fires in 6 years). Mature leaves were collected from the canopy of Eucalyptus pilularis trees at each site and analysed for nutrients and damage by invertebrate herbivores. Results: Almost 75% of all leaves showed some signs of leaf damage. The frequency of past fires had no effect on carbon and nitrogen content of canopy leaves. These results were consistent with assessments of herbivore damage where no significant differences were found in the amount of invertebrate herbivory damage to leaves across fire treatments. Conclusions: This eucalypt forest displayed a high degree of resilience to both frequent burning and fire exclusion as determined by foliar nutrients and damage by insect herbivores. Fire frequency had no detectable ecological impact on this aspect of forest health.  相似文献   

18.
Despite the challenges wildland fire poses to contemporary resource management, many fire‐prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire‐prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire‐free intervals for establishment, as an indicator of long‐unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long‐unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long‐unburnt habitat in fire‐prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire‐prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.  相似文献   

19.
Abstract A new fire history for south‐western Australian sclerophyll forests was proposed recently based on grasstree (Xanthorrhoea preissii ) records that were interpreted to show a high frequency (3–5 years) ‘pre‐European burning regime’. Such a fire regime appears incompatible with the long‐term survival of many fire‐killed woody taxa. We investigated the local fire history in a small area of the northern sand‐plain shrub‐lands of south‐western Australia using 15 grasstrees, examining individual grasstree records in detail and comparing this with the decadal or averaged approach used in the original research, and with fire histories reconstructed from satellite images for the period since 1975. Results lead us to question the utility of the proposed grasstree fire history record as a tool for understanding past fire regimes for two reasons: First, inconsistencies in fire histories among individual grasstrees were considerable – some individuals were not burnt by known fires, while some apparently were burned many times during periods when others were not burned at all. Second, the grasstree record indicates a possible increase in patchiness of fires since 1930, while contemporary evidence and interpretations of the nature of Aboriginal (pre‐European) fire regimes would suggest the opposite. We believe that further research is needed to identify to what extent the grasstree method for reconstruction of fire histories can be used to re‐interpret how fire operated in many highly diverse ecosystems prior to European settlement of Australia.  相似文献   

20.
When native herbivores are enclosed in fenced reserves without predators or dispersal options then overgrazing can occur, leading to damage to vegetation and co‐occurring fauna species. One‐way gates that allow medium‐sized herbivores to exit fenced reserves may be an effective management tool to address overabundance or facilitate population expansion. We tested the use of one‐way gates to facilitate the movement of the reintroduced burrowing bettong (Bettongia lesueur) from inside to outside a fenced reserve in arid South Australia. One‐way gates were installed in the exterior fence of the reserve and assessed using remote motion‐sensor cameras. The influence of gate position (dune, swale or corner) and provision of food were assessed in relation to gate visits and exits. Animals were trapped inside and outside the gates to determine any population bias in gate exits. Baited gates recorded significantly more exits than unbaited gates and dune gates had higher exit rates than interdunal swale gates. When gates were unbaited, those installed in corners of the reserve showed significantly higher visitation by bettongs and a non‐significant trend towards more exits compared to gates placed in straight sections of fence along dunes or swales. There was no sex or age bias of burrowing bettongs using the gates and bettongs travelled between 75 m and 1535 m from their warrens to use the gates. No non‐target species gained access to the reserve through the one‐way gates and only two non‐target animals used the gates to exit the reserve confirming gate specificity for bettongs. During the same period, 96 burrowing bettongs exited the reserve through the one‐way gates. One‐way gates may be a management strategy for facilitating passive movement of medium‐sized herbivores outside of fenced reserves for the purposes of reducing overpopulation or facilitating population expansion outside reserves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号