首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Rainfall, fire and competition are emphasized as determinants of the density and basal area of woody vegetation in savanna. The semi‐arid savannas of Australia have substantial multi‐year rainfall deficits and insufficient grass fuel to carry annual fire in contrast to the mesic savannas in more northern regions. This study investigates the influence of rainfall deficit and excess, fire and woody competition on the population dynamics of a dominant tree in a semi‐arid savanna. All individuals of Eucalyptus melanophloia were mapped and monitored in three, 1‐ha plots over an 8.5 year period encompassing wet and dry periods. The plots were unburnt, burnt once and burnt twice. A competition index incorporating the size and distance of neighbours to target individuals was determined. Supplementary studies examined seedling recruitment and the transition of juvenile trees into the sapling layer. Mortality of burnt seedlings was related to lignotuber area but the majority of seedlings are fire resistant within 12 months of germination. Most of the juveniles (≤1 cm dbh) of E. melanophloia either died in the dry period or persisted as juveniles throughout 8.5 years of monitoring. Mortality of juveniles was positively related to woody competition and was higher in the dry period than the wet period. The transition of juveniles to a larger size class occurred at extremely low rates, and a subsidiary study along a clearing boundary suggests release from woody competition allows transition into the sapling layer. From three fires the highest proportion of saplings (1–10 cm dbh) reduced to juveniles was only 5.6% suggesting rates of ‘top‐kill’ of E. melanophloia as a result of fire are relatively low. Girth growth was enhanced in wet years, particularly for larger trees (>10 cm dbh), but all trees regardless of size or woody competition levels are vulnerable to drought‐induced mortality. Overall the results suggest that variations in rainfall, especially drought‐induced mortality, have a much stronger influence on the tree demographics of E. melanophloia in a semi‐arid savanna of north‐eastern Australia than fire.  相似文献   

2.
Five sets of herbivore exclosures situated in mesic and semi‐arid savannas in Hluhluwe‐iMfolozi Park, South Africa were used to investigate the effects of mammal browsers and savanna type on plant traits relating to leaf nutrient content, defense, and growth in seven Acacia species. Mostly, browsing did not significantly affect leaf nutrient content but for a few species (i.e., increasing foliar N and P, decreasing C/N, and total polyphenols). Browser effects on structural defenses tended to be more pronounced than for leaf nutrient content and chemical defenses, particularly for semi‐arid species, resulting in longer, thicker, and denser spines, and a lower bite size index on browsed plants for most semi‐arid species. Browsing had no significant effect on growth rates for all species. Secondly, we investigated the effect of savanna type (mesic vs. semi‐arid) on the same set of plant traits and growth rates. A trade‐off in defense strategy was evident where mesic species had lower quality leaves and invested more heavily in growth and chemical defenses, while semi‐arid species generally had higher nutrient content leaves and invested more in structural defenses and higher levels of ramification. These findings suggest that the previously documented trade‐off in plant growth, resprouting ability and architecture between herbivore versus fire‐adapted savanna woody species can possibly be extended to include browse quality and defense type.  相似文献   

3.
A continental-scale analysis of tree cover in African savannas   总被引:1,自引:0,他引:1  
Aim We present a continental‐scale analysis that explores the processes controlling woody community structure in tropical savannas. We analyse how biotic and abiotic factors interact to promote and modify tree cover, examine alternative ecological hypotheses and quantify disturbance effects using satellite estimates of tree cover. Location African savannas. Methods Tree cover is represented as a resource‐driven potential cover related to rainfall and soil characteristics perturbed by natural and human factors such as fire, cattle grazing, human population and cultivation. Within this framework our approach combines semi‐empirical modelling and information theory to identify the best models. Results Woody community structure across African savannas is best represented by a sigmoidal response of tree cover to mean annual precipitation (MAP), with a dependency on soil texture, which is modified by the separate effects of fire, domestic livestock, human population density and cultivation intensity. This model explains c. 66% of the variance in tree cover and appears consistent across the savanna regions of Africa. Main conclusions The analysis provides a new understanding of the importance and interaction of environmental and disturbance factors that create the broad spatial patterns of tree cover observed in African savannas. Woody cover increases with rainfall, but is modified by disturbances. These ‘perturbation’ effects depend on MAP regimes: in arid savannas (MAP < 400 mm) they are generally small (< 1% decrease in cover), while in semi‐arid and mesic savannas (400–1600 mm), perturbations result in an average 2% (400 mm) to 23% (1600 mm) decrease in cover; fire frequency and human population have more influence than cattle, and cultivation appears, on average, to lead to small increases in woody cover. Wet savannas (1600–2200 mm) are controlled by perturbations that inhibit canopy closure and reduce tree cover by, on average, 24–34%. Full understanding of the processes determining savanna structure requires consideration of resource limitation and disturbance dynamics.  相似文献   

4.
Fires in arid environments are rare, so are not deemed as important as in mesic savannas. We investigated mortality and resprouting amongst camelthorn (Acacia erioloba) after two fires (at Vaalbos National Park and Susanna farm) in semi‐arid savanna near Kimberley, South Africa. Resprouting response 18 months after a fire was the greatest amongst <6.5 m high trees; extent of foliage damage by fire and bark thickness were the next best predictors of resprouting vigour amongst that size class. The largest size class (8–12 m height) of A. erioloba suffered the greatest mortality rates (40% and 83% at Vaalbos and Susanna respectively), with damage either severe or minor. We hypothesize that large tree mortality rates are partly attributable to well‐developed assemblages of flammable subcanopy plants producing a bonfire beneath trees. These mortality rates indicate that fire reduces both tree abundance and relative representation of large trees, and although able to resprout, A. erioloba is fire‐sensitive, which may explain its restriction to Kalahari sands where rainfall is less than 900 mm year?1. Therefore, although relatively infrequent, fires shape Kalahari woodland structure, particularly as A. erioloba is long lived and slow growing. Large trees have been shown to be important to biodiversity in the southern Kalahari, so frequent fires could impact biodiversity.  相似文献   

5.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

6.
A key question in savanna ecology is how trees and grasses coexist under N limitation. We used N stable isotopes and N content to study N source partitioning across seasons from trees and associated grasses in a semi-arid savanna. We also used 15N tracer additions to investigate possible redistribution of N by trees to grasses. Foliar stable N isotope ratio (δ15N) values were consistent with trees and grasses using mycorrhiza-supplied N in all seasons except in the wet season when they switched to microbially fixed N. The dependence of trees and grasses on mineralized soil N seemed highly unlikely based on seasonal variation in mineralization rates in the Kruger Park region. Remarkably, foliar δ15N values were similar for all three tree species differing in the potential for N fixation through nodulation. The tracer experiment showed that N was redistributed by trees to understory grasses in all seasons. Our results suggest that the redistribution of N from trees to grasses and uptake of N was independent of water redistribution. Although there is overlap of N sources between trees and grasses, dependence on biological sources of N coupled with redistribution of subsoil N by trees may contribute to the coexistence of trees and grasses in semi-arid savannas.  相似文献   

7.
Aim This study documents the effects of multiple fires and drought on the woody structure of a north Australian savanna never grazed by domestic stock. Location The study was conducted in a 500 ha pocket of Eucalyptus‐dominated savanna surrounded by a late Quaternary lava flow. The flow is known as the Great Basalt Wall, located c. 50 km northeast of Charters Towers in semi‐arid north‐eastern Australia. This region was exposed to the largest 5‐year rainfall deficit on record between 1992 and 1996. Methods All individual woody plants were tagged within a 1.56 ha plot. Species were segregated into their habitat affinities (rain forest, ecotone, savanna) and regeneration strategy (resprouter, seeder). The survivorship of plants within these categories was analysed in relation to fire intensity from the first fire, and to each of four fires lit between 1996 and 2001. Results Before the first fire, the plot contained thirty‐one tree species including twenty‐one typical of the surrounding dry rain forest. These rain forest species were represented by small individuals and constituted <1% of the total basal area of woody plants. The basal area of savanna trees was 7.5 m2 ha?1 at the commencement of monitoring, although 31% had recently died and others had major crown damage. Further death of the drought debilitated savanna trees was substantial during the first year of monitoring and the basal area of live savanna trees declined to 1.1 m2 ha?1 after 5 years. Most species from both rain forest and savanna were classified as resprouters and are capable of regenerating from underground organs after fire. Species without this ability (rain forest seeders and ecotone seeders) were mostly eliminated after the first two consecutive fires. Among resprouters, survivorship declined as fire intensity increased and this was more pronounced for rain forest than for savanna species. Repeated burning produced a cumulative effect of decreasing survivorship for rain forest resprouters relative to savanna resprouters. Main conclusions The study provides evidence that savanna and rain forest trees differ in fire susceptibility and that recurrent fire can explain the restricted distribution of rain forest in the seasonally arid Australian tropics. The time of death of the savanna trees is consistent with the regional pattern after severe drought, and highlights the importance of medium term climate cycles for the population dynamics of savanna tree species and structure of Australian savannas.  相似文献   

8.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

9.
According to contemporary ecological theory, the mechanisms governing tree cover in savannas vary by precipitation level. In tropical areas with mesic rainfall levels, savannas are unstable systems in which disturbances, such as fire, determine the ratio of trees to grasses. Precipitation in these so-called “disturbance-driven savannas” is sufficient to support forest but frequent disturbances prevent transition to a closed canopy state. Building on a savanna buffering model we argue that a consistent fire regime is required to maintain savannas in mesic areas. We hypothesize that the spatiotemporal pattern of fires is highly regular and stable in these areas. Furthermore, because tree growth rates in savannas are a function of precipitation, we hypothesize that savannas with the highest rainfall levels will have the most consistent fire pattern and the most intense fires—thus the strongest buffering mechanisms. We analyzed the spatiotemporal pattern of burning over 11 years for a large subset of the West African savanna using a moderate resolution imaging spectroradiometer active fire product to document the fire regime for three savanna belts with different precipitation levels. We used LISA analysis to quantify the spatiotemporal patterns of fires, coefficient of variance to quantify differences in peak fire dates, and center or gravity pathways to characterize the spatiotemporal patterns of the fires for each area. Our analysis confirms that spatiotemporal regularity of the fire regime is greater for mesic areas that for areas where precipitation is lower and that areas with more precipitation have more regular fire regimes.  相似文献   

10.
Productivity and carbon fluxes of tropical savannas   总被引:8,自引:0,他引:8  
Aim (1) To estimate the local and global magnitude of carbon fluxes between savanna and the atmosphere, and to suggest the significance of savannas in the global carbon cycle. (2) To suggest the extent to which protection of savannas could contribute to a global carbon sequestration initiative. Location Tropical savanna ecosystems in Africa, Australia, India and South America. Methods A literature search was carried out using the ISI Web of Knowledge, and a compilation of extra data was obtained from other literature, including national reports accessed through the personal collections of the authors. Savanna is here defined as any tropical ecosystem containing grasses, including woodland and grassland types. From these data it was possible to estimate the fluxes of carbon dioxide between the entire savanna biome on a global scale. Results Tropical savannas can be remarkably productive, with a net primary productivity that ranges from 1 to 12 t C ha−1 year−1. The lower values are found in the arid and semi‐arid savannas occurring in extensive regions of Africa, Australia and South America. The global average of the cases reviewed here was 7.2 t C ha−1 year−1. The carbon sequestration rate (net ecosystem productivity) may average 0.14 t C ha−1 year−1 or 0.39 Gt C year−1. If savannas were to be protected from fire and grazing, most of them would accumulate substantial carbon and the sink would be larger. Savannas are under anthropogenic pressure, but this has been much less publicized than deforestation in the rain forest biome. The rate of loss is not well established, but may exceed 1% per year, approximately twice as fast as that of rain forests. Globally, this is likely to constitute a flux to the atmosphere that is at least as large as that arising from deforestation of the rain forest. Main conclusions The current rate of loss impacts appreciably on the global carbon balance. There is considerable scope for using many of the savannas as sites for carbon sequestration, by simply protecting them from burning and grazing, and permitting them to increase in stature and carbon content over periods of several decades.  相似文献   

11.
Previous analyses of historical aerial photography and satellite imagery have shown thickening of woody cover in Australian tropical savannas, despite increasing fire frequency. The thickening has been attributed to increasing precipitation and atmospheric CO2 enrichment. These analyses involved labour‐intensive, manual classification of vegetation, and hence were limited in the extent of the areas and the number of measurement times used. Object‐based, semi‐automated classification of historical sequences of aerial photography and satellite imagery has enabled the spatio‐temporal analysis of woody cover over entire landscapes, thus facilitating measurement, monitoring and attribution of drivers of change. Using this approach, we investigated woody cover change in 4000 ha of intact mesic savanna in the Ranger uranium lease and surrounding Kakadu National Park, using imagery acquired on 10 occasions between 1950 and 2016. Unlike previous studies, we detected no overall trend in woody cover through time. Some variation in cover was related to rainfall in the previous 12 months, and there were weak effects of fire in the year of image acquisition and the antecedent 4 years. Our local‐scale study showed a mesic eucalypt savanna in northern Australia has been resilient to short‐term variation in rainfall and fire activity; however, changes in canopy cover could have occurred in other settings. When applying this semi‐automated approach to similar studies of savanna dynamics, we recommend maximising the time depth and number of measurement years, standardising the time of year for image acquisition and using many plots of 1 ha in area, rather than fewer, larger plots.  相似文献   

12.
The coexistence of woody and grassy plants in savannas has often been attributed to a rooting-niche separation (two-layer hypothesis). Water was assumed to be the limiting resource for both growth forms and grasses were assumed to extract water from the upper soil layer and trees and bushes from the lower layers. Woody plant encroachment (i.e. an increase in density of woody plants often unpalatable to domestic livestock) is a serious problem in many savannas and is believed to be the result of overgrazing in ‘two-layer systems’. Recent research has questioned the universality of both the two-layer hypothesis and the hypothesis that overgrazing is the cause of woody plant encroachment.

We present an alternative hypothesis explaining both tree–grass coexistence and woody plant encroachment in arid savannas. We propose that woody plant encroachment is part of a cyclical succession between open savanna and woody dominance and is driven by two factors: rainfall that is highly variable in space and time, and inter-tree competition. In this case, savanna landscapes are composed of many patches (a few hectares in size) in different states of transition between grassy and woody dominance, i.e. we hypothesize that arid savannas are patch-dynamic systems. We summarize patterns of tree distribution observed in an arid savanna in Namibia and show that these patterns are in agreement with the patch-dynamic savanna hypothesis. We discuss the applicability of this hypothesis to fire-dominated savannas, in which rainfall variability is low and fire drives spatial heterogeneity.

We conclude that field studies are more likely to contribute to a general understanding of tree–grass coexistence and woody plant encroachment if they consider both primary (rain and nutrients) and secondary (fire and grazing) determinants of patch properties across different savannas.  相似文献   


13.
The small rainforest fragments found in savanna landscapes are powerful, yet often overlooked, model systems to understand the controls of these contrasting ecosystems. We analyzed the relative effect of climatic variables on rainforest density at a subcontinental level, and employed high‐resolution, regional‐level analyses to assess the importance of landscape settings and fire activity in determining rainforest density in a frequently burnt Australian savanna landscape. Estimates of rainforest density (ha/km2) across the Northern Territory and Western Australia, derived from preexisting maps, were used to calculate the correlations between rainforest density and climatic variables. A detailed map of the northern Kimberley (Western Australia) rainforests was generated and analyzed to determine the importance of geology and topography in controlling rainforests, and to contrast rainforest density on frequently burnt mainland and nearby islands. In the northwestern Australian, tropics rainforest density was positively correlated with rainfall and moisture index, and negatively correlated with potential evapotranspiration. At a regional scale, rainforests showed preference for complex topographic positions and more fertile geology. Compared with mainland areas, islands had significantly lower fire activity, with no differences between terrain types. They also displayed substantially higher rainforest density, even on level terrain where geomorphological processes do not concentrate nutrients or water. Our multi‐scale approach corroborates previous studies that suggest moist climate, infrequent fires, and geology are important stabilizing factors that allow rainforest fragments to persist in savanna landscapes. These factors need to be incorporated in models to predict the future extent of savannas and rainforests under climate change.  相似文献   

14.
In this study, systematic variation in tree morphology across a rainfall gradient in Australia's tropical savanna biome and its implications for carbon stocks and dynamics were quantified. The aim was to support efforts to manage fire regimes to increase vegetative carbon stocks as a greenhouse gas mitigation strategy. The height of trees for a given trunk diameter declines with decreasing rainfall from 2000 to 300 mm and increasing dry season length across the Australian savanna biome. It is likely that increasing dry season length is the main driver of this decline rather declining rainfall per se. By taking account of the response of total basal area to rainfall and soil type, stand structure, and tree height and diameter relationships, the carbon stocks in live trees were estimated to decline from about 34 t ha?1 in the wetter savannas to 6 t ha?1 in the drier savannas. These values are broadly consistent with field‐based estimates. Because of the declining ratio of height to trunk diameter, trees of a given diameter in drier regions will be more likely to be killed by fires of a given intensity than trees in wetter regions. Thus single fires of given intensity are likely to have a greater proportionate impact on live tree carbon stock in drier savannas, but a much greater absolute impact in wetter savannas due to the greater total carbon stock. Projected decreases in early wet season rainfall under climate change scenarios, despite projections of little change in total precipitation in northern Australia, may lead to decreased carbon stock in live trees through two mechanisms: a reduction in total basal area and decreases in tree height for given trunk diameters.  相似文献   

15.
Recent studies have shown that the tussock grass Stipa tenacissima L. facilitates the establishment of late-successional shrubs, in what constitutes the first documented case of facilitation of woody plants by grasses. With the aim of increasing our knowledge of this interaction, in the present study we investigated the effects of S. tenacissima on the foliar δ13C, δ15N, nitrogen concentration, and carbon : nitrogen ratio of introduced seedlings of Pistacia lentiscus L., Quercus coccifera L., and Medicago arborea L. in a semi-arid Mediterranean steppe. Six months after planting, the values of δ13C ranged between -26.9‰ and -29.6‰, whereas those of δ15N ranged between -1.9‰ and 2.7‰. The foliar C : N ratio ranged between 10.7 and 53.5, and the nitrogen concentration ranged between 1.0% and 4.4%. We found no significant effect of the microsite provided by S. tenacissima on these variables in any of the species evaluated. The values of δ13C were negatively correlated with predawn water potentials in M. arborea and were positively correlated with relative growth rate in Q. coccifera. The values of δ15N were positively correlated with the biomass allocation to roots in the latter species. The present results suggest that the modification of environmental conditions in the are surrounding S. tenacissima was not strong enough to modify the foliar isotopic and nitrogen concentration of shrubs during the early stages after planting.  相似文献   

16.
In frequently burnt mesic savannas, trees can get trapped into a cycle of surviving fire-induced stem death (i.e. topkill) by resprouting, only to be topkilled again a year or two later. The ability of savanna saplings to resprout repeatedly after fire is a key component of recent models of tree–grass coexistence in savannas. This study investigated the carbon allocation and biomass partitioning patterns that enable a dominant savanna tree, Acacia karroo, to survive frequent and repeated topkill. Root starch depletion and replenishment, foliage recovery and photosynthesis of burnt and unburnt plants were compared over the first year after a burn. The concentration of starch in the roots of the burnt plants (0.08 ± 0.01 g g−1) was half that of the unburnt plant (0.16 ± 0.01 g g−1) at the end of the first growing season after topkill. However, root starch reserves of the burnt plants were replenished over the dry season and matched that of unburnt plants within 1 year after topkill. The leaf area of resprouting plants recovered to match that of unburnt plants within 4–5 months after topkill. Shoot growth of resprouting plants was restricted to the first few months of the wet season, whereas photosynthetic rates remained high into the dry season, allowing replenishment of root starch reserves. 14C labeling showed that reserves were initially utilized for shoot growth after topkill. The rapid foliage recovery and the replenishment of reserves within a single year after topkill implies that A. karroo is well adapted to survive recurrent topkill and is poised to take advantage of unusually long fire-free intervals to grow into adults. This paper provides some of the first empirical evidence to explain how savanna trees in frequently burnt savannas are able to withstand frequent burning as juveniles and survive to become adults. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Fire-maintained, species-rich pine-wiregrass savannas in the Green Swamp, North Carolina were sampled over their natural range of environmental conditions and fire frequencies. Species composition, species richness, diversity (Exp H′, 1/C), and aboveground production were documented and fertilization experiments conducted to assess possible mechanisms for the maintenance of high species diversity in these communities. Although savanna composition varies continuously, DECORANA ordination and TWINSPAN classification of 21 sites facilitated recognition of 3 community types: dry, mesic, and wet savannas. These savannas are remarkably species-rich with up to 42 species/0.25 m2 and 84 species/625 m2. Maximum richness occurred on mesic, annually burned sites. Aboveground production, reported as peak standing crop, was only 293 g · m?2 on a frequently burned mesic savanna but was significantly higher (375 g · m?2) on an infrequently burned mesic site. Production values from fertilized high and low fire frequency sites were equivalent. Monthly harvest samples showed that savanna biomass composition by species groups did not vary seasonally, but within groups the relative importance of species showed clear phenological progressions. The variation in species richness with fire frequency is consistent with non-equilibrium theories of species diversity, while phenological variation in production among similar species and the changing species composition across the moisture gradient suggest the importance of equilibrium processes for maintenance of savanna diversity.  相似文献   

18.
Fire is both inevitable and necessary for maintaining the structure and functioning of mesic savannas. Without disturbances such as fire and herbivory, tree cover can increase at the expense of grass cover and over time dominate mesic savannas. Consequently, repeated burning is widely used to suppress tree recruitment and control bush encroachment. However, the effect of regular burning on invasion by alien plant species is little understood. Here, vegetation data from a long-term fire experiment, which began in 1953 in a mesic Zimbabwean savanna, were used to test whether the frequency of burning promoted alien plant invasion. The fire treatments consisted of late season fires, lit at 1-, 2-, 3-, and 4-year intervals, and these regularly burnt plots were compared with unburnt plots. Results show that over half a century of frequent burning promoted the invasion by alien plants relative to areas where fire was excluded. More alien plant species became established in plots that had a higher frequency of burning. The proportion of alien species in the species assemblage was highest in the annually burnt plots followed by plots burnt biennially. Alien plant invasion was lowest in plots protected from fire but did not differ significantly between plots burnt triennially and quadrennially. Further, the abundance of five alien forbs increased significantly as the interval (in years) between fires became shorter. On average, the density of these alien forbs in annually burnt plots was at least ten times as high as the density of unburnt plots. Plant diversity was also altered by long-term burning. Total plant species richness was significantly lower in the unburnt plots compared to regularly burnt plots. These findings suggest that frequent burning of mesic savannas enhances invasion by alien plants, with short intervals between fires favouring alien forbs. Therefore, reducing the frequency of burning may be a key to minimising the risk of alien plant spread into mesic savannas, which is important because invasive plants pose a threat to native biodiversity and may alter savanna functioning.  相似文献   

19.
For the past century, woody plants have increased in grasslands and savannas worldwide. Woody encroachment may significantly alter ecosystem functioning including fire regimes, herbivore carrying capacity, biodiversity and carbon storage capacity. Traditionally, increases in woody cover and density have been ascribed to changes in the disturbance regime (fire and herbivores) or rainfall. Increased atmospheric CO2 concentrations may also contribute, by increasing growth rates of trees relative to grasses. This hypothesis is still heavily debated because usually potential CO2 effects are confounded by changes in land use (disturbance regime). Here we analyse changes in woody density in fire experiments at three sites in South African savannas where the disturbance regime (fire and herbivores) was kept constant for 30 and 50 years. If global drivers had significant effects on woody plants, we would expect significant increases in tree densities and biomass over time under the constant disturbance regime. Woody density remained constant in a semiarid savanna but tripled in a mesic savanna between the 1970s and 1990s. At the third site, a semiarid savanna near the southern limits of the biome, tree density doubled from the mid 1990s to 2010. Interpretation of the causes is confounded by population recovery after clearing, but aerial photograph analysis on adjacent non‐cleared areas showed an accompanying 48% increase in woody cover. Increased CO2 concentrations are consistent with increased woody density while other global drivers (rainfall) remained constant over the duration of the experiments. The absence of a response in one semiarid savanna could be explained by a smaller carbon sink capacity of the dominant species, which would therefore benefit less from increased CO2. Understanding how savannas and grasslands respond to increased CO2 and identifying the causes of woody encroachment are essential for the successful management of these systems.  相似文献   

20.
The presence of grazers on grazing lawns in East Africa and North America often alters nitrogen cycling and availability. Grazing lawns can be defined as areas where grasses are kept in a short, actively growing, palatable state by the action of grazers. Our aim was to test whether lawns have enhanced leaf nitrogen (N) concentrations, total soil N and δ15N when compared to tall grass areas in a South African savannah. Previous studies have used ecosystem δ15N as a proxy of N availability, and enriched δ15N values have been suggested to indicate higher N availability or higher N transformation rates. Across all sites, foliar N concentrations (but not soil N) were higher when compared to tall grass areas, and evidence of enriched foliar and soil δ15N values was found on the lawns. These results suggest that grazers may be involved in altering the rates of N transformations directly on grazing lawns. Regardless of whether these N transformations included increased net N mineralization, higher N concentrations in above‐ground foliage attract grazers back to the lawns, encouraging their maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号