共查询到20条相似文献,搜索用时 0 毫秒
1.
Pablo L. Peri Brenton Ladd David A. Pepper Stephen P. Bonser Shawn W. Laffan Wulf Amelung 《Global Change Biology》2012,18(1):311-321
Stable isotope natural abundance measurements integrate across several biogeochemical processes in ecosystem N and C dynamics. Here, we report trends in natural isotope abundance (δ13C and δ15N in plant and soil) along a climosequence of 33 Nothofagus forest stands located within Patagonia, Southern Argentina. We measured 28 different abiotic variables (both climatic variables and soil properties) to characterize environmental conditions at each of the 33 sites. Foliar δ13C values ranged from ?35.4‰ to ?27.7‰, and correlated positively with foliar δ15N values, ranging from ?3.7‰ to 5.2‰. Soil δ13C and δ15N values reflected the isotopic trends of the foliar tissues and ranged from ?29.8‰ to ?25.3‰, and ?4.8‰ to 6.4‰, respectively, with no significant differences between Nothofagus species (Nothofagus pumilio, Nothofagus antarctica, Nothofagus betuloides). Principal component analysis and multiple regressions suggested that mainly water availability variables (mean annual precipitation), but not soil properties, explained between 42% and 79% of the variations in foliar and soil δ13C and δ15N natural abundance, which declined with increased moisture supply. We conclude that a decline in water use efficiency at wetter sites promotes both the depletion of heavy C and N isotopes in soil and plant biomass. Soil δ13C values were higher than those of the plant tissues and this difference increased as annual precipitation increased. No such differences were apparent when δ15N values in soil and plant were compared, which indicates that climatic differences contributed more to the overall C balance than to the overall N balance in these forest ecosystems. 相似文献
2.
Burak K. Pekin Matthias M. Boer Roy S. Wittkuhn Craig Macfarlane Pauline F. Grierson 《植被学杂志》2012,23(4):745-754
3.
A combination of dietary guild analysis and nitrogen (δ15N) and carbon (δ13C) stable‐isotope analysis was used to assess the trophic structure of the fish community in Rhode Island and Block Island Sounds, an area off southern New England identified for offshore wind energy development. In the autumn of 2009, 2010 and 2011, stomach and tissue samples were taken from 20 fish and invertebrate species for analysis of diet composition and δ15N and δ13C signatures. The food chain in Rhode Island and Block Island Sounds comprises approximately four trophic levels within which the fish community is divided into distinct dietary guilds, including planktivores, benthivores, crustacivores and piscivores. Within these guilds, inter‐species isotopic and dietary overlap is high, suggesting that resource partitioning or competitive interactions play a major role in structuring the fish community. Carbon isotopes indicate that most fishes are supported by pelagic phytoplankton, although there is evidence that benthic production also plays a role, particularly for obligate benthivores such as skates Leucoraja spp. This type of analysis is useful for developing an ecosystem‐based approach to management, as it identifies species that act as direct links to basal resources as well as species groups that share trophic roles. 相似文献
4.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology. 相似文献
5.
6.
In forests of the humid subtropics of China, chronically elevated nitrogen (N) deposition, predominantly as ammonium (NH4+), causes significant nitrate (NO3?) leaching from well‐drained acid forest soils on hill slopes (HS), whereas significant retention of NO3? occurs in near‐stream environments (groundwater discharge zones, GDZ). To aid our understanding of N transformations on the catchment level, we studied spatial and temporal variabilities of concentration and natural abundance (δ15N and δ18O) of nitrate (NO3?) in soil pore water along a hydrological continuum in the N‐saturated Tieshanping (TSP) catchment, southwest China. Our data show that effective removal of atmogenic NH4+ and production of NO3? in soils on HS were associated with a significant decrease in δ15N‐NO3?, suggesting efficient nitrification despite low soil pH. The concentration of NO3? declined sharply along the hydrological flow path in the GDZ. This decline was associated with a significant increase in both δ15N and δ18O of residual NO3?, providing evidence that the GDZ acts as an N sink due to denitrification. The observed apparent 15N enrichment factor (ε) of NO3? of about ?5‰ in the GDZ is similar to values previously reported for efficient denitrification in riparian and groundwater systems. Episode studies in the summers of 2009, 2010 and 2013 revealed that the spatial pattern of δ15N and δ18O‐NO3? in soil water was remarkably similar from year to year. The importance of denitrification as a major N sink was also seen at the catchment scale, as largest δ15N‐NO3? values in stream water were observed at lowest discharge, confirming the importance of the relatively small GDZ for N removal under base flow conditions. This study, explicitly recognizing hydrologically connected landscape elements, reveals an overlooked but robust N sink in N‐saturated, subtropical forests with important implications for regional N budgets. 相似文献
7.
PAUL A. SANDBERG JAMES E. LOUDON MATT SPONHEIMER 《American journal of primatology》2012,74(11):969-989
Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine‐grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. Am. J. Primatol. 74:969‐989, 2012. © 2012 Wiley Periodicals, Inc. 相似文献
8.
Although most carabids are primarily carnivorous, some carabid species are omnivorous, with mainly granivorous feeding habits during the larval and/or adult stages (granivorous carabids). This feeding habit has been established based on laboratory and field experiments; however, our knowledge of the feeding ecology of these beetles in the field is limited owing to the lack of an appropriate methodology. In this study, we tested the utility of stable isotope analysis in investigations of the feeding ecology of granivorous carabids in the field, using two closely related syntopic species, Amara chalcites and Amara congrua. We addressed two issues concerning the feeding ecology of granivorous carabids: food niche differentiation between related syntopic species during the larval stage and the effect on adult body size of supplementing seeds with an animal diet during the larval stage. To investigate larval feeding habits, we analysed newly emerged adults, most somatic tissues of which are considered of larval origin. In the two populations examined, both δ15N and δ13C were significantly higher in A. chalcites than A. congrua, suggesting that the two species differentiate food niches, with A. chalcites larvae being more carnivorous than A. congrua larvae. The two isotope ratios of A. chalcites samples from one locality were positively correlated with body size, suggesting that more carnivorous larvae become larger adults. However, this relationship was not detected in other species/locality groups. Thus, our results were inconclusive on the issue of diet supplementation. Nevertheless, overall, these results are comparable with those of previous laboratory‐rearing experiments and demonstrate the potential utility of stable isotope analysis in field studies on the feeding ecology of granivorous carabids. 相似文献
9.
10.
1. Species diversities of some insect lineages have been attributed to differentiation of feeding habits among species. Our objective was to determine variation in diet composition among harpaline ground beetle species occurring in a riverside grassland. 2. We examined the diet compositions of 14 species from six genera in the spring and 10 species from two genera in the autumn. We performed measurements of nitrogen and carbon stable isotope ratios in consumers and in their potential food items, and estimated relative contributions of different food items with two mixing models, IsoSource and MixSIR. 3. IsoSource and MixSIR software gave similar results, but IsoSource tended to calculate higher contributions of principal food items and smaller percentile ranges than MixSIR. Among harparine beetle species, there were diverse food utilisation patterns among four food categories (detritivorous invertebrates, herbivorous invertebrates, C3 plants, and C4 plants). Detritivores comprised the main diets of abundant harpaline species in the spring, whereas abundant harpaline species in the autumn were primarily herbivores feeding on C4 plants, or omnivores feeding on herbivorous invertebrates and C3 plants. Seasonal changes in food use were related to seasonal changes in the abundance of each food resource. 4. Mixing model analysis of stable isotope ratios is a convenient and effective method for roughly estimating diets of many species with diverse food habits (such as ground beetles). This method can contribute to determining the trophic relationships of related insects in one ecosystem. 相似文献
11.
ROBERT L. FRANCE 《Freshwater Biology》2012,57(4):787-794
1. The energetic hypothesis proposes that the vertical structure of food webs should increase in height with increasing system productivity. I measured the trophic positions and extent of trophic separation between the invertebrate planktivores Mysis relicta and Chaoborus spp. and their putative zooplankton prey along a gradient of lake productivity with the use of stable nitrogen isotopes. 2. In lakes of low productivity, these planktivores were found to be herbivorous, becoming omnivorous at intermediate lake productivities, and only able to be truly zooplanktivorous as lakes approached mesotrophy. A subsequent secondary analysis of literature data revealed that the strength of top‐down trophic cascades among these organisms increased with lake productivity as reflected by relationships between the abundance of planktivores and that of phytoplankton. 3. Increased omnivory under conditions of low productivity, effectively shortening the vertical structure of food webs as predicted by the energetic hypothesis, may produce increased community stability. 相似文献
12.
This study aimed to estimate trophic discrimination factors (TDFs) and metabolic turnover rates of nitrogen and carbon stable isotopes in blood and muscle of the smallnose fanskate Sympterygia bonapartii by feeding six adult individuals, maintained in captivity, with a constant diet for 365 days. TDFs were estimated as the difference between δ13C or δ15N values of the food and the tissues of S. bonapartii after they had reached equilibrium with their diet. The duration of the experiment was enough to reach the equilibrium condition in blood for both elements (estimated time to reach 95% of turnover: C t95%blood = 150 days, N t95%blood = 290 days), whilst turnover rates could not be estimated for muscle because of variation among samples. Estimates of Δ13C and Δ15N values in blood and muscle using all individuals were Δ13Cblood = 1·7‰, Δ13Cmuscle = 1·3‰, Δ15Nblood = 2·5‰ and Δ15Nmuscle = 1·5‰, but there was evidence of differences of c.0·4‰ in the Δ13C values between sexes. The present values for TDFs and turnover rates constitute the first evidence for dietary switching in batoids based on long‐term controlled feeding experiments. Overall, the results showed that S. bonapartii has relatively low turnover rates and isotopic measurements would not track seasonal movements adequately. The estimated Δ13C values in S. bonapartii blood and muscle were similar to previous estimations for elasmobranchs and to generally accepted values in bony fishes (Δ13C = 1·5‰). For Δ15N, the results were similar to published reports for blood but smaller than reports for muscle and notably smaller than the typical values used to estimate trophic position (Δ15N c. 3·4‰). Thus, trophic position estimations for elasmobranchs based on typical Δ15N values could lead to underestimates of actual trophic positions. Finally, the evidence of differences in TDFs between sexes reveals a need for more targeted research. 相似文献
13.
Stable‐isotope analysis supplemented with stomach contents data from published sources was used to quantify the trophic niches, trophic niche overlaps and potential trophic redundancy for the most commonly caught fish species from an East African nearshore seagrass community. This assessment is an important first step in quantifying food‐web structure in a region subject to intense fishing activities. Nearshore food webs were driven by at least two isotopically distinct trophic pathways, algal and seagrass, with a greater proportion of the sampled species feeding within the seagrass food web (57%) compared with the algal food web (33%). There was considerable isotopic niche overlap among species (92% of species overlapped with at least one other species). Narrow isotopic niche widths of most (83%) species sampled, low isotopic similarity (only 23% of species exhibited no differences in δ13C and δ15N) and low predicted trophic redundancy among fishes most commonly caught by fishermen (15%), however, suggest that adjustments to resource management concerning harvesting and gear selectivity may be needed for the persistence of artisanal fishing in northern Tanzania. More detailed trophic studies paired with information on spatio‐temporal variation in fish abundance, especially for heavily targeted species, will assist in the development and implementation of management strategies to maintain coastal food‐web integrity. 相似文献
14.
The presence of grazers on grazing lawns in East Africa and North America often alters nitrogen cycling and availability. Grazing lawns can be defined as areas where grasses are kept in a short, actively growing, palatable state by the action of grazers. Our aim was to test whether lawns have enhanced leaf nitrogen (N) concentrations, total soil N and δ15N when compared to tall grass areas in a South African savannah. Previous studies have used ecosystem δ15N as a proxy of N availability, and enriched δ15N values have been suggested to indicate higher N availability or higher N transformation rates. Across all sites, foliar N concentrations (but not soil N) were higher when compared to tall grass areas, and evidence of enriched foliar and soil δ15N values was found on the lawns. These results suggest that grazers may be involved in altering the rates of N transformations directly on grazing lawns. Regardless of whether these N transformations included increased net N mineralization, higher N concentrations in above‐ground foliage attract grazers back to the lawns, encouraging their maintenance. 相似文献
15.
Brooke E. Crowley Sandra Thorén Emilienne Rasoazanabary Erin R. Vogel Meredith A. Barrett Sarah Zohdy Marina B. Blanco Keriann C. McGoogan Summer J. Arrigo‐Nelson Mitchell T. Irwin Patricia C. Wright Ute Radespiel Laurie R. Godfrey Paul L. Koch Nathaniel J. Dominy 《Journal of Biogeography》2011,38(11):2106-2121
Aim We sought to quantify geographical variation in the stable isotope values of mouse lemurs (Microcebus) and to determine whether this variation reflects trophic differences among populations or baseline isotopic differences among habitats. If the latter pattern is demonstrated, then Microcebus can become a proxy for tracking baseline habitat isotopic variability. Establishing such a baseline is crucial for identifying niche partitioning in modern and ancient communities. Location We studied five species of Microcebus from eight distinct habitats across Madagascar. Methods We compared isotopic variation in C3 plants and Microcebus fur within and among localities. We predicted that carbon and nitrogen isotope values of Microcebus should: (1) vary as a function of abiotic variables such as rainfall and temperature, and (2) covary with isotopic values in plants. We checked for trophic differences among Microcebus populations by comparing the average difference between mouse lemur and plant isotope values for each locality. We then used multiple regression models to explain spatial isotope variation in mouse lemurs, testing a suite of explanatory abiotic variables. Results We found substantial isotopic variation geographically. Ranges for mean isotope values were similar for both Microcebus and plants across localities (carbon 3.5–4.0‰; nitrogen 10.5–11.0‰). Mean mouse lemur and plant isotope values were lowest in cool, moist localities and highest in hot, dry localities. Rainfall explained 58% of the variation in Microcebus carbon isotope values, and mean plant nitrogen isotope values explained 99.7% of the variation in Microcebus nitrogen isotope values. Average differences between mouse lemur and plant isotope values (carbon 5.0‰; nitrogen 5.9‰) were similar across localities. Main conclusions Isotopic data suggest that trophic differences among Microcebus populations were small. Carbon isotope values in mouse lemurs were negatively correlated with rainfall. Nitrogen isotope values in Microcebus and plants covaried. Such findings suggest that nitrogen isotope values for Microcebus are a particularly good proxy for tracking baseline isotopic differences among habitats. Our results will facilitate future comparative research on modern mouse lemur communities, and ecological interpretations of extinct Holocene communities. 相似文献
16.
Mutualistic nutritional symbioses are widespread in marine ecosystems. They involve the association of a host organism (algae, protists, or marine invertebrates) with symbiotic microorganisms, such as bacteria, cyanobacteria, or dinoflagellates. Nutritional interactions between the partners are difficult to identify in symbioses because they only occur in intact associations. Stable isotope analysis (SIA) has proven to be a useful tool to highlight original nutrient sources and to trace nutrients acquired by and exchanged between the different partners of the association. However, although SIA has been extensively applied to study different marine symbiotic associations, there is no review taking into account of the different types of symbiotic associations, how they have been studied via SIA, methodological issues common among symbiotic associations, and solutions that can be transferred from one type of association with another. The present review aims to fill such gaps in the scientific literature by summarizing the current knowledge of how isotopes have been applied to key marine symbioses to unravel nutrient exchanges between partners, and by describing the difficulties in interpreting the isotopic signal. This review also focuses on the use of compound‐specific stable isotope analysis and on statistical advances to analyze stable isotope data. It also highlights the knowledge gaps that would benefit from future research. 相似文献
17.
18.
We estimated the contribution of reservoir‐derived plankton released from an upstream dam to particulate organic matter (POM) relative to terrestrial allochthonous (fallen leaves) and instream autochthonous (downstream epilithic algae) sources in the Uji River, Japan, to investigate the influence of the reservoir plankton on downstream POM composition. Four types of POM such as suspended fine, suspended coarse, benthic fine and benthic coarse POM were collected and then analyzed using two types of mixing models combining δ13C–δ15N: a standard linear model (SLM) and a concentration‐weighted model (CWM), which are compared with the microscopic examination. Results demonstrate that the three trophic sources were isotopically distinct, and all POM samples are plotted inside the mixing triangle defined by the three end members in the δ13C–δ15N biplot. SLM underestimated the terrestrial source contribution and overestimated that of the reservoir plankton, suggesting that despite popular application of the SLM method, CWM was more appropriate for the source partitioning of riverine POM particularly in the case where large differences in source concentrations of C and N are present. Reservoir plankton contribution was highest in suspended fine POM (S‐FPOM), accounting for 47%. Nitrogen in S‐FPOM was found to be supplied mostly by the reservoir plankton (68%). These results collectively suggest that reservoir plankton from dams can greatly influence downstream S‐FPOM composition and play a role in supplying nitrogen to tailwater ecosystems. Our findings on the riverine POM source partitioning in a tailwater channel should be useful in assessing downstream heterotrophic food webs and nutrient transport in response to the plankton‐derived POM originating from upstream reservoirs. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
Mayumi L. Arimitsu Keith A. Hobson D'Arcy N. Webber John F. Piatt Eran W. Hood Jason B. Fellman 《Global Change Biology》2018,24(1):387-398
Nearly half of the freshwater discharge into the Gulf of Alaska originates from landscapes draining glacier runoff, but the influence of the influx of riverine organic matter on the trophodynamics of coastal marine food webs is not well understood. We quantified the ecological impact of riverine organic matter subsidies to glacier‐marine habitats by developing a multi‐trophic level Bayesian three‐isotope mixing model. We utilized large gradients in stable (δ13C, δ15N, δ2H) and radiogenic (Δ14C) isotopes that trace riverine and marine organic matter sources as they are passed from lower to higher trophic levels in glacial‐marine habitats. We also compared isotope ratios between glacial‐marine and more oceanic habitats. Based on isotopic measurements of potential baseline sources, ambient water and tissues of marine consumers, estimates of the riverine organic matter source contribution to upper trophic‐level species including fish and seabirds ranged from 12% to 44%. Variability in resource use among similar taxa corresponded to variation in species distribution and life histories. For example, riverine organic matter assimilation by the glacier‐nesting seabirds Kittlitz's murrelet (Brachyramphus brevirostris) was greater than that of the forest‐nesting marbled murrelet (B. marmoratus). The particulate and dissolved organic carbon in glacial runoff and near surface coastal waters was aged (12100–1500 years BP 14C‐age) but dissolved inorganic carbon and biota in coastal waters were young (530 years BP 14C‐age to modern). Thus terrestrial‐derived subsidies in marine food webs were primarily composed of young organic matter sources released from glacier ecosystems and their surrounding watersheds. Stable isotope compositions also revealed a divergence in food web structure between glacial‐marine and oceanic sites. This work demonstrates linkages between terrestrial and marine ecosystems, and facilitates a greater understanding of how climate‐driven changes in freshwater runoff have the potential to alter food web dynamics within coastal marine ecosystems in Alaska. 相似文献
20.
Kushan U. Tennakoon Wang H. Chak Linda B. L. Lim Jay F. Bolin 《Plant Species Biology》2014,29(1):101-107
A plant parasite parasitizing another plant parasite is known as a hyperparasite. Information is scarce regarding the ecophysiology of hyperparasites and their hosts despite their potential to illuminate processes of host–parasite solute flux. Here we present mineral profiles and stable isotopic data for two associations of the hyperparasite Viscum articulatum and its primary mistletoe and tree hosts. Acting as the terminal sink, the hyperparasite had consistently higher contents of all major and minor elements evaluated compared to the primary parasite and the proximal portion of the tree host branch. The primary parasite had lower contents of Cu, Mg, Mn, N, and Z relative to the proximal portion of the tree host branch, suggesting nutritional stress applied by the hyperparasite. Interestingly Fe and Cu showed no consistent pattern between host and primary parasite, while the osmotically active elements P and K increased from tree host, to primary mistletoe, and finally the hyperparasitic mistletoe. The δ13C partitioning patterns for hyperparasites, primary parasites, and hosts were non‐linear in contrast to linear patterns reported from the literature for autoparasitic mistletoe associations, demonstrating fundamental differences between nutrition in hyperparasites and autoparasites. 相似文献