首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract. Tiller demography of Carex aquatilis ssp. stans, Carex membranacea, and Eriophorum angustifolium ssp. triste was investigated in ungrazed and grazed high arctic vegetation on central Ellesmere Island, Canada. Tiller birth, growth, flowering and death were studied from excavated clonal fragments, and tiller density and biomass were studied from excavated turfs. Five life‐cycle stages were determined: dormant buds, juvenile, mature, flowering and dead tillers. A stage‐based transition matrix model was developed to estimate the long‐term dynamics of the sedge populations and to compare life‐history strategies between ungrazed and grazed populations. Short‐term and retrospective models, based on the growth during the sampling year and during the lifetime of the clonal fragments, respectively, were compared to see how well the short‐term model can describe demography of long‐lived plants. According to the short‐term model, tiller populations were decreasing (λ < 1 except for C. membranacea), whereas the retrospective model indicated that the tiller populations were increasing. Tiller population growth rates did not differ between ungrazed and grazed habitats. Nevertheless, the similar growth rates may be obtained by balanced differences in the vital rates between plants of the two habitats. The plants in the ungrazed habitat tended to remain in their current life‐cycle stage, whereas plants in the grazed habitat moved quickly to the next stage and died earlier. C. aquatilis ssp. stans appears to gain a competitive advantage over the other species under intensive grazing, as indicated by the higher tiller density and greater below‐ground biomass in grazed vegetation. The greater amount of below‐ground biomass apparently buffers C. aquatilis ssp. stans against grazing better than the other species.  相似文献   

2.
Abstract: Condensed tannins (CT) can reduce digestibility of forages for white-tailed deer (Odocoileus virginianus), potentially confounding estimates of diet quality and nutritional carrying capacity. We collected 143 spring and 142 summer samples of 8 important deer forage species from 22 properties in Mississippi, USA, and tested for CT content using a modified butanol-HCl assay. Three species (partridge pea [Chamaecrista fasciculata], southern dewberry [Rubus trivialis], and roundleaf greenbrier [Smilax rotundifolia]) contained CT, ranging from 0.11% to 6.46% dry weight. Summer CT concentration was greater than in spring for 2 species. We ranked soil samples from least to most fertile using 8 chemical characteristics and found a positive correlation between fertility and CT concentration for 1 species and no correlation for 2 species. We tested effects of CT concentration on in vitro dry matter disappearance (IVDMD) and in vitro protein digestibility using samples of partridge pea and roundleaf greenbrier and rumen fluid from 3 free-ranging deer. Average IVDMD was reduced 1.9% for each 1% increase in CT concentration. In vitro protein digestibility was reduced 2.5% for each 1% increase in CT concentration. Assuming that our methods reflect the effects of CT on in vivo digestibility, maximum loss of available crude protein (CP) in our samples was 3.0 g/100 g dry-weight forage, and only 13 of the 112 CT-containing forage samples (12%) would have decreased available CP by >1 g/100 g dry-weight forage. Deer consuming equal portions of sampled forages would lose <1% of dietary CP to CT. Comparisons of foraging area quality using crude protein estimates should be unaffected by CT under reasonable restrictions of similar habitat types, soil fertility, and time. Given the ability of deer to forage selectively and the abundance of alternative forages in Mississippi, the potential for CT to substantially affect spring or summer diet quality of deer appears minimal.  相似文献   

3.
The density and distribution of stomates in Carex aquatilis Wahl. in the Pacific Northwest were examined using epidermal peels of samples of leaves from natural populations, from greenhouse-grown transplants and from seedling families grown under controlled conditions. These were compared to stomatal distributions of populations in eastern North America. Populations of Carex aquatilis Wahl. form 2 groups based on the distribution and density of stomates. Carex aquatilis var. dives (Holm) Kükenthal is epistomatic, with adaxial stomatal densities of 28.7–48.5/0.1 mm2. The C. aquatilis var. aquatilis is amphistomatic, with adaxial stomatal densities of 8.1–22.2/0.1 mm2 and abaxial densities of 11.3–24.5/0.1 mm2 in the Pacific Northwest. Total stomatal frequencies are similar in both groups. Stomatal distribution and densities are here shown to not vary significantly within populations and appear to be genetically determined, as shown by progeny tests and growth of seedlings under uniform and experimental conditions. Stomatal distribution in Carex aquatilis appears to be adaptive, and intraspecific variation provides a system for determining the adaptive significance of differences in stomatal patterns.  相似文献   

4.
5.
Resource partitioning by mammalian herbivores in the high Arctic   总被引:4,自引:0,他引:4  
D. R. Klein  C. Bay 《Oecologia》1994,97(4):439-450
Willow (Salix arctica) and sedges (Carex stans and Eriophorum triste) were the dominant plants available as forage for herbivores in the high Arctic of Greenland. Willow leaves were of high quality as forage in early stages, of phenology, but crude protein and digestibility declined markedly by late stages whereas sedges, remained high in forage quality throughout the growing season. Densities of fecal pellets indicated that muskoxen (Ovibos moschatus) made heaviest use of sedge-dominated vegetation types in both winter and summer, although increased use of willow communities was observed in early summer. Hares (Lepus arcticus) favored willow-dominated communities in both winter and summer. Evidence of collared lemming (Dicrostonyx groenlandicus) winter use was mainly in willow-dominated communities where snow had accumulated, whereas in summer they were present in drier habitas dominated by willows, but with greater plant diversity. Analyses of plant tissues in feces indicated that graminoids composed over 60% of the diet of muskoxen in winter and over 40% in summer. Willows were of nearly equal importance in the muskox diet in summer, and forbs, Dryas integrifolia, and moss collectively composed over 20% of the diet in both summer and winter. Grass accounted for nearly 50% of the diet of hares in both summer and winter, with willows, forbs, and moss accounting for most of the remainder. Willows and graminoids dominated the diet of lemmings, with willows being somewhat more important in summer and graminoids in winter. Moss was a noteworthy dietary component of lemmings. Differences in body and digestive-tract morphology among the three mammalian herbivores account for differences in locomotive efficiency, predator avoidance, and foraging efficiency which interact with vegetation quality, density, and patchiness. The resulting patterns of use of the landscape result in minimal overlap in use of forage resources and help to explain the distribution and co-existence of high Arctic herbivores.  相似文献   

6.
Carex aquatilis spp. aquatilis grows in mesotrophic fens and has a boreal circumpolar distribution. The species is most frequent in areas north of the 66° N line. In Europe the southern limits of its distribution is ca 53°N. Here Carex aqualitis is found in eutrophic flood plains. However, mesotrophic communities of C. aquatilis have been reported from these areas as well. Nowadays the peripheral populations in NW Europe appear to be relics of former mesotrophic communities which at present are under heavy pressure from human activities such as drainage and fertilizing. In the northern part of the Netherlands C. aquatilis stands are restricted to areas with a steady supply of cool groundwater. A decreased groundwater discharge has a negative influence on the development of inflorescences. It is expected that further interference with the hydrology will promote a further decline of the peripheral populations. The species will not be able to survive in drained, eutrophic, warmed up habitats.  相似文献   

7.
Abstract: Although moss is commonly found in the feces of arctic herbivores, we do not know the digestible value of this forage for ruminants. We compared grass hay (Bromus sp.) with moss (Hylocomium splendens, Tomenthypnum nitens) from 2 locations in Alaska, USA: Cape Krusenstern National Monument and Fairbanks. We evaluated forages by digestion in ruminally fistulated muskoxen (Ovibos moschatus) by suspending forages in polyester bags before and after the rumen was acclimated with moss for 15 consecutive days. Ruminal degradation was not affected by acclimation to moss. Hay lost dry matter during 48 hours of ruminal incubation (-49%), whereas moss gained dry matter (+44-57%). Incubated moss gained nitrogen (+435-680%), as well as fiber (+18%), and one moss gained ash (+121%). Mass gained by moss in the rumen was probably due to the combined effect of microbial colonization and adsorption of fibrous particles onto the sponge-like matrix. We evaluated postruminal degradation of forages by incubation in acid-pepsin. Ruminally incubated mosses lost little nitrogen in acid-pepsin even though ruminally incubated hay lost 23% nitrogen on acid digestion. Consumption of moss during winter may be a net cost of selecting plants within moss communities when lichens and graminoids are scarce. Moss in feces may, therefore, indicate low availability of favored foods for muskoxen and other arctic ruminants that are confined to small winter ranges. Increasing concentrations of moss in the feces and, thus, the diet of muskoxen may alert wildlife managers to shifts in winter range quality or forage access due to changing snow conditions.  相似文献   

8.
We measured vegetation patterns on palsas with reference to topographic characteristics on the Arctic National Wildlife Refuge, northern Alaska, to obtain benchmark data because of the changes expected from global warming. Vegetation was examined in 60 plots of area 50 cm × 50 cm by five environmental factors: water content in the peat and duff layers, groundwater level, slope angle, depth to frozen surface, and presence of pellets and feces. Three palsas were selected for the survey, and the heights were fewer than 50 cm from the groundwater surface. Based on TWINSPAN and canonical correspondence analysis, we confirmed that clear patterns of vegetation zonation had developed within a 60-cm difference in water level. Vaccinium vitis-idaea occurred well on the top areas of palsas, while Carex aquatilis was established on the bottom areas. Sphagnum spp. were established on intermediate locations between V. vitis-idaea and C. aquatilis. The prime determinant of the vegetation zonation seems to be water content in peat and duff layers rather than water level, although the five factors that we examined interact intricately with each other.  相似文献   

9.
The effects of temperature, aerobic and anaerobic conditions in the silo and plant characteristics [water-soluble carbohydrate (WSC) contents, growing season] on the fermentation characteristics of a tropical forage species, Sorghum bicolor cv. sugar-drip, were investigated. Silages fermented in oxygen-impermeable bags were well preserved and had low pH (3.7), high lactic acid [72 g kg–1 dry matter (DM) 80% of total acids], and low butyric acid (0.12 g kg–1 DM) and ammonia nitrogen (NH3–N) (57 g kg–1 total nitrogen contents. Conversely, the use of oxygen-permeable bags as silos allowed aerobic decomposition of the ensiled forages. Increasing the incubation temperature lowered the population of lactic acid bacteria, reduced lactic acid production and caused the pH to rise. The heterofermentative Leuconostoc spp. predominated on fresh forages but homofermentative Lactobacillus plantarum began to dominate after 5 and 8 days of fermentation. Heterofermentative lactobacilli, notably Lactobacillus brevis, were dominant among the isolates obtained from 100-day silages. Varying the WSC contents, by crushing and/or chopping the forage, and growing season did not significantly affect the fermentation quality of the resulting silages. It was concluded that the maintenance of anaerobic conditions is essential if good quality silage is to be produced from tropical forage species.  相似文献   

10.
Summary Moderate experimental defoliation stimulated root respiration and phosphate absorption in two tundra graminoids, Eriophorum vaginatum and Carex aquatilis, growing under nutrient-limited field conditions in northern Alaska. The increase in phosphate absorption rate following defoliation of Eriophorum was associated with a decrease in root phosphate and available carbohydrate contents per unit root length but a constant root nitrogen content. Only after four repeated defoliations did phosphate absorption rate decrease below control levels. We suggest that the stimulation of root respiration and phosphate absorption immediately following defoliation resulted from lowered root phosphorus status as nutrient reserves were reallocated to support shoot regrowth. Root growth was affected more severely by defoliation than was root activity. Two or more defoliations reduced root elongation, initiation and weight per unit length, but root mortality increased only after four defoliations. Carex aquatilis, a species with large belowground biomass, was less sensitive to defoliation than Eriophorum. Phosphate absorption rate increased only after four defoliations in this species, and root elongation, initiation and mortality were affected only by the most severe clipping regimes. Responses of plants to repeated defoliation over two growing seasons were consistent with results of short-term studies.  相似文献   

11.
Abstract: I investigated local and regional differences in percent moss in the feces of muskoxen (Ovibos moschatus) and reindeer or caribou (Rangifer tarandus) in northwestern Alaska, USA, and related fecal moss to forage availability, snow conditions, animal density, and terrain ruggedness on wintering areas. Reindeer are a partially domesticated form of Rangifer tarandus originating from Europe and Asia and differ physiologically and ecologically from caribou. Percent moss in feces of muskoxen differed locally among individual wintering areas. Because of the large local variation in moss content of muskox feces, regional differences between the 2 study areas were difficult to resolve. Percent of moss in the feces of reindeer–caribou did not differ between wintering areas within the same study area but did differ between study areas. On muskox wintering areas, fecal moss correlated negatively with graminoid cover and snow hardness and positively with moss cover and muskox density, but fecal moss did not correlate with snow depth or terrain ruggedness. On reindeer–caribou wintering areas, fecal moss correlated positively with moss availability but not with lichen cover or snow depth or hardness. Because muskox groups in Alaska are isolated from each other in winter, even groups wintering on neighboring hills may face different foraging availability and might, therefore, exhibit differences in growth or productivity. Reindeer–caribou are more mobile than muskoxen in winter, and fecal samples may not be representative of vegetative and snow conditions at the wintering area where I collected them. I conclude that managers can use fecal moss as an indicator of overgrazed ranges, severe snow conditions, or crowded conditions on muskox wintering areas, but that the association between fecal moss and range conditions has to be drawn with caution for the more mobile reindeer–caribou.  相似文献   

12.
Genetic differentiation within and among isolated populations of the arctic‐alpine leaf beetle, Chrysomela lapponica L. (Coleoptera: Chrysomelidae), specialized on either Salix L. (Salicaceae) or Betula L. (Betulaceae) species, was assessed by F‐statistics analysis at seven allozyme loci. Beetles were collected on Salix spp. in lowland Finland (four samples), at mid elevation in the Black Forest in Germany (450 m) and the Massif Central in France (two samples, 930–1 300 m), and at high elevation in the French Alps (2 300 m). Beetles sampled in the Czech Republic (650 m) fed on Betula pubescens Ehrh. Larvae feeding on Salix spp. secreted host‐derived salicylaldehyde as major toxin; those feeding on B. pubescens secreted isobutyrates and 2‐methylbutyrates of mixed plant–insect origin. In all samples, a heterozygote deficit was observed (0.120<FIS<0.568), in particular in populations collected at mid or high elevation (FIS>0.4). The estimated mean level of genetic differentiation among all populations was high (FST = 0.276). Differentiation was highly variable between pairs of populations (FST = 0.093–0.455, all significant) without any correlation with geographic distance. The sample collected in the Czech Republic, from the only population on B. pubescens, was not the most divergent.  相似文献   

13.
Plant‐mediated CH4 flux is an important pathway for land–atmosphere CH4 emissions, but the magnitude, timing, and environmental controls, spanning scales of space and time, remain poorly understood in arctic tundra wetlands, particularly under the long‐term effects of climate change. CH4 fluxes were measured in situ during peak growing season for the dominant aquatic emergent plants in the Alaskan arctic coastal plain, Carex aquatilis and Arctophila fulva, to assess the magnitude and species‐specific controls on CH4 flux. Plant biomass was a strong predictor of A. fulva CH4 flux while water depth and thaw depth were copredictors for C. aquatilis CH4 flux. We used plant and environmental data from 1971 to 1972 from the historic International Biological Program (IBP) research site near Barrow, Alaska, which we resampled in 2010–2013, to quantify changes in plant biomass and thaw depth, and used these to estimate species‐specific decadal‐scale changes in CH4 fluxes. A ~60% increase in CH4 flux was estimated from the observed plant biomass and thaw depth increases in tundra ponds over the past 40 years. Despite covering only ~5% of the landscape, we estimate that aquatic C. aquatilis and A. fulva account for two‐thirds of the total regional CH4 flux of the Barrow Peninsula. The regionally observed increases in plant biomass and active layer thickening over the past 40 years not only have major implications for energy and water balance, but also have significantly altered land–atmosphere CH4 emissions for this region, potentially acting as a positive feedback to climate warming.  相似文献   

14.
Global warming is predicted to cause more intense extreme events such as heat waves, flooding and severe droughts, producing significant effects on agriculture. In tropics, climate change will severely impact livestock production affecting water availability, forage quality and food for cattle. We investigated the isolated and combined effects of soil water deficit (wS) and + 2°C increase in canopy temperature (eT) on leaf gas exchange, chlorophyll fluorescence, carbohydrate content, forage quality and in vitro dry matter digestibility (IVDMD) of a field‐grown C4 tropical forage grass Panicum maximum Jacq. using a temperature‐free air‐controlled enhancement (T‐FACE) system. The wS and eT treatments showed no effects on photosystem II photochemistry. However, wS under ambient temperature decreased net photosynthesis rate (A), stomatal conductance (gs) and maximum rate of carboxylation of Rubisco (Vcmax), leading to a reduced starch content in leaves. A 16% reduction in leaf dry mass (LDM) and reduction in forage quality by increasing fibers, reducing crude protein (CP) and decreasing the IVDMD was also observed by effect of wS. Warming under adequate soil moisture (eT) significantly increased LDM by 25% but reduced the forage quality, increasing the lignin content and reducing starch, CP and digestibility. The combined wSeT treatment reduced A, gs, Vcmax and the forage quality. When compared to control, the lignin content in leaves increased by 43, 28 and 17% in wS, eT and wSeT, respectively, causing a significant reduction in IVDMD. We concluded that despite physiological mechanisms to acclimate to warming, both warming and water deficit will impair the quality and digestibility of C4 tropical pastures.  相似文献   

15.
The temporal distribution of populations of aquatic macroinvertebrates have been extensively investigated in temperate arctic regions, but little information is available for alpine regions in North America. This paper describes phenology patterns of the aquatic macroinvertebrates of a high elevation wetland (3593 m) in the Green Lakes Valley, Colorado Front Range.Abundant taxa were Chironomidae (primarily Orthocladius and the limnephilid trichopteran Asynarchus curtus (Banks). Temperature patterns were related to the seasonal timing of life stages of most species. Phenology of most alpine aquatic macroinvertebrates appears to be controlled by seasonal climatic patterns, particularly temperature patterns. All chironomid species and Asynarchus curtus (Banks) had univoltine life cycles. Multi-year life cycles were not observed at this alpine site, although they have been observed at some arctic sites with colder temperature regimes than observed in this study.  相似文献   

16.

Earth’s tropical savannas typically support high biomass of diverse grazing herbivores that depend on a highly fluctuating resource: high-quality forage. An annual wet–dry cycle, fire and herbivory combine to influence forage quality and availability throughout the year. In the savannas of northern Australia, a depauperate suite of large native (marsupial) herbivores (wallaroos [Osphranter spp.] and the agile wallaby [Notamacropus agilis]) compete for resources with non-native large herbivores introduced in the late nineteenth century, particularly bovines (feral and managed cattle [Bos spp.] and feral water buffalo [Bubalus bubalis]) that now dominate the landscape. Anecdotal reports of recent population declines of large macropods and negative impacts of bovines highlight the need to better understand the complex relationship between forage, fire and abundance of native and introduced large herbivores. The pyric herbivory conceptual model, which posits complex feedbacks between fire and herbivory and was developed outside Australia, predicts that native and introduced large herbivores will both respond positively to post-fire forage production in Australian savannas where they co-occur. We used grazing exclosures, forage biomass and nutrient analyses and motion-sensor camera-trapping to evaluate the overall robustness of the pyric herbivory model in the Australian context, specifically whether forage quantity and quality are impacted by herbivory, season and fire activity, and which forage attributes most influence large grazing herbivore abundance. Forage quantity, as measured by live, dead and total herbaceous biomass and proportion of biomass alive, was higher inside herbivore exclosures, even at relatively low densities of herbivores. Forage quality, as measured by fibre content, was not affected by herbivory, however, crude protein content of live herbaceous biomass was greater outside herbivore exclosures. Recent fire was an important predictor of all measures of forage quantity and quality. Recent fire occurrence decreased overall quantity (biomass) but increased quality (decreased fibre content and increased crude protein content); late dry season fires resulted in forage with the highest crude protein content. The predictions of the pyric herbivory conceptual model are consistent with observations of the feeding behaviour of introduced bovines and some large macropods in northern Australian savannas, lending support to the global generality of pyric herbivory in fire-prone grassy biomes.

  相似文献   

17.
Twelve corn silages, 22 grass silages and 14 grass hays, obtained from various farms located in the lower Fraser Valley region of British Columbia, and 16 alfalfa hays, grown primarily in the Columbia basin of central Washington State, were evaluated using both the rumen and the mobile nylon bag in situ techniques. Nylon bags containing each forage were incubated in duplicate for 0, 2, 4, 8, 12, 24, 48, 72, or 96 h in two of six non-lactating Holstein cows fitted with rumen and duodenal cannulae. All forage types were evaluated in terms of the following dry matter (DM) and crude protein (CP) digestion characteristics: soluble fraction A, degradable fraction B, degradation rate, lag phase, and effective degradability. The mobile nylon bag technique was used to determine intestinal disappearance of DM and CP from the forages following pre-incubation in the rumen for 12 h. Significant (P < 0.05) differences in degradation characteristics occurred within all forages with regard to the soluble and potentially degradable DM and CP fractions. Soluble CP content in the rumen varied from 44.08 to 75.37% and from 18.74 to 65.38% in the corn and grass silages, respectively, and from 48.27 to 75.43% and from 30.13 to 65.95% in the alfalfa and grass hays, respectively. Significant differences within each forage type were also observed for the degradable CP in fraction B: 10.89 to 45.28% for corn silage, 20.72 to 82.77% for grass silage, 16.67 to 44.88% for grass hay and 25.44 to 62.93% for alfalfa hays. Significant differences (P > 0.05) were observed in fractional rates of ruminal DM degradation of the grass hays and corn silages. Significant differences did exist in the fractional rates of ruminal CP degradation within all forage types with the exception of alfalfa hays. Effective degradabilities of DM and CP were also significantly different between samples of a particular forage type. The mobile nylon bag data indicated that approximately 20% of the original CP in the grass silage, grass hay and alfalfa hay samples disappeared in the intestine and that there was significant variation between individual samples. On average, in the corn silage samples more than 10% of the original nitrogenous material disappeared in the intestine. The results presented in this study clearly demonstrate that the use of tabulated values for describing individual batches of forages in terms of their degradability characteristics is inaccurate since they may not reflect the particular forage being used in the ration and thus may lead to errors in diet formulation.  相似文献   

18.
Transpiration measurements of two alpine tundra species, Deschampsia caespitosa and Geum rossii, and two arctic tundra species, Dupontia fischeri and Carex aquatilis, were conducted under varying atmospheric and soil moisture stress regimes to determine if the stomatal response to water stress may play a role in the local distributions of these species. Under low soil moisture stress, stomata of the species restricted typically to wet meadow areas, Deschampsia and Dupontia, did not exhibit closure until leaf water potential declined. However, when soil moisture stress was low and atmospheric stress increased, Geum and particularly Carex exhibited partial stomatal closure before leaf water potential dropped, suggesting a direct response of the stomata to the vapor pressure gradient between the leaf and the atmosphere. Lower liquid phase water transport resistance from the soil to the leaves may also reduce the development of leaf moisture stress in Geum. Furthermore, Geum and possibly Carex appeared to undergo less of a loss of leaf turgor when leaf water potential decreased. This response may serve to maintain leaf cell turgor and to abate the reduction in leaf enlargement.  相似文献   

19.
Question: Does experimental warming, designed to simulate future warming of the Arctic, change the biomass allocation and mycorrhizal infection of tundra plants? Location: High Arctic tundra near Barrow, Alaska, USA (71°18′N 156°40′W). Methods: Above and below ground plant biomass of all species was harvested following 3–4 yr of 1‐2°C of experimental warming. Biomass allocation and arbuscular mycorrhizal infection were also examined in the two dominant species, Salix rotundifolia and Carex aquatilis. Results: Above‐ground biomass of graminoids increased in response to warming but there was no difference in total plant biomass or the ratio of above‐ground to below‐ground biomass for the community as a whole. Carex aquatilis increased above‐ground biomass and proportionally allocated more biomass above ground in response to warming. Salix rotundifolia increased the amount of above‐ and below‐ground biomass allocated per leaf in response to warming. Mycorrhizal infection rates showed no direct response to warming, but total abundance was estimated to have likely increased in response to warming owing to increased root biomass of S. rotundifolia. Conclusions: The community as a whole was resistant to short‐term warming and showed no significant changes in above‐ or below‐ground biomass despite significant increases in above‐ground biomass of graminoids. However, the patterns of biomass allocation for C. aquatilis and S. rotundifolia did change with warming. This suggests that long‐term warming may result in changes in the above‐ground to below‐ground biomass ratio of the community.  相似文献   

20.
Three bumblebee species, foraging on Aconitum spp. have been commonly observed in Eyne (France, East Pyrénées): Bombus gerstaeckeri, B. hortorum and B. wurflenii. We estimated the population of these three species. For B. hortorum and B. wurflenii, the total workers populations foraging on Aconitum spp. ranged from 101 to 523 and 156 to 270, respectively. These two species also forage on other plants while B. gerstaeckeri visits only Aconitum spp. The population of B. gerstaeckeri observed was extremely small, founded by 33 queens only in 2001. With a total number of workers estimated from 40 to 102, the observed workers/queens ratio, 1 to 3 workers for each queen, is very unusual for a eusocial species. Also we observed queens foraging during the whole life of the colony. This kind of social organisation is similar to that of some high arctic species. It could be interpreted as the result of an insularity syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号