首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective:To examine whether genetic polymorphisms in CYP19 [intron 4 (TTTA)n; n = 7 to 13 and a 3‐base pair deletion, which is in strong linkage disequilibrium with the seven repeat] and COMT (Val108/158Met) modified the change in BMI, total and percentage body fat, or subcutaneous and intra‐abdominal fat during a year‐long exercise intervention trial. These genes metabolize estrogens and androgens, which are important in body fat regulation. Research Methods and Procedures: A randomized intervention trial was used, with an intervention goal of 225 min/wk of moderate‐intensity exercise for one year. Participants (n = 173) were postmenopausal, 50 to 75 years old, sedentary, overweight or obese, and not taking hormone therapy at baseline. Results: Exercisers with two vs. no CYP19 11‐repeat alleles had a larger decrease in total fat (?3.1 kg vs. ?0.5 kg, respectively, p = 0.01) and percentage body fat (?2.4% vs. ?0.6%, respectively, p = 0.001). Exercisers with the COMT Met/Met vs. Val/Val genotype had a smaller decrease in percentage fat (?0.7% vs. ?1.9%, respectively, p = 0.05). Among exercisers, women with the COMT Val/Val genotype and at least one copy of the CYP19 11‐repeat allele vs. those with neither genotype/allele had a significantly larger decrease in BMI (?1.0 vs. +0.1 kg/m2, respectively, p = 0.009), total fat (?2.9 vs. ?0.5 kg, respectively, p = 0.004), and percentage body fat (?2.6% vs. ?0.4%, respectively, p < 0.001). Discussion: Genetic polymorphisms in CYP19 and COMT may be important for body fat regulation and possibly modify the effect of exercise on fat loss in postmenopausal women.  相似文献   

2.
Objective: To examine cross‐sectionally the influence of hormone replacement therapy (HRT) on the relationship between body composition and insulin sensitivity (Si). Research Methods and Procedures: Subjects were 57 early postmenopausal white women, 33 receiving HRT and 24 controls. Body composition was estimated using DXA and computed tomography scans at the abdomen and mid‐thigh. Si was assessed by a frequently sampled intravenous glucose tolerance test with minimal model analysis. Results: Compared with nonusers, HRT users had lower visceral adipose tissue, fasting serum glucose, and fasting insulin. Total body fat and unadjusted Si did not differ between groups. Visceral adipose tissue mass (VATM) was the only body‐fat compartment significantly associated with Si (r2 = 0.43, p < 0.0001) in a model including total‐body fat, upper‐trunk fat, subcutaneous abdominal fat mass, leg fat, and mid‐thigh low‐density lean tissue. Lean body mass was positively correlated with Si among HRT users and tended to be negatively correlated among nonusers. HRT status also affected the relationship between VATM and Si such that, relative to nonusers, HRT users had lower Si across lower VATM levels, but higher Si across higher VATM. Discussion: These results suggest that in postmenopausal women, VATM is uniquely related to Si. HRT affects the relationship between VATM and Si and between lean body mass and Si. These interactions should be considered in future studies.  相似文献   

3.
Objective: To examine the effects of two different conjugated linoleic acid (CLA) isomers at two different intakes on body composition in overweight humans. Research Methods and Procedures: Eighty‐one middle‐aged, overweight, healthy men and women participated in this bicentric, placebo‐controlled, double‐blind, randomized study. For 6 weeks (run‐in period), all subjects consumed daily a drinkable dairy product containing 3 g of high oleic acid sunflower oil. Volunteers were then randomized over five groups receiving daily either 3 g of high oleic acid sunflower oil, 1.5 g of cis‐9, trans‐11 (c9t11) CLA, 3 g of c9t11 CLA, 1.5 g of trans‐10, cis‐12 (t10c12) CLA, or 3 g of t10c12 CLA administrated as triacylglycerol in a drinkable dairy product for 18 weeks. Percentage body fat mass and fat and lean body mass were assessed at the end of the run‐in and experimental periods by DXA. Dietary intake was also recorded. Results: Body fat mass changes averaged 0.1 ± 0.9 kg (mean ± SD) in the placebo group and ?0.3 ± 1.4, ?0.8 ± 2.1, 0.0 ± 2.3, and ?0.9 ± 1.7 kg in the 1.5‐g c9t11, 3‐g c9t11, 1.5‐g t10c12, and 3‐g t10c12 groups, respectively. Changes among the groups were not significantly different (p = 0.444). Also, lean body mass and dietary intake were not significantly different among the treatments. Discussion: A daily consumption of a drinkable dairy product containing up to 3 g of CLA isomers for 18 weeks had no statistically significant effect on body composition in overweight, middle‐aged men and women.  相似文献   

4.
Objective: To determine the changes in body composition (fat and lean mass) occurring in children during adiposity rebound (AR). Research Methods and Procedures: Thirty‐nine girls, 3 to 6 years of age at baseline, underwent yearly DXA scans for 2 years. An additional DXA scan was obtained 4 to 5 years after baseline. Age at AR was determined by modeling, and the velocity of change in height, weight, fat mass, and lean mass was estimated for each child using random coefficient models. Girls with an AR <5 years of age were classified as having an early AR, and those having an AR ≥5 years were classified as late AR. Results: Although body composition was similar at age 5, by age 9, girls with an early AR were significantly taller (3.5% more) and heavier (14.4%), with greater fat mass (50%) and percentage body fat (27%) than girls with a later AR. In addition, more girls were overweight according to BMI (18% vs. 6%) or percentage body fat (29% vs. 11%) at this time, despite no differences at baseline. Annual velocity of fat mass gain was over 2‐fold higher in early compared with late rebounders (17.1% vs. 6.5%, p < 0.0001), with no difference in lean mass velocity (13.1% vs. 12.5%, p = 0.116). Discussion: Differences in BMI during AR were caused specifically by alterations in body fat and not by alterations in lean mass or height. Children undergoing early AR gained fat at a faster rate than children who rebounded at a later age.  相似文献   

5.
Objective: This study examined the effect of forskolin on body composition, testosterone, metabolic rate, and blood pressure in overweight and obese (BMI ≥ 26 kg/m2) men. Research Methods and Procedure: Thirty subjects (forskolin, n = 15; placebo, n = 15) were studied in a randomized, double‐blind, placebo‐controlled study for 12 weeks. Results: Forskolin was shown to elicit favorable changes in body composition by significantly decreasing body fat percentage (BF%) and fat mass (FM) as determined by DXA compared with the placebo group (p ≤ 0.05). Additionally, forskolin administration resulted in a change in bone mass for the 12‐week trial compared with the placebo group (p ≤ 0.05). There was a trend toward a significant increase for lean body mass in the forskolin group compared with the placebo group (p = 0.097). Serum free testosterone levels were significantly increased in the forskolin group compared with the placebo group (p ≤ 0.05). The actual change in serum total testosterone concentration was not significantly different among groups, but it increased 16.77 ± 33.77% in the forskolin group compared with a decrease of 1.08 ± 18.35% in the placebo group. Discussion: Oral ingestion of forskolin (250 mg of 10% forskolin extract twice a day) for a 12‐week period was shown to favorably alter body composition while concurrently increasing bone mass and serum free testosterone levels in overweight and obese men. The results indicate that forskolin is a possible therapeutic agent for the management and treatment of obesity.  相似文献   

6.
Age‐related increases in ectopic fat accumulation are associated with greater risk for metabolic and cardiovascular diseases, and physical disability. Reducing skeletal muscle fat and preserving lean tissue are associated with improved physical function in older adults. PPARγ‐agonist treatment decreases abdominal visceral adipose tissue (VAT) and resistance training preserves lean tissue, but their effect on ectopic fat depots in nondiabetic overweight adults is unclear. We examined the influence of pioglitazone and resistance training on body composition in older (65–79 years) nondiabetic overweight/obese men (n = 48, BMI = 32.3 ± 3.8 kg/m2) and women (n = 40, BMI = 33.3 ± 4.9 kg/m2) during weight loss. All participants underwent a 16‐week hypocaloric weight‐loss program and were randomized to receive pioglitazone (30 mg/day) or no pioglitazone with or without resistance training, following a 2 × 2 factorial design. Regional body composition was measured at baseline and follow‐up using computed tomography (CT). Lean mass was measured using dual X‐ray absorptiometry. Men lost 6.6% and women lost 6.5% of initial body mass. The percent of fat loss varied across individual compartments. Men who were given pioglitazone lost more visceral abdominal fat than men who were not given pioglitazone (?1,160 vs. ?647 cm3, P = 0.007). Women who were given pioglitazone lost less thigh subcutaneous fat (?104 vs. ?298 cm3, P = 0.002). Pioglitazone did not affect any other outcomes. Resistance training diminished thigh muscle loss in men and women (resistance training vs. no resistance training men: ?43 vs. ?88 cm3, P = 0.005; women: ?34 vs. ?59 cm3, P = 0.04). In overweight/obese older men undergoing weight loss, pioglitazone increased visceral fat loss and resistance training reduced skeletal muscle loss. Additional studies are needed to clarify the observed gender differences and evaluate how these changes in body composition influence functional status.  相似文献   

7.
Objective: The objective was to determine if physiological hyperglycemia induces a proatherogenic inflammatory response in mononuclear cells (MNCs) in obese reproductive‐age women. Research Methods and Procedures: Seven obese and 6 age‐matched lean women (20 to 39 years of age) underwent a 2‐hour 75‐g oral glucose tolerance test. The release of interleukin‐6 (IL‐6) and interleukin‐1β (IL‐1β) from MNCs cultured in the presence of lipopolysaccharide (LPS) was measured after isolation from blood samples drawn fasting and 2 hours after glucose ingestion. Reactive oxygen species (ROS) generation and intra‐nuclear nuclear factor κB (NFκB) from MNCs were quantified from the same blood samples. Insulin resistance was estimated by homeostasis model assessment of insulin resistance (HOMA‐IR). Total body fat and truncal fat were determined by DXA. Results: Obese women had a higher (p < 0.03) total body fat (42.2 ± 1.1 vs. 27.7 ± 2.0%), truncal fat (42.1 ± 1.2 vs. 22.3 ± 2.4%), and HOMA‐IR (3.3 ± 0.5 vs. 1.8 ± 0.2). LPS‐stimulated IL‐6 release from MNCs was suppressed during hyperglycemia in lean subjects (1884 ± 495 vs. 638 ± 435 pg/mL, p < 0.05) but not in obese women (1184 ± 387 vs. 1403 ± 498 pg/mL). There was a difference (p < 0.05) between groups in the hyperglycemia‐induced MNC‐mediated release of IL‐6 (?1196 ± 475 vs. 219 ± 175 pg/mL) and IL‐1β (?79 ± 43 vs. 17 ± 12 pg/mL). In addition, the obese group exhibited increased (p < 0.05) MNC‐derived ROS generation (39.3 ± 9.9 vs. ?1.0 ± 12.8%) and intra‐nuclear NFκB (9.4 ± 7.3 vs. ?23.5 ± 13.5%). Truncal fat was positively correlated with the MNC‐derived IL‐6 response (ρ = 0.58, p < 0.05) and intra‐nuclear NFκB (ρ = 0.64, p < 0.05). Discussion: These data suggest that obese reproductive‐age women are unable to suppress proatherogenic inflammation during physiological hyperglycemia. Increased adiposity may be a significant contributor to this pro‐inflammatory susceptibility.  相似文献   

8.
Objective: The purpose of this study was to investigate the heritability of body composition measured by DXA in the Diabetes Heart Study (DHS). Research Methods and Procedures: Participants were 292 women and 262 men (age, 38 to 86 years; BMI, 17 to 57 kg/m2) from 244 families. There were 492 white and 49 African‐American sibling pairs. DXA measurements of percentage fat mass (FM), whole body FM, and lean mass (LM), as well as regional measurements of trunk fat mass (TFM) and appendicular lean mass (ALM), were obtained. Heritability of FM, LM, and BMI were estimated using Sequential Oligogenic Linkage Analysis Routines. Results: After adjusting for age, gender, ethnicity, and height, the heritability estimates of various compositional attributes were %FM = 0.64, whole body FM = 0.71, TFM = 0.63, whole body LM = 0.60, ALM = 0.66, and BMI = 0.64 (all p < 0.0001). Additional adjustment for diabetes status, smoking, dietary intake, and physical activity resulted in only minor changes in the heritability estimates (?2 = 0.63 to 0.72, all p < 0.0001). Furthermore, heritability of TFM after additional adjustment for whole body FM was significant (?2 = 0.55, p < 0.0001), and heritability of ALM after additional adjustment for whole body LM was also significant (?2 = 0.51, p < 0.0001). Discussion: These data suggest that FM and LM measured by DXA are highly heritable and can be effectively used in designing linkage studies to locate genes governing body composition. In addition, regional distribution of FM and LM may be genetically determined.  相似文献   

9.
It is well established that abdominal obesity or upper body fat distribution is associated with increased risk of metabolic and cardiovascular disease. The purpose of the present study was to determine if a 24 week weight loss program with orlistat 60 mg in overweight subjects would produce a greater change in visceral adipose tissue (VAT) as measured by computed tomography (CT) scan, compared to placebo. The effects of orlistat 60 mg on changes in total fat mass (EchoMRI‐AH and BIA), ectopic fat (CT) and glycemic variables were assessed. One‐hundred thirty‐one subjects were randomized into a multicenter, double‐blind placebo controlled study in which 123 subjects received at least one post baseline efficacy measurement (intent‐to‐treat population). Both orlistat‐and placebo‐treated subjects significantly decreased their VAT at 24 weeks with a significantly greater loss of VAT by orlistat treated subjects (?15.7% vs. ?9.4%, P < 0.05). In addition, orlistat‐treated subjects had significantly greater weight loss (?5.93 kg vs. ?3.94 kg, P < 0.05), total fat mass loss (?4.65 kg vs. ?3.01 kg, P < 0.05) and trended to a greater loss of intermuscular adipose tissue and content of liver fat compared with placebo‐treated subjects. This is the first study to demonstrate that orlistat 60 mg significantly reduces VAT in addition to total body fat compared to placebo treated subjects after a 24 week weight loss program. These results suggest that orlistat 60 mg may be an effective weight loss tool to reduce metabolic risk factors associated with abdominal obesity.  相似文献   

10.
Objective: To examine the effects of dietary protein and obesity classification on energy‐restriction‐induced changes in weight, body composition, appetite, mood, and cardiovascular and kidney health. Research Methods and Procedures: Forty‐six women, ages 28 to 80, BMI 26 to 37 kg/m2, followed a 12‐week 750‐kcal/d energy‐deficit diet containing higher protein (HP, 30% protein) or normal protein (NP, 18% protein) and were retrospectively subgrouped according to obesity classification [pre‐obese (POB), BMI = 26 to 29.9 kg/m2; obese (OB), BMI = 30 to 37 kg/m2). Results: All subjects lost weight, fat mass, and lean body mass (LBM; p < 0.001). With comparable weight loss, LBM losses were less in HP vs. NP (?1.5 ± 0.3 vs. ?2.8 ± 0.5 kg; p < 0.05) and POB vs. OB (?1.2 ± 0.3 vs. ?2.9 ± 0.4 kg; p < 0.005). The main effects of protein and obesity on LBM changes were independent and additive; POB‐HP lost less LBM vs. OB‐NP (p < 0.05). The energy‐restriction‐induced decline in satiety was less pronounced in HP vs. NP (p < 0.005). Perceived pleasure increased with HP and decreased with NP (p < 0.05). Lipid‐lipoprotein profile and blood pressure improved and kidney function minimally changed with energy restriction (p < 0.05), independently of protein intake. Discussion: Consuming a higher‐protein diet and accomplishing weight loss before becoming obese help women preserve LBM. Use of a higher‐protein diet also improves perceptions of satiety and pleasure during energy restriction.  相似文献   

11.
Objective: To reassess the relationship between body fat and fasting leptin concentrations comparing plasma vs. serum assessments of leptin; ratios vs. regression adjustment for body composition; fat and lean mass vs. percent body fat; and gender‐, ethnic‐, and age‐related variations. Research Methods and Procedures: Subjects included 766 adults from the nondiabetic cohort of the San Luis Valley Diabetes Study examined at follow up (1997 to 1998). Body composition was determined by dual energy X‐ray absorptiometry. Leptin concentrations were determined after an overnight fast. Results: Fasting serum and plasma assessments of leptin were correlated with percent body fat to the same degree. Women had significantly higher serum leptin concentrations than men when leptin concentrations were divided by body mass index, fat mass in kilograms or percent body fat. The methodological problem inherent in interpreting these ratio measures is pictorially demonstrated. In regression analysis, fat mass alone did not explain the gender difference. However, lean body mass was inversely related to leptin concentrations (p < 0.0001) and explained 71% of the gender difference at a given fat mass. Percent body fat explained all of the gender difference in leptin concentrations in both Hispanics and non‐Hispanic whites. Similar to findings about gender differences, ethnic‐ and age‐related variations in the leptin‐body fat association were minimized when percent body fat was employed as the body fat measure. Discussion: Regression analysis and percent body fat measured with dual energy X‐ray absorptiometry are recommended when assessing the relationship between leptin and body fat. Gender differences in leptin concentrations were accounted for by percent body fat in free living (no diet control), Hispanic and non‐Hispanic white adults.  相似文献   

12.
Objective: Previous results from this laboratory suggest that a 1‐year dairy intake intervention in young women does not alter fat mass. The objective of this study was to determine the impact of the 1‐year dairy intervention 6 months after completion of the intervention. Research Methods and Procedures: Previously, normal‐weight young women (n = 154) were randomized to one of three calcium intake groups: control (<800 mg/d), medium dairy (1000 to 1100 mg/d), or high dairy (1300 to 1400 mg/d) for a 1‐year trial (n = 135 completed). In the current study, 51 women were assessed 6 months after completion of the intervention trial. Body compositions (body fat, lean mass) were measured using DXA. Self‐report questionnaires were utilized to measure activity and dietary intake (kilocalories, calcium). Results: The high‐dairy group (n = 19) maintained an elevated calcium intake (1027 ± 380 mg/d) at 18 months compared with the control group (n = 18, 818 ± 292; p = 0.02). Mean calcium intake over the 18 months predicted a negative change in fat mass (p = 0.04) when baseline BMI was controlled in regression analysis (model R2 = 0.11). 25‐Hydroxyvitamin D levels were correlated with fat mass at each time‐point (baseline, r = ?0.41, p = 0.003; 12 months, r = ?0.42, p = 0.002; 18 months, r = ?0.32, p = 0.02) but did not predict changes in fat mass. Discussion: Dietary calcium intake over 18 months predicted a negative change in body fat mass. Thus, increased dietary calcium intakes through dairy products may prevent fat mass accumulation in young, healthy, normal‐weight women.  相似文献   

13.
Objectives: To investigate if birth weight is related to both body mass index (BMI) and distribution of subcutaneous fat at adult age. Research Methods and Procedures: A 9‐year longitudinal study was performed in 229 subjects (192 women) with ages ranging from 27 to 36 years. Birth weight was retrieved by a questionnaire, and adult weight, height, skinfold thicknesses, and waist‐to‐hip ratio (WHR) were repeatedly measured at mean ages 27, 29, 31, and 36 years. BMI, sum of four skinfolds (S4S), the ratio between two truncal skinfolds and S4S (SS/S4S), and the ratio between WHR and the cross‐sectional area of the left thigh were calculated with the available data. Results: The adjusted model showed that in women, birth weight was significantly negatively related to adult S4S [β = ?5.211; (?9.768 to ?0.654)], waist circumference [β = ?1.449; (?2.829 to ?0.069)], and SS/S4S ratio [β = ?3.579; (?5.296 to ?1.862)]. In men, a significant negative association was observed between birth weight and adult WHR [β = ?1.096; (?2.092 to ?0.100)] only. Other relationships showed, although not significantly, the same negative trend, namely that lower birth weight is related to higher adult body fat mass (S4S) and a more truncal subcutaneous fat distribution (SS/S4S). No associations were found between birth weight and either adult BMI or the cross‐sectional area of the thigh. Discussion: Lower birth weight is, in both adult men and women, related to a higher adult subcutaneous fat mass and a more truncal distribution of subcutaneous fat, indicating a higher risk for obesity.  相似文献   

14.
Objective : This study was designed to determine if serum leptin concentrations (adjusted for fat mass) after weight loss on a low-calorie diet predict subsequent weight gain. Research Methods and Procedures : Body composition and serum leptin concentrations were determined on 14 moderately obese, postmenopausal, nondiabetic women with a familial predisposition to obesity. Assessments were obtained under tightly controlled metabolic ward conditions of macronutrient intake and weight maintenance both before (obese state) and after a mean weight loss of 12.0 kg to normal body weight (postobese state). Four years later, without intervention, body weight and body composition were reassessed. Results : Weight loss resulted in significant decreases in fat mass (29.7 ± 5.4 vs. 20.3 ± 4.7; kg), body mass index (27.7 ± 1.6 vs. 23.0 ± 1.5; kg/m2), percent body fat (40.7 ± 4.3 vs. 33.1 ± 5.0), and serum leptin concentrations (31.8 ± 16.0 vs. 11.5 ± 5.4; ng/mL). Serum leptin concentrations were positively correlated (p<<0.05) with fat mass in both the obese and postobese states (r = 0.67 and r = 0.56, respectively). However, residual serum leptin concentrations (adjusted for fat mass) in the obese and postobese states were not related to changes in body weight (p<= 0.61 and 0.52), fat mass (p = 0.72 and 0.42), body mass index (p = 0.59 and 0.33), or percent body fat (p = 0.84 and 0.46) over the follow-up period. Discussion : These finding do not support the hypothesis that relatively low concentrations of leptin predict weight regain after weight loss. However, because the number of subjects in this study was limited, further studies are warranted.  相似文献   

15.
Objective: The objective of this study was to investigate changes in body weight, BMI, body composition, and fat distribution among freshman women during their 1st year of college. Research Methods and Procedures: Freshman women during the 2004 to 2005 academic year were recruited to participate. The initial baseline visit occurred within the first 6 weeks of the fall 2004 semester, with the follow‐up visit occurring during the last 6 weeks of the spring 2005 semester. At each visit, height, weight, BMI, waist and hip circumferences, and body composition (by DXA) were obtained. Results: One hundred thirty‐seven participants completed both the fall and spring visits. Significant (p < 0.0001) increases between the fall and spring visits were observed for body weight (58.6 vs. 59.6 kg), BMI (21.9 vs. 22.3), percentage body fat (28.9 vs. 29.7), total fat mass (16.9 vs. 17.7 kg), fat‐free mass (38.1 vs. 38.4 kg), waist circumference (69.4 vs. 70.3 cm), and hip circumference (97.4 vs. 98.6 cm), with no significant difference observed in the waist‐to‐hip ratio (0.71 vs. 0.71; p = 0.78). Discussion: Although statistically significant, changes in body weight, body composition, and fat mass were modest for women during their freshman year of college. These results do not support the purported “freshman 15” weight gain publicized in the popular media.  相似文献   

16.
Objective: Resistin is associated with insulin resistance in mice and may play a similar role in humans. The aim of our study was to examine the relationship of serum resistin level to body composition, insulin resistance, and related obesity phenotypes in humans. Research Methods and Procedures: Sixty‐four young (age 32 ± 10 years), obese (BMI 32.9 ± 5.6), nondiabetic subjects taking no medication, and 15 lean (BMI 21.1 ± 1.3) volunteers were studied cross‐sectionally. Thirty‐five of the subjects were also reevaluated after 1.5 years on a weight reduction program entailing dieting and exercise; changes of serum resistin were compared with changes of BMI, body composition, fat distribution, and several indices of insulin sensitivity derived from plasma glucose and serum insulin levels measured during 75‐g oral glucose tolerance test. Results: In a cross‐sectional analysis, serum resistin was significantly higher in obese subjects than in lean volunteers (24.58 ± 12.93 ng/mL; n = 64 vs. 12.83 ± 8.30 ng/mL; n = 15; p < 0.01), and there was a correlation between resistin level and BMI, when the two groups were combined (ρ = 0.35, p < 0.01). Although cross‐sectional analysis in obese subjects revealed no correlation between serum resistin and parameters related to adiposity or insulin resistance, longitudinal analysis revealed change in serum resistin to be positively correlated with changes in BMI, body fat, fat mass, visceral fat area, and mean glucose and insulin (ρ = 0.39, 0.40, 0.44, 0.50, 0.40, and 0.50; p = 0.02, 0.03, 0.02, <0.01, 0.02, and <0.01, respectively). Discussion: Resistin appears to be related to human adiposity and to be a possible candidate factor in human insulin resistance.  相似文献   

17.
Objective : Changes in body composition during a weight loss program have not been described in children. We wanted to test the hypothesis that weight loss can be achieved while maintaining total body fat-free mass. Research Methods and Procedures : We determined body composition changes by using dual-energy X-ray absorptiometry measured at baseline and after the first 10 weeks of a multidisciphnary weight loss program. The program consisted of 10 weekly group sessions where the children were provided instruction in lifestyle modification, including diet and exercise. Program leaders included a pediatrician, psychologist, registered dietitian, and exercise instructor. Results : We studied 59 obese children, mean (± SD) age 12.8 ± 2.6 years, 29% boys and 71% girls, 49% Caucasian, and 51% African American. At enrollment, the children's mean height and body mass index were 157 cm and 38.9 kg/m2, respectively. The children's dual-energy X-ray absorptiometry-derived mean at baseline and at 10 weeks and corresponding p values were: weight (94.6 kg vs. 92.3 kg, p<0.0001), total body fat mass (46.9 kg vs. 44.3 kg, p<0.0001), percentage total body fat (49.2% vs. 47.5%, p<0.0001), total trunk mass (43.0 kg vs. 41.5 kg,p<0.0001), total trunk fat (21.2 kg vs. 20.0 kg, p<0.0001), total body fat-free mass (47.6 kg vs. 47.9 kg, p = 0.33), total body bone mass (2.7 kg vs. 2.7 kg, p = 0.99), and total body bone mineral density (1.14 g/cm2 vs. 1.15 g/cm2, p = 0.0119). The children's race, gender, or Tanner stage did not affect these changes. Discussion : Decreases in total body fat mass was achieved, and total body fat-free mass was maintained among boy and girl Caucasian and African American children participating in this lifestyle modification weight loss program.  相似文献   

18.
Objective: Lipoprotein lipase (LPL) and hepatic lipase (HL) are essential in hydrolysis of triglyceride‐rich lipoproteins. LPL activity is negatively, whereas HL activity is positively, associated with total body fat. We determined the associations of trunk and leg fat mass with plasma LPL and HL activities in a cross‐sectional study. Research Methods and Procedures: LPL and HL activities were determined in post‐heparin plasma in a sample of 197 men and 209 women, 60 to 87 years of age. A total body DXA scan was performed to determine trunk and leg fat mass. Results: In women, but not in men, trunk fat mass was negatively associated with LPL activity, whereas leg fat mass was positively associated, after mutual adjustment and adjustment for age. Standardized βs (95% confidence interval) for trunk and leg fat mass were ?0.24 (?0.41; ?0.08) and 0.14 (?0.02; 0.31), respectively (interaction by sex, p = 0.03). Larger trunk fat mass was associated with higher HL activity in men [0.48 (0.28; 0.68)] and women [0.40 (0.24; 0.56)]. A negative association of leg fat mass and HL activity was observed in men, although not statistically significant [?0.13 (?0.33; 0.06)], and in women [?0.28 (?0.38; ?0.18)]. Discussion: Abdominal fat is associated with unfavorable and femoral fat with favorable LPL and HL activities in plasma.  相似文献   

19.
Animal models to study the causes and consequences of obesity during infancy in humans would be valuable. In this study, we examine the patterns of fat mass gain from birth to 12 months in common marmosets (Callithrix jacchus). Lean and fat mass was measured by quantitative magnetic resonance at 1, 2, 6, and 12 months for 31 marmosets, 15 considered Normal and 16 considered Fat (>14% body fat) at 12 months. Animals were fed either the regular colony diet mix or a high‐fat variation. Subjects classified as Fat at 12 months already had greater lean mass (198.4 ± 6.2 g vs. 174.0 ± 6.8 g, P = 0.013) and fat mass (45.5 ± 5.0 g vs. 24.9 ± 3.4 g, P = .002) by 6 months. Body mass did not differ between groups prior to 6 months, however, by 1 month, Fat infants had greater percent body fat. Percent body fat decreased between 1 and 12 months in Normal subjects; in Fat subjects, it increased. The high‐fat diet was associated with body fat >14% at 6 months (P = 0.049), but not at 12 months. This shift was due to three subjects on the normal diet changing from Normal to Fat between 6 and 12 months. Although maternal prepregnancy adiposity did not differ, overall, between Normal and Fat subjects, the subjects Normal at 6 and Fat at 12 months all had Fat mothers. Therefore, diet and maternal obesity appear to have potentially independent effects that may also vary with developmental age. Although birth weight did not differ between groups, it was associated with fat mass gain from 1 to 6 months in animals with >14% body fat at 6 months of age (r = 0.612, P = 0.026); but not in 6‐month‐old animals with <14% body fat (r = –0.012, P = 0.964). Excess adiposity in captive marmosets develops by 1 month. Birth weight is associated with adiposity in animals vulnerable to obesity.  相似文献   

20.
Objective: To determine whether racial differences in insulin resistance between African American (AA) and white women exist in postmenopausal women and whether they are related to physical fitness and/or obesity. Research Methods and Procedures: We studied 35 obese AA (n = 9) and white (n = 26) women of comparable maximal oxygen consumption, obesity, and age. Total body fat was measured by DXA. Abdominal and mid‐thigh low‐density lean tissue (a marker of intramuscular fat) were determined with computed tomography. Glucose utilization (M) was measured during the last 30 minutes of a 3‐hour hyperinsulinemic‐euglycemic clamp. Insulin sensitivity was estimated from the relationship of M to the concentration of insulin during the last 30 minutes of the clamp. Results: The percentage of fat and total body fat mass were similar between AA and white women, whereas fat‐free mass was higher in African American women. Visceral adipose tissue was not different between groups, but subcutaneous abdominal fat was 17% higher in the AA than in the white women. AA women had an 18% greater mid‐thigh muscle area (p < 0.01) and a 34% greater mid‐thigh low‐density lean tissue area than the white women. Fasting glucose concentrations were not different, but fasting insulin concentrations were 29% higher in AA women. Glucose utilization was 60% lower in the AA women because of a lower non‐oxidative glucose disposal. Insulin sensitivity was 46% lower in the AA women. Discussion: AA postmenopausal women have more mid‐thigh intramuscular fat, lower glucose utilization, and are less insulin sensitive than white women despite comparable fitness and relative body fat levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号