首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. How herbivore plant diversity relationships are shaped by the interplay of biotic and abiotic environmental variables is only partly understood. For instance, plant diversity is commonly assumed to determine abundance and richness of associated specialist herbivores. However, this relationship can be altered when environmental variables such as temperature covary with plant diversity. 2. Using gall‐inducing arthropods as focal organisms, biotic and abiotic environmental variables were tested for their relevance to specialist herbivores and their relationship to host plants. In particular, the hypothesis that abundance and richness of gall‐inducing arthropods increase with plant richness was addressed. Additionally, the study asked whether communities of gall‐inducing arthropods match the communities of their host plants. 3. Neither abundance nor species richness of gall‐inducing arthropods was correlated with plant richness or any other of the tested environmental variables. Instead, the number of gall species found per plant decreased with plant richness. This indicates that processes of associational resistance may explain the specialised plant herbivore relationship in our study. 4. Community composition of gall‐inducing arthropods matched host plant communities. In specialised plant herbivore relationships, the presence of obligate host plant species is a prerequisite for the occurrence of its herbivores. 5. It is concluded that the abiotic environment may only play an indirect role in shaping specialist herbivore communities. Instead, the occurrence of specialist herbivore communities might be best explained by plant species composition. Thus, plant species identity should be considered when aiming to understand the processes that shape diversity patterns of specialist herbivores.  相似文献   

2.
Despite the importance of a thorough understanding of the effect of synthetic fertiliser on insect population dynamics, existing literature is conflicting and an area of intense debate. Here, a categorical random‐effects meta‐analysis and a vote count meta‐analysis are employed to examine the effects of nitrogen (N), phosphorus (P), potassium (K) and NPK fertiliser on insect population dynamics. In agreement with the general consensus, insects were found to respond positively, overall, to fertilisers. Sucking insects showed a much stronger response to fertilisers than chewing insects. The environment in which a study is conducted can have a marked effect on insect responses to fertiliser, with natural environments showing the potential for buffering effects of nitrogen fertilisers in particular. As well as highlighting the potential shortfall in the amount of research investigating particularly the effects of potassium and phosphorus, this study provides an invaluable flag post in the ongoing research investigating fertiliser effects on ecosystems.  相似文献   

3.
4.
In this study, the mortality factors acting upon the galling psyllid Neopelma baccharidis Burckhardt (Homoptera) caused by its host plant, Baccharis dracunculifolia De Candole (Asteraceae) were analysed. In March 1999, 982 galls of the same cohort were randomly marked on 109 individuals of B. dracunculifolia in the field. Galls were censused each month during their development, from April to August, and dead galls were collected and analysed for mortality factors. Gall dehiscence rates were calculated for each month. The major mortality source of N. baccharidis was gall dropping (13.2% of the original cohort), which is probably a normal outcome of previous mortality caused by the other factors observed in this study. Unknown factors killed 11.7% of this gall population and were ascribed to plant resistance during gall development. Empty galls represented 7.7% of the observed mortality and may be a consequence of egg retention or egg mortality/abortion related to variations in plant quality. Shoot mortality was high during the dry season and killed 7.5% of the galls, but this impact was minimized after the third month from gall formation due to the ability of nymphs to accelerate development and emerge from galls on dying shoots. However, the size of dehisced galls on dead shoots tended to be smaller, possibly affecting adult performance. Mortality of N. baccharidis attributed to B. dracunculifolia strongly controlled the galling insect population, killing 40.7% of the original cohort of galls. Plant‐mediated mortality was caused by often neglected factors acting predominantly during the first 3 months of development, which are critical to gall survivorship. These results reinforce the importance of bottom‐up forces in plant‐insect systems.  相似文献   

5.
The hypersensitive‐induced reaction (HIR) gene family is associated with the hypersensitive response (HR) that is a part of the plant defense system against bacterial and fungal pathogens. The involvement of HIR genes in response to viral pathogens has not yet been studied. We now report that the HIR3 genes of Nicotiana benthamiana and Oryza sativa (rice) were upregulated following rice stripe virus (RSV) infection. Silencing of HIR3s in N. benthamiana resulted in an increased accumulation of RSV RNAs, whereas overexpression of HIR3s in N. benthamiana or rice reduced the expression of RSV RNAs and decreased symptom severity, while also conferring resistance to Turnip mosaic virus, Potato virus X, and the bacterial pathogens Pseudomonas syringae and Xanthomonas oryzae. Silencing of HIR3 genes in N. benthamiana reduced the content of salicylic acid (SA) and was accompanied by the downregulated expression of genes in the SA pathway. Transient expression of the two HIR3 gene homologs from N. benthamiana or the rice HIR3 gene in N. benthamiana leaves caused cell death and an accumulation of SA, but did not do so in EDS1‐silenced plants or in plants expressing NahG. The results indicate that HIR3 contributes to plant basal resistance via an EDS1‐ and SA‐dependent pathway.  相似文献   

6.
7.
1. Both the physiological efficiency (PE) hypothesis and the preference–performance (PP) hypothesis address the complex interactions between herbivores and host plants, albeit from different perspectives. The PE hypothesis contends that specialists are better physiologically adapted to their host plants than generalists. The PP hypothesis predicts that larvae perform best on the host plant preferred by ovipositing females. 2. This study tests components of both hypotheses using the specialist checkerspot, Euphydryas anicia, the generalist salt marsh caterpillar, Estigmene acrea, and host plants in the genus Penstemon, which are defended by iridoid glycosides. 3. In laboratory experiments, the generalist preferred and performed significantly better on the less well defended host plant species. This is consistent with results from a common garden experiment where the less well defended Penstemon species received more damage from the local community of generalists. Larvae of the specialist checkerspot preferred the more chemically defended species in the laboratory, but performed equally well on both hosts. However, field experiments demonstrated that adult checkerspot females preferred to oviposit on the less well defended host plant. 4. Components of the physiological efficiency hypothesis were supported in this system, as the specialist outperformed the generalist on the more iridoid glycoside‐rich host plant species. There was no support for the PP hypothesis, however, as there was no clear relationship between female preference in the field and offspring performance in the laboratory.  相似文献   

8.
9.
Ecological specialization is widely recognized as a major determinant of the emergence and maintenance of biodiversity. We studied two critical facets of specialization – local adaptation and habitat choice – in the host races of the leaf beetle Lochmaea capreae on willow and birch. Our results revealed that there is asymmetric disruptive selection for host use traits, and host races achieved different adaptive sets of life history traits through association with their host plant. Beetles from each host race exhibited food and oviposition preference for their own host plant. Reciprocal transplant displayed significant variation in host acceptance and performance: all families from the willow race rejected the alternative host plant before initiation of feeding and all died on this host plant. By contrast, all families from the birch race accepted willow for feeding, but they consumed less and performed less well. Intriguingly, families that performed well on birch also performed well on willow, suggesting positive genetic correlation rather than genetic trade‐offs. Our results suggest that the major proximal determinant of host specialization in the willow race is the behavioural acceptance of a plant rather than the toxicity of the food resource. However, in the birch race a combination of behavioural host acceptance and performance may play a role in specialization. Our study sheds light on the mechanisms by which divergent host adaptation might influence the evolution of reproductive isolation between herbivorous populations.  相似文献   

10.
The diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae) is an important pest of cultivated brassicaceous crops worldwide. The host plant preferences, developmental biology and survival and longevity of P. xylostella are relatively well understood on commercial crop species; however, its relationship with brassicaceous weeds is poorly known. Sinapis arvensis L., Erysimum cheiranthoides L. and Capsella bursa‐pastoris (L.) Medicus are among the most common brassicaceous weeds worldwide and can serve as important bridge hosts of P. xylostella. In this study, preference and performance of P. xylostella were compared on these weed species. In free‐choice situations, females deposited 5.5 and 18.8 times more eggs on S. arvensis than on E. cheiranthoides and C. bursa‐pastoris, respectively. Survival from neonate to pupa and from pupa to adult was highest on S. arvensis and E. cheiranthoides and lowest on C. bursa‐pastoris. Development was fastest, foliage consumption was greatest, pupae and silk cocoons were heaviest, adult body masses and longevities were highest and forewings were largest for both females and males when reared as larvae on S. arvensis. Realized fecundity of new generation adults was highest for individuals reared on S. arvensis compared to those reared on E. cheiranthoides or C. bursa‐pastoris. Relative growth rates of pupae and adults were highest on S. arvensis, suggesting that this plant species is a high‐quality host for P. xylostella compared with other species tested. Potential impacts of these wild brassicaceous species on P. xylostella populations are discussed.  相似文献   

11.
1. When herbivores of distinct feeding guilds, such as phloem feeders and leaf chewers, interact, the outcome of these interactions often shows facilitation. However, whether this facilitation turns into competition at stronger herbivory pressure remains unknown. 2. Using an integrative approach that links ecological processes (behavioural choices of insects) with physiological plant mechanisms (nutrient and phytohormone levels) for the wild crucifer Brassica nigra (L.) Koch., this study evaluates preferences of leaf chewers for plants previously infested with several densities of the specialist aphid Brevicoryne brassicae L. (Hemiptera, Aphididae). As leaf chewers, four species of caterpillars (Lepidoptera) were selected that differ in their degree of specialisation in crucifers. 3. These results show that, whereas at low and medium aphid densities caterpillars displayed a preference for aphid‐infested plants or no preference, at high aphid infestation density, all four species of caterpillar preferred uninfested plants, with a significant difference for Pieris rapae and Mamestra brassicae. 4. In contrast to our expectation, the consistent preference for uninfested plants at a high aphid density could not be associated with a decrease in plant nutrition. However, while jasmonate concentrations [i.e. 12‐oxo‐phytodienoic acid and jasmonic acid (JA)] at medium aphid‐density infestation decreased compared with low levels of infestation, at high infestation level, the jasmonates JA as well as JA conjugated with the amino acid isoleucine were present at higher levels compared with low‐infestation treatments. 5. This work provides evidence that positive interactions observed in herbivore communities can be transient, leading to negative interactions mediated by changes in plant defences rather than in plant nutrition.  相似文献   

12.
Herbivore‐induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odour preferences of four braconid wasps – the gregarious parasitoid Cotesia glomerata (L.) and the solitary parasitoids Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday) – were studied in olfactometers. Each species showed attraction to pheromones but in somewhat different ways. Males of the two Cotesia species were attracted to virgin females, whereas females of M. rufiventris were attracted to virgin males. Male and female M. mediator exhibited attraction to both sexes. Importantly, female and male wasps of all four species were strongly attracted by HIPVs, independent of mating status. In most cases, male wasps were also attracted to intact plants. The wasps preferred the combination of HIPVs and pheromones over plant odours alone, except M. mediator, which appears to mainly use HIPVs for mate location. We discuss the ecological contexts in which the combined use of pheromones and HIPVs by parasitoids can be expected. To our knowledge, this is the first study to show that braconid parasitoids use HIPVs and pheromones in combination to locate mates.  相似文献   

13.
1. There is an ongoing debate about the relative importance of top‐down and bottom‐up regulation of herbivore dynamics in the wild. Secondary metabolites, produced by plants, have negative effects on survival and growth of some herbivore species, causing bottom‐up regulation of population dynamics. Herbivore natural enemies may use plant secondary metabolites as cues to find their prey, but their survival and reproduction can also be influenced by the upward cascade of secondary metabolites through the food web. Thus plant chemistry might also affect herbivore populations by mediating top‐down regulation. 2. We investigated the influence of heritable variation in aliphatic glucosinolates, a class of secondary metabolites produced by Brassica plants, on the relative importance of top‐down and bottom‐up regulation of Brevicoryne brassicae (mealy cabbage aphid) colonies in natural Brassica oleracea (wild cabbage) populations. We manipulated natural enemy pressure on plants differing in their glucosinolate profiles, and monitored aphid colony growth and disperser production. 3. Aphid colony sizes were significantly smaller on plants producing sinigrin, compared with plants producing alternative aliphatic glucosinolates. Aphid natural enemy numbers correlated with aphid colony size, but there was no additional effect of the plants' chemical phenotype on natural enemy abundance. Furthermore, experimental reduction of natural enemy pressure had no effect on aphid colony size or production of winged dispersers. 4. Our results provide evidence for glucosinolate‐mediated, bottom‐up regulation of mealy cabbage aphid colonies in natural populations, but we found no indication of top‐down regulation. We emphasise that more studies of these processes should focus on tritrophic interactions in the wild.  相似文献   

14.
Abstract 1. Water stress may increase or reduce the suitability of plants for herbivores. The recently proposed ‘pulsed stress hypothesis’ suggests consideration of stress phenology (pulsed vs. continuous stress) to explain these conflicting effects of plant water stress on herbivore performance. 2. This hypothesis was tested for the effect of differing stress intensity on performance and preference of insect herbivores belonging to different feeding guilds, namely leaf‐chewing insects (Spodoptera littoralis caterpillars) and phloem‐feeding insects (Aphis pomi aphids), on apple plants (Malus domestica). The plants were non‐stressed or exposed to a low or high intensity of pulsed water stress. 3. Plant responses to the different stress levels were generally monotonic. Growth, stomatal conductance (gs), leaf water, and old‐leaf nitrogen concentration decreased, whereas young‐leaf nitrogen concentration and leaf mass per area (LMA) increased with increasing stress intensity. The stable isotope composition of foliar carbon (δ13C) responded non‐monotonically to the drought treatments. The δ13C values were highest in low‐stress plants, intermediate in high‐stress plants, and lowest in non‐stressed plants. 4. The preference and performance responses of the caterpillars were also non‐monotonic. Non‐stressed plants were intermediately, low‐stress plants least, and high‐stress plants most attractive or suitable. Aphid population growth was highest on non‐stressed plants and lowest on low‐stress plants. 5. The results highlight the importance of water stress intensity for the outcome of interactions between herbivores and drought‐affected plants. They show that pulsed water stress may enhance or reduce insect herbivore performance and plant resistance, depending on stress intensity.  相似文献   

15.
1. Mobile organisms such as emergent aquatic insects can subsidise land with aquatic nutrients, creating a link between terrestrial and aquatic ecosystems. 2. Deposition of aquatic insects on land produces bottom‐up effects in arthropod detritivore communities and may also affect plants and plant–herbivore interactions. 3. To investigate the effects of insect deposition on plant–herbivore interactions, we conducted a field experiment and surveys of tealeaf willow (Salicaceae; Salix phylicifolia Coste) and July highflyer caterpillars (Geometridae; Hydriomena furcata Thunberg) at lakes in Northeast Iceland with either high‐ or low‐midge density and deposition to land. 4. It was found that willow at high‐midge lakes had 8–11% higher nitrogen content compared with willow at low‐midge lakes. In addition, natural caterpillar density was 4–6 times higher and caterpillars were 72% heavier at high‐midge lakes than low‐midge lakes. 5. A fully reciprocal caterpillar transplant experiment among willow at high‐ and low‐midge lakes was performed to separate the influence of habitat and midge effects on caterpillar performance. 6. After transplant, pupae of July Highflyer caterpillars were on average 11% heavier at high‐midge sites compared with low‐midge sites. However, this difference was not statistically significant. 7. The present findings indicate that cross‐ecosystem subsidies in the form of aquatic insects can increase plant foliar quality and the abundance of insect herbivores in recipient ecosystems.  相似文献   

16.
  • 1 The vine weevil Otiorhynchus sulcatus is a major pest of horticultural crops worldwide, with root‐feeding larvae causing most damage. Adult oviposition aboveground may therefore influence levels of damage as the larvae are relatively immobile after oviposition.
  • 2 The present study investigated feeding and oviposition behaviour on red raspberry Rubus idaeus using intact plants, ensuring that choices reflected the realistic differences in cultivar appearance and chemical composition. Previous studies investigating vine weevil feeding and oviposition on other crops have used excised plant material, which may inadvertently influence behaviour.
  • 3 Adult weevils significantly preferred to feed on particular cultivars in the choice experiment (e.g. Tulameen), although they consumed significantly more foliage (0.22–1.03 cm2/day) on different raspberry cultivars (e.g. Glen Moy, Glen Rosa and a wild accession) in no‐choice situations.
  • 4 In choice experiments, weevils tended to avoid laying eggs on some cultivars (e.g. Glen Moy and the wild accession). The number of eggs laid (1.91–4.32 eggs per day) did not, however, differ significantly between the cultivars in a no‐choice situation. Foliar nitrogen and magnesium concentrations were positively, although weakly, correlated with the total number of eggs laid.
  • 5 The present study highlights the importance of considering both choice and no‐choice tests when assessing crop susceptibility to attack because weevils may avoid feeding on certain cultivars (e.g. Glen Moy) when given a choice, although this would cause significant damage to such cultivars if they were grown in monoculture (i.e. when there is no alternative).
  相似文献   

17.
The enemy release hypothesis posits that non‐native plant species may gain a competitive advantage over their native counterparts because they are liberated from co‐evolved natural enemies from their native area. The phylogenetic relationship between a non‐native plant and the native community may be important for understanding the success of some non‐native plants, because host switching by insect herbivores is more likely to occur between closely related species. We tested the enemy release hypothesis by comparing leaf damage and herbivorous insect assemblages on the invasive species Senecio madagascariensis Poir. to that on nine congeneric species, of which five are native to the study area, and four are non‐native but considered non‐invasive. Non‐native species had less leaf damage than natives overall, but we found no significant differences in the abundance, richness and Shannon diversity of herbivores between native and non‐native Senecio L. species. The herbivore assemblage and percentage abundance of herbivore guilds differed among all Senecio species, but patterns were not related to whether the species was native or not. Species‐level differences indicate that S. madagascariensis may have a greater proportion of generalist insect damage (represented by phytophagous leaf chewers) than the other Senecio species. Within a plant genus, escape from natural enemies may not be a sufficient explanation for why some non‐native species become more invasive than others.  相似文献   

18.
19.
Internally feeding herbivorous insects such as leaf miners have developed the ability to manipulate the physiology of their host plants in a way to best meet their metabolic needs and compensate for variation in food nutritional composition. For instance, some leaf miners can induce green‐islands on yellow leaves in autumn, which are characterized by photosynthetically active green patches in otherwise senescing leaves. It has been shown that endosymbionts, and most likely bacteria of the genus Wolbachia, play an important role in green‐island induction in the apple leaf‐mining moth Phyllonorycter blancardella. However, it is currently not known how widespread is this moth‐Wolbachia‐plant interaction. Here, we studied the co‐occurrence between Wolbachia and the green‐island phenotype in 133 moth specimens belonging to 74 species of Lepidoptera including 60 Gracillariidae leaf miners. Using a combination of molecular phylogenies and ecological data (occurrence of green‐islands), we show that the acquisitions of the green‐island phenotype and Wolbachia infections have been associated through the evolutionary diversification of Gracillariidae. We also found intraspecific variability in both green‐island formation and Wolbachia infection, with some species being able to form green‐islands without being infected by Wolbachia. In addition, Wolbachia variants belonging to both A and B supergroups were found to be associated with green‐island phenotype suggesting several independent origins of green‐island induction. This study opens new prospects and raises new questions about the ecology and evolution of the tripartite association between Wolbachia, leaf miners, and their host plants.  相似文献   

20.
We studied host selection and exploitation, two crucial aspects of parasite ecology, in Achrysocharoides parasitoid wasps, which show remarkable host specificity and unusual offspring sex allocation. We estimated a molecular phylogeny of 15 Achrysocharoides species and compared this with host (plant and insect) phylogenies. This tri-trophic phylogenetic comparison provides no evidence for cospeciation, but parasitoids do show phylogenetic conservation of the use of plant genera. Patterns of sequence divergence also suggest that the parasitoids radiated more recently (or evolved much faster) than their insect hosts. Three main categories of brood production occur in parasitoids: (1) solitary offspring, (2) mixed sex broods and (3) separate (split) sex broods. Split sex broods are very rare and virtually restricted to Achrysocharoides, while the other types occur very widely. Our phylogeny suggests that split sex broods have evolved twice and provides evidence for a transition from solitary to mixed sex broods, via split sex broods, as predicted by theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号