共查询到20条相似文献,搜索用时 15 毫秒
1.
There is much interest in understanding how population demography impacts upon social evolution. Here, we consider the impact of rate and pattern of dispersal upon a classic social evolutionary trait--the sex ratio. We recover existing analytical results for individual dispersal, and we extend these to allow for budding dispersal. In particular, while a cancelling of relatedness and kin competition effects means that the sex ratio is unaffected by the rate of individual dispersal, we find that a decoupling of relatedness and kin competition means that budding dispersal favours increasingly female-biased sex ratios. More generally, our analysis illustrates the relative ease with which biological problems involving class structure can be solved using a kin selection approach to social evolution theory. 相似文献
2.
ELIZABETH L. JOHNSON TYLER W. CUNNINGHAM SARAH M. MARRINER JENNIFER L. KOVACS BRENDAN G. HUNT DIMPAL B. BHAKTA MICHAEL A. D. GOODISMAN 《Molecular ecology》2009,18(13):2908-2920
Organisms must make important decisions on how to allocate resources to reproduction. We investigated allocation decisions in the social wasp Vespula maculifrons to understand how social insects make reproductive choices. We first determined how annual colonies apportioned resources to growth and reproduction by analysing developing brood. In contrast to expectations, colonies invested in both growth (workers) and reproduction (males) simultaneously. In addition, colonies showed evidence of producing males in pulses and reversing their reproductive choices by decreasing investment in males late in the season. This reversal is consistent with theory suggesting that colonies decrease production in males if fitness of late emerging males is low. To further investigate reproductive decisions within colonies, we determined if the male mates of multiply-mated queens varied in their reproductive success over time. Sperm use by queens did vary over time suggesting that male success may depend on sperm clumping within the female reproductive tract. Finally, we tested if colony sex ratio conformed to expectations under kin selection theory that nestmate relatedness would positively correlate with investment in new queens if workers controlled sex allocation. Surprisingly, the proportion of queens produced by colonies was negatively correlated with nestmate relatedness, suggesting that allocation may be shaped by advantages arising from increased genetic diversity resulting from multiple mating by queens. Overall, our study suggests that the reproductive decisions of colonies are flexible and may depend both on environmental cues arising from energetic needs of the colony and genetic cues arising from mating behaviours of queens. 相似文献
3.
Reece SE Shuker DM Pen I Duncan AB Choudhary A Batchelor CM West SA 《Journal of evolutionary biology》2004,17(1):208-216
Sex ratio theory provides a clear and simple way to test if nonsocial haplodiploid wasps can discriminate between kin and nonkin. Specifically, if females can discriminate siblings from nonrelatives, then they are expected to produce a higher proportion of daughters if they mate with a sibling. This prediction arises because in haplodiploids, inbreeding (sib-mating) causes a mother to be relatively more related to her daughters than her sons. Here we formally model this prediction for when multiple females lay eggs in a patch, and test it with the parasitoid wasp Nasonia vitripennis. Our results show that females do not adjust their sex ratio behaviour dependent upon whether they mate with a sibling or nonrelative, in response to either direct genetic or a range of indirect environmental cues. This suggests that females of N. vitripennis cannot discriminate between kin and nonkin. The implications of our results for the understanding of sex ratio and social evolution are discussed. 相似文献
4.
A. F. G. Bourke 《Biology letters》2009,5(5):689-692
The origin of sexual reproduction involved the evolution of zygotes from separate genomes and, like other social processes, should therefore be amenable to analysis using kin selection theory. I consider how kin structure affects sexual interactions in three contexts—the evolution of sexual reproduction, sex allocation and sexual conflict. Kin structure helps explain the even-handed replication of paternal and maternal genes under outbreeding. Under inbreeding, it predicts altruistic failure to replicate by one half of the diploid genome. Kin structure predicts optimal sex ratios and potential conflicts over sex ratio within social groups and individuals. Sexual conflict predictably occurs as a function of (i) the probability that current sexual partners will reproduce together in future and (ii) between-partner relatedness. I conclude that systematically analysing the kin structure of sexual interactions helps illuminate their evolution. 相似文献
5.
West SA Shuker DM Sheldon BC 《Evolution; international journal of organic evolution》2005,59(6):1211-1228
Studies of sex allocation offer excellent opportunities for examining the constraints and limits on adaptation. A major topic of debate within this field concerns the extent to which the ability of individuals to adaptively manipulate their offspring sex ratio is determined by constraints such as the method of sex determination. We address this problem by comparing the extent of sex-ratio adjustment across taxa with different methods of sex determination, under the common selective scenario of interactions between relatives. These interactions comprise the following: local resource competition (LRC), local mate competition (LMC), and local resource enhancement (LRE). We found that: (1) species with supposedly constraining methods of sex determination showed consistent sex-ratio adjustment in the predicted direction; (2) vertebrates with chromosomal sex determination (CSD) showed less adjustment then haplodiploid invertebrates; (3) invertebrates with possibly constraining sex-determination mechanisms (CSD and pseudo-arrhenotoky) did not show less adjustment then haplodiploid invertebrates; (4) greater sex-ratio adjustment was seen in response to LRC and LMC than LRE; (5) greater sex-ratio adjustment was seen in response to interactions between relatives (LRC, LMC, and LRE) compared to responses to other environmental factors. Our results also illustrate the problem that sex-determination mechanism and selective pressure are confounded across taxa because vertebrates with CSD are influenced primarily by LRE whereas invertebrates are influenced by LRC and LMC. Overall, our analyses suggest that sex-allocation theory needs to consider simultaneously the influence of variable selection pressures and variable constraints when applying general theory to specific cases. 相似文献
6.
Theory predicts that optimal sex allocation in subdivided populations is dependent on the genetic relatedness among competing offspring such that when relatedness is high, progeny sex allocation should be more biased than when relatedness is low. In the laboratory we compared the progeny sex ratio of four groups of five ovipositing females of various presumed degrees of relatedness (sisters of inbred laboratory population, sisters of outbred field population, non-sisters of the same field population and non-sisters each from a different, geographically distant field population). We found a greater female bias in the progeny of inbred sisters than for sisters from the field population; the progeny sex ratio was also more strongly female biased for sisters than for non-sisters from the field population. These differences in sex ratio are in line with theoretical predictions. Our results indicate that spider mites are capable of some method of discrimination between kin and non-kin. 相似文献
7.
Gabriel D. G. Debout Megan E. Frederickson Serge Aron Douglas W. Yu 《Evolution; international journal of organic evolution》2010,64(1):126-141
We investigated sex allocation in the Neotropical ant Allomerus octoarticulatus var. demerarae . Because Allomerus is a plant symbiont, we could make geographically extensive collections of complete colonies and of foundresses in saplings, allowing us to estimate not only population- and colony-level sex allocation but also colony resource levels and the relatednesses of competing ant foundresses. This species exhibits a strongly split sex ratio, with 80% of mature colonies producing ≥90% of one sex or the other. Our genetic analyses (DNA microsatellites) reveal that Allomerus has a breeding system characterized by almost complete monogyny and a low frequency of polyandry. Contrary to theoretical explanations, we find no difference in worker relatedness asymmetries between female- and male-specialist colonies. Furthermore, no clear link was found between colony sex allocation and life history traits such as the number of mates per queen, or colony size, resource level, or fecundity. We also failed to find significant support for male production by workers, infection by Wolbachia , local resource competition, or local mate competition. We are left with the possibility that Allomerus exhibits split sex ratios because of the evolution of alternative biasing strategies in queens or workers, as recently proposed in the literature. 相似文献
8.
A surprising result emerging from the theory of sex allocation is that the optimal sex ratio is predicted to be completely independent of the rate of dispersal. This striking invariance result has stimulated a huge amount of theoretical and empirical attention in the social evolution literature. However, this sex-allocation invariant has been derived under the assumption that an individual''s dispersal behaviour is not modulated by population density. Here, we investigate how density-dependent dispersal shapes patterns of sex allocation in a viscous-population setting. Specifically, we find that if individuals are able to adjust their dispersal behaviour according to local population density, then they are favoured to do so, and this drives the evolution of female-biased sex allocation. This result obtains because, whereas under density-independent dispersal, population viscosity is associated not only with higher relatedness—which promotes female bias—but also with higher kin competition—which inhibits female bias—under density-dependent dispersal, the kin-competition consequences of a female-biased sex ratio are entirely abolished. We derive analytical results for the full range of group sizes and costs of dispersal, under haploid, diploid and haplodiploid modes of inheritance. These results show that population viscosity promotes female-biased sex ratios in the context of density-dependent dispersal. 相似文献
9.
We aimed at identifying the causal basis of previously shown interrelations between demographic and genetic colony structure, ecological factors and split sex ratios in the ant, Leptothorax nylanderi. Colony-level variation in sex allocation was only partly explained by annual fluctuations during eight study years and by resource availability as indicated by sexual production of colonies. Allocation ratios were highly male-biased in dense populations with ephemeral nest sites and high frequencies of colonies containing several unrelated matrilines. Field observations and experimental manipulations showed that nest site limitation leads to such heterogeneous colonies. Laboratory experiments demonstrated that genetic heterogeneity directly causes male-biased investment, although relatedness asymmetry is not influenced by invasion of unrelated queens. The influence of genetic composition on allocation strategies might either be explained by negative feedback mechanisms connected with habitat saturation or by a lower efficiency of heterogeneous colonies. Our results thus demonstrate which factors other than variation in relatedness asymmetry can explain split sex ratios in ants. An empirical test of a model on reproductive allocation revealed on-going queen-worker conflict over colony growth and sexual reproduction. Workers controlled reproductive allocation, but queen-worker conflict ceased in large colonies with a high survival rate. 相似文献
10.
Rolf Kümmerli y Gardner Stuart A. West Ashleigh S. Griffin 《Evolution; international journal of organic evolution》2009,63(4):939-949
Numerous theoretical studies have investigated how limited dispersal may provide an explanation for the evolution of cooperation, by leading to interactions between relatives. However, despite considerable theoretical attention, there has been a lack of empirical tests. In this article, we test how patterns of dispersal influence the evolution of cooperation, using iron-scavenging in the bacterium Pseudomonas aeruginosa as our cooperative trait. We found that relatively limited dispersal does not favor cooperation. The reason for this is that although limited dispersal increases the relatedness between interacting individuals, it also leads to increased local competition for resources between relatives. This result supports Taylor's prediction that in the simplest possible scenario, the effects of increased relatedness and local competition exactly cancel out. In contrast, we show that one way for cooperation to be favored is if individuals disperse in groups (budding dispersal), because this maintains high relatedness while reducing local competition between relatives (relatively global competition). 相似文献
11.
Local resource competition and local resource enhancement shape primate birth sex ratios 总被引:1,自引:0,他引:1
Sex ratio theory provides a powerful source of testable predictions about sex allocation strategies. Although studies of invertebrates generally support predictions derived from the sex ratio theory, evidence for adaptive sex ratio biasing in vertebrates remains contentious. This may be due to the fact that most studies of vertebrates have focused on facultative adjustment in relation to maternal condition, rather than processes that might produce uniform sex biases across individuals. Here, we examine the effects of local resource enhancement (LRE) and local resource competition (LRC) on birth sex ratios (BSRs). We also examine the effects of sex differences in the costs of rearing male and female offspring on BSRs. We present data from 102 primate species and show that BSRs are skewed in favour of the dispersing sex in species that do not breed cooperatively, as predicted by the LRC model. In accordance with the LRE model, BSRs are generally skewed in favour of the more beneficial sex in cooperatively breeding primate species. There is no evidence that BSRs reflect the extent of sexual size dimorphism, an indirect measure of the costs of rearing male and female offspring. These analyses suggest that adaptive processes may play an important role in the evolution of BSRs in vertebrates. 相似文献
12.
António M. M. Rodrigues Andy Gardner 《Proceedings. Biological sciences / The Royal Society》2015,282(1810)
Local mate competition (LMC) occurs when male relatives compete for mating opportunities, and this may favour the evolution of female-biased sex allocation. LMC theory is among the most well developed and empirically supported topics in behavioural ecology, clarifies links between kin selection, group selection and game theory, and provides among the best quantitative evidence for Darwinian adaptation in the natural world. Two striking invariants arise from this body of work: the number of sons produced by each female is independent of both female fecundity and also the rate of female dispersal. Both of these invariants have stimulated a great deal of theoretical and empirical research. Here, we show that both of these invariants break down when variation in female fecundity and limited female dispersal are considered in conjunction. Specifically, limited dispersal of females following mating leads to local resource competition (LRC) between female relatives for breeding opportunities, and the daughters of high-fecundity mothers experience such LRC more strongly than do those of low-fecundity mothers. Accordingly, high-fecundity mothers are favoured to invest relatively more in sons, while low-fecundity mothers are favoured to invest relatively more in daughters, and the overall sex ratio of the population sex ratio becomes more female biased as a result. 相似文献
13.
《Ethology, Ecology and Evolution》2012,24(3):279-290
Genetic relatedness is a key parameter in the kin selection theory for the evolution of altruistic behaviour. In the present study relatedness was examined in three facultatively polygynous red ants, Myrmica scabrinodis and M. gallienii (both among worker and queen nestmates), and M. sabuleti (among workers). Relatedness among workers generally agreed with the expectations based on queen number being positive in all species (range: 0.12–0.55), but in most cases significantly lower than 0.75. In M. scabrinodis, relatedness among coexisting queens was high (r = 0.66) and significantly higher than among workers in the same colonies (r = 0.25), which suggests production of new sexual females by a subset of queens. In M. gallienii, coexisting queens were not related (r = 0.01), which results from the high degree of polygyny in the population studied. When data were available for workers and queens, they were used to calculate the effective number of queens (N e ) in the colonies. N e was higher in M. scabrinodis than the observed number of queens (N e = 6.5 vs x h = 2.1). This was either due to the rapid turnover of queens in Myrmica or the polydomous structure of the colonies. 相似文献
14.
Reproductive skew - the extent to which reproduction is unevenly shared between individuals in a social group - varies greatly between and within animal species. In this study, we investigated how queens share parentage in polygynous (multiple queen) colonies of the Mediterranean ant Pheidole pallidula. We used highly polymorphic microsatellites markers to determine parentage of gynes (new queens), males and workers in P. pallidula field colonies. The comparison of the genotypes of young and adult workers revealed a very low queen turnover (less than 2%). The first main finding of the study of reproductive skew in these colonies was that there was a significant departure from equal contribution of queens to gyne, male and worker production. Reproductive skew was greater for male production than for queen and worker production. There was no relationship between the magnitude of the reproductive skew and the number of reproductive queens per colony, their relatedness and the overall colony productivity, some of the factors predicted to influence the extent of reproductive skew. Finally, our study revealed for the first time a trade-off in the relative contribution of nestmate queens to gyne and worker production. The queens contributing more to gyne production contributed significantly less to worker production. 相似文献
15.
T. J. De Jong F. H. D. Van Batenburg J. Van Dijk 《Journal of evolutionary biology》2002,15(3):373-379
Two principles are important for the optimal sex ratio strategy of plants. (1) Sib mating. Because seed dispersal is restricted, sib mating may occur which selects for a female bias in the seed sex ratio. (2) Local resource competition (LRC). If a plant produces pollen its nuclear genes are dispersed in two steps: first through the pollen and then, if the pollen is successful in fertilizing an ovule on another plant, through the seed. If the plant produces an ovule, its genes are dispersed only through the seed. By making pollen instead of ovules the offspring of a single plant is then spread out over a wider area. This reduces the chance that genetically related individuals are close together and need to compete for the same resource. The effect is the strongest if pollen is dispersed over a much wider area than seeds. Less LRC for paternally vs. maternally derived offspring selects for a male bias in sex allocation. We study the above‐mentioned opposite effects in dioecious plants (with separate male and female individuals), with maternal control over the sex ratio (fraction males) in the seeds. In a two‐dimensional spatial model female‐biased sex ratios are found when both pollen and seed dispersal are severely restricted. If pollen disperses over a wider area than seeds, which is probably the common situation in plants, the seed sex ratio becomes male‐biased. If pollen and seeds are both dispersed over a wide area, the sex ratio approaches 0.5. Our results do not change if the offspring of brother–sister matings are less fit because of inbreeding depression. 相似文献
16.
Abstract Patterns of reproductive and vegetative biomass allocation were compared in male and female plants of the alpine herb Aciphylla simplicifolia. Male and female plants had similar vegetative biomass but differed in the pattern of resource allocation. Inflorescences of males and females were similar in weight at the time of flowering, but differed in biomass allocation to some structures within the inflorescences, particularly those associated with ovule production and pollinator attraction (number and size of flowers). At the time of fruit production, female inflorescences were 2.6 times heavier than at flowering with developing fruit six times heavier than flowers. In addition to the increase in biomass allocated to structures associated with the provisioning and dissemination of seed, support structures (main and side stalks) were also heavier. As a result of this additional investment of resources at the time of fruit production, the reproductive effort (RE) of female plants was much higher than that of males: 37% of above ground biomass compared with 21% for males. Differences in RE did not change with plant size; however, allocation to reproduction appeared to be a constant proportion of biomass over nearly all plant sizes sampled. These results show that sex‐specific resource allocation can be a complex of temporal and morphological patterns. 相似文献
17.
Maternal investment and male reproductive success in angiosperms: parent-offspring conflict or sexual selection? 总被引:1,自引:0,他引:1
Susan J. Mazer 《Biological journal of the Linnean Society. Linnean Society of London》1987,30(2):115-133
It is possible to interpret components of seed development in angiosperms from the perspective of parent-offspring conflict (a special case of kin selection) or sexual selection. Available parent-offspring conflict models predict the evolution of traits determining the outcome of competition among related individuals soliciting maternal resources. In such models, ‘selfishness’ may spread even if it reduces female fecundity and thus population mean fitness may decline. These models are limited, however, because most of them do not simultaneously consider selection among maternal genotypes varying in the tendency to respond to their offspring. Available sexual selection models, in contrast, do consider the joint evolution of polygenic male traits (influencing viability, mating success and fecundity) and female preferences (influencing the mating success of different male phenotypes). These models have shown that male traits may evolve that are non-optimal with respect to viability. Only one recent sexual selection model explicitly incorporates direct fecundity selection upon females; this model concludes that fecundity will be maximized at equilibrium. Hence population mean fitness may decline due to reduced male viability but not due to diminished female fecundity. Available sexual selection models, however, are limited because they do not consider the effects of interactions among relatives. The assumptions and qualitative results of the two types of models are compared and discussed in the context of seed development. Differential allocation of maternal resources among genetically distinct developing seeds may be viewed from the perspective of either. Because the results of the available models of parent-offspring conflict and sexual selection are not wholly consistent and because data confirming the genetic basis of maternal patterns of investment or differential male reproductive success are scant, it is not clear which set of conclusions is most appropriate to apply to plants. To achieve the generality towards which mathematical approaches aspire, new models concerning the evolution of traits influencing resource allocation in plants must incorporate the components of both parent-offspring conflict and sexual selection. 相似文献
18.
Le Galliard JF Ferrière R Dieckmann U 《Evolution; international journal of organic evolution》2003,57(1):1-17
Abstract.— We study the spatial adaptive dynamics of a continuous trait that measures individual investment in altruism. Our study is based on an ecological model of a spatially heterogeneous population from which we derive an appropriate measure of fitness. The analysis of this fitness measure uncovers three different selective processes controlling the evolution of altruism: the direct physiological cost, the indirect genetic benefits of cooperative interactions, and the indirect genetic costs of competition for space. In our model, habitat structure and a continuous life cycle makes the cost of competing for space with relatives negligible. Our study yields a classification of adaptive patterns of altruism according to the shape of the costs of altruism (with decelerating, linear, or accelerating dependence on the investment in altruism). The invasion of altruism occurs readily in species with accelerating costs, but large mutations are critical for altruism to evolve in selfish species with decelerating costs. Strict selfishness is maintained by natural selection only under very restricted conditions. In species with rapidly accelerating costs, adaptation leads to an evolutionarily stable rate of investment in altruism that decreases smoothly with the level of mobility. A rather different adaptive pattern emerges in species with slowly accelerating costs: high altruism evolves at low mobility, whereas a quasi-selfish state is promoted in more mobile species. The high adaptive level of altruism can be predicted solely from habitat connectedness and physiological parameters that characterize the pattern of cost. We also show that environmental changes that cause increased mobility in those highly altruistic species can beget selection-driven self-extinction, which may contribute to the rarity of social species. 相似文献
19.
J. D. Evans 《Insectes Sociaux》1996,43(3):309-317
Summary Sex allocation was measured across six seasons in colonies of the facultatively polygynous antMyrmica tahoensis. The overall proportion of colonies that produced sexuals was constant throughout the study, but population-level sex ratios varied considerably. In 1991, 1993, and 1995, a significantly greater proportion of colonies produced females than in 1990, 1992, and 1994. Sex ratios were similar across six sites within individual years, suggesting a population-wide cause of sex-ratio variation. Individual colonies tended, on average, to produce similar sex ratios in consecutive years. Within-colony genetic relatedness, while strongly correlated with sex ratios within years, did not explain the year-to-year variation. It is suggested that extrinsic factors can limit the production of female sexuals, even when genetic relatedness is high enough to favor female production. 相似文献
20.
Xiang‐Yi Li Hanna Kokko 《Biological reviews of the Cambridge Philosophical Society》2019,94(2):721-736
Dispersal is ubiquitous throughout the tree of life: factors selecting for dispersal include kin competition, inbreeding avoidance and spatiotemporal variation in resources or habitat suitability. These factors differ in whether they promote male and female dispersal equally strongly, and often selection on dispersal of one sex depends on how much the other disperses. For example, for inbreeding avoidance it can be sufficient that one sex disperses away from the natal site. Attempts to understand sex‐specific dispersal evolution have created a rich body of theoretical literature, which we review here. We highlight an interesting gap between empirical and theoretical literature. The former associates different patterns of sex‐biased dispersal with mating systems, such as female‐biased dispersal in monogamous birds and male‐biased dispersal in polygynous mammals. The predominant explanation is traceable back to Greenwood's ( 1980 ) ideas of how successful philopatric or dispersing individuals are at gaining mates or the resources required to attract them. Theory, however, has developed surprisingly independently of these ideas: models typically track how immigration and emigration change relatedness patterns and alter competition for limiting resources. The limiting resources are often considered sexually distinct, with breeding sites and fertilizable females limiting reproductive success for females and males, respectively. We show that the link between mating system and sex‐biased dispersal is far from resolved: there are studies showing that mating systems matter, but the oft‐stated association between polygyny and male‐biased dispersal is not a straightforward theoretical expectation. Here, an important understudied factor is the extent to which movement is interpretable as an extension of mate‐searching (e.g. are matings possible en route or do they only happen after settling in new habitat – or can females perhaps move with stored sperm). We also point out other new directions for bridging the gap between empirical and theoretical studies: there is a need to build Greenwood's influential yet verbal explanation into formal models, which also includes the possibility that an individual benefits from mobility as it leads to fitness gains in more than one final breeding location (a possibility not present in models with a very rigid deme structure). The order of life‐cycle events is likewise important, as this impacts whether a departing individual leaves behind important resources for its female or male kin, or perhaps both, in the case of partially overlapping resource use. 相似文献