首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多方式认知功能成像研究进展   总被引:4,自引:1,他引:4  
对大脑结构和功能的深入研究要求认知功能成像技术同时具有高时间分辨率和高空间分辨率.多方式认知功能成像通过不同成像技术fMRI/PET和EEG/MEG的结合,能够同时在空间定位和时间过程上研究大脑认知活动的动态过程.多方式认知功能成像已经被成功地应用于选择性注意、视觉通路、随意运动和语义加工等的研究,并揭示了相关大脑活动的空间和时间特征.今后的研究将进一步提高多方式认知功能成像的时空分辨率和准确性,以更深入地探索认知功能的神经机制.  相似文献   

2.
Objective: We determined whether fat accumulation in the liver is associated with features of insulin resistance independent of obesity. Research Methods and Procedures: We recruited 27 obese nondiabetic women in whom liver fat (LFAT) content was determined by proton spectroscopy, intra-abdominal and subcutaneous fat by magnetic resonance imaging, and insulin sensitivity by the euglycemic insulin clamp technique. The women were divided based on their median LFAT content (5%) to groups with low (3.2 ± 0.3%) and high (9.8 ± 1.5%) liver fat. The groups were almost identical with respect to age (36 ± 1 vs. 38 ± 1 years in low vs. high-LFAT), body mass index (32.2 ± 0.6 vs. 32.8 ± 0.5 kg/m2), waist-to-hip ratio, intra-abdominal, subcutaneous, and total fat content. Results: Women with high LFAT had features of insulin resistance including higher fasting serum triglyceride (1.93 ± 0.21 vs. 1.11 ± 0.09 mM, p < 0.01) and insulin (14 ± 3 vs. 10 ± 1 mU/L, p < 0.05) concentrations than women with low LFAT. The group with high LFAT also had higher 24-hour blood pressures, and lower whole-body insulin sensitivity compared with the low-LFAT group. Discussion: In obese women with previous gestational diabetes, LFAT, rather than any measure of body composition, is associated with features of insulin resistance.  相似文献   

3.
Objective: Insulin resistance in obese subjects results in the impaired use of glucose by insulin‐sensitive tissues, e.g., skeletal muscle. In the present study, we determined whether insulin resistance in obesity is associated with an impaired ability of exercise to stimulate muscle blood flow, oxygen delivery, or glucose uptake. Research Methods and Procedures: Nine obese (body mass index = 36 ± 2 kg/m2) and 11 age‐matched nonobese men (body mass index = 22 ± 1 kg/m2) performed one‐legged isometric exercise during hyperinsulinemia. Rates of femoral muscle blood flow, oxygen consumption, and glucose uptake were measured simultaneously in both legs using [15O]H2O, [15O]O2, [18F]fluoro‐deoxy‐glucose, and positron emission tomography. Results: The obese subjects exhibited resistance to insulin stimulation of glucose uptake in resting muscle, regardless of whether glucose uptake was expressed per kilogram of femoral muscle mass (p = 0.001) or per the total mass of quadriceps femoris muscle. At similar workloads, oxygen consumption, blood flow, and glucose uptake were lower in the obese than the nonobese subjects when expressed per kilogram of muscle, but similar when expressed per quadriceps femoris muscle mass. Discussion: We conclude that obesity is characterized by insulin resistance of glucose uptake in resting skeletal muscle regardless of how glucose uptake is expressed. When compared with nonobese individuals at similar absolute workloads and under identical hyperinsulinemic conditions, the ability of exercise to increase muscle oxygen uptake, blood flow, and glucose uptake per muscle mass is blunted in obese insulin‐resistant subjects. However, these defects are compensated for by an increase in muscle mass.  相似文献   

4.
Near-infrared photoimmunotherapy (NIR-PIT) induces immediate cell death after irradiation with near-infrared (NIR) light. Acute therapeutic effects caused by NIR-PIT before the change of tumor size is essential to be monitored by imaging modalities. We summarized and compared the imaging modalities for evaluating acute therapeutic effects after NIR-PIT, and aimed to provide a better understanding of advantages and disadvantages of each modality for evaluation in clinical applications. Fluorescence imaging and fluorescence lifetime, with high resolution, remains high accumulation of fluorescence dyes in the normal organs. High resolution and noninvasiveness are the major advantages of magnetic resonance imaging, while 18F-fluorodeoxyglucose positron emission tomography provides information about the glucose metabolism. Optical coherence tomography provided more information about the blood vessels. Thus, all of the imaging modalities play an important role in evaluating acute therapeutic effects after NIR-PIT. Clinicians should choose suitable modality according to specific purpose and conditions in clinical application.  相似文献   

5.
Background. In idiopathic dilated cardiomyopathy (IDC) an imbalance between myocardial oxygen consumption and supply has been postulated. Subclinical myocardial ischaemia may contribute to progressive deterioration of left ventricular function. The relation between regional myocardial perfusion reserve (MPR) and contractile performance was investigated. Methods. Patients with newly diagnosed IDC underwent positron emission tomography (PET) scanning using both 13N-ammonia as a perfusion tracer (baseline and dypiridamole stress), and 18F-fluorodeoxyglucose viability tracer and a dobutamine stress MRI. MPR (assessed by PET) as well as wall motion score (WMS, assessed by MRI) were evaluated in a 17-segment model. Results. Twenty-two patients were included (age 49±11 years; 15 males, LVEF 33±10%). With MRI, a total of 305 segments could be analysed. Wall motion abnormalities at rest were present in 127 (35.5%) segments and in 103 (29.9%) during dobutamine stress. Twenty-one segments deteriorated during stress and 43 improved. MPR was significantly higher in those segments that improved, compared with those that did not change or were impaired during stress (1.87±0.04 vs. 1.56± 0.07 p<0.01.) Conclusion. Signs of regional ischaemia were clearly present in IDC patients. Ischaemic regions displayed impaired contractility during stress. This suggests that impaired oxygen supply contributes to cardiac dysfunction in IDC. (Neth Heart J 2009;17:470–4.)  相似文献   

6.
Objective: Altered satiation may impact postprandial symptoms and potentially change food intake in obesity. Our aim was to compare effects of octreotide and placebo on postprandial symptoms, satiation, and gastric volumes in obesity. Research Methods and Procedures: In a randomized, parallel‐group, double‐blind, placebo‐controlled study, 26 obese but otherwise healthy participants received 100 μg of octreotide or placebo subcutaneously 30 minutes before each study. Studies were performed on 2 separate days and included validated non‐invasive techniques: 99mTc‐single photon emission computed tomography imaging to measure fasting stomach volume and gastric volume changes after 90 mL of water and 240 mL of Ensure and a standardized nutrient drink test to measure the maximum tolerated volume and postprandial symptoms. Results: Relative to placebo, octreotide increased gastric volume after 90 mL of water; however, fasting and gastric volume change post‐Ensure and maximum tolerated volume of Ensure were not different. Octreotide decreased sensations of fullness (p = 0.035) and bloating (p = 0.05) and tended to reduce aggregate symptoms (p = 0.07) after the fully satiating meal. Discussion: In obese individuals, somatostatin analog significantly reduced postprandial sensations after a satiating meal without altering maximum tolerated meal volume or postnutrient gastric volume, suggesting an effect on upper gut sensation. The role of somatostatin as a permissive factor in the development of obesity by reducing postprandial sensations deserves further study.  相似文献   

7.
脑科学和脑功能MR成像   总被引:2,自引:0,他引:2  
目的:在对大脑认知功能进行脑功能成像研究之中,随着磁共振成像技术的发展,人们现在可以对脑的认知功能,如视觉、运动、语言和记忆等功能中枢进行成像。本文首先介绍了脑科学的发展历程,并从脑功能MR成像的方法出发,分析了其成像机理,探讨了用脑功能MR成像为手段对脑科学—认知科学进行的方法研究,最后对脑功能MR成像应用于脑科学的研究作了展望。  相似文献   

8.
脑功能磁共振成像是近年来磁共振成像技术的一项新发展,为从单一形态学研究到形态与功能相结合的系统研究开辟了一条崭新的道路。本文主要介绍了人脑的功能活动磁共振成像的概念、原理、试验设计、临床的研究现状。  相似文献   

9.
10.
Introduction. The role of positron emission tomography (PET) in Creutzfeldt-Jakob disease is less defined than in other neurodegenerative diseases. We studied the correlation between the uptake of 18F-florbetaben and 18F-fluorodeoxyglucose with pathological prion protein deposition in histopathology in a case.Methods. A patient with 80 y old with a rapid neurological deterioration with a confirmed diagnosis of CJD was studied. PET and MRI studies were performed between 13–20 d before the death. A region of interest analysis was performed using Statistical Parametric Mapping.Results. MRI showed atrophy with no other alterations. FDG-PET showed extensive areas of hypometabolism including left frontoparietal lobes as well as bilateral thalamus. Correlation between uptake of 18F-florbetaben and pathological prion protein deposition was r = 0.786 (p < 0.05). Otherwise, correlation between uptake of 18F-FDG and pathological prion protein was r = 0.357 (p = 0.385). Immunohistochemistry with β-amyloid did not show amyloid deposition or neuritic plaques.Conclusions. Our study supports the use of FDG-PET in the assessment of CJD. FDG-PET may be especially useful in cases of suspected CJD and negative MRI. Furthermore, this case report provides more evidence about the behavioral of amyloid tracers, and the possibility of a low-affinity binding to other non-amyloid proteins, such as the pathological prion protein, is discussed.  相似文献   

11.
Decreased brain content of DHA, the most abundant long-chain n-3 polyunsaturated fatty acid (n-3 LCPUFA) in the brain, is accompanied by severe neurosensorial impairments linked to impaired neurotransmission and impaired brain glucose utilization. In the present study, we hypothesized that increasing n-3 LCPUFA intake at an early age may help to prevent or correct the glucose hypometabolism observed during aging and age-related cognitive decline. The effects of 12 months’ supplementation with n-3 LCPUFA on brain glucose utilization assessed by positron emission tomography was tested in young adult mouse lemurs (Microcebus murinus). Cognitive function was tested in parallel in the same animals. Lemurs supplemented with n-3 LCPUFA had higher brain glucose uptake and cerebral metabolic rate of glucose compared with controls in all brain regions. The n-3 LCPUFA-supplemented animals also had higher exploratory activity in an open-field task and lower evidence of anxiety in the Barnes maze.jlr Our results demonstrate for the first time in a nonhuman primate that n-3 LCPUFA supplementation increases brain glucose uptake and metabolism and concomitantly reduces anxiety.  相似文献   

12.
Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet ( Beta vulgaris ) and radish plants ( Raphanus sativus ) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants ( Zea mays ), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI–PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.  相似文献   

13.
人脑是自然界中最复杂的系统之一,不同的功能区域相互作用、互相协调,共同构成一个网络来发挥其功能。人脑是一个复杂的网络,具有高效的“小世界”拓扑属性。本文从脑结构到脑功能方面介绍了从不同模态影像学数据构造脑网络的主要进展,并探讨不同的脑疾病患者脑网络拓扑结构是否发生了异常,以及这些异常特征能否用来进行疾病分类,最后对本领域未来的研究做了简单的展望。  相似文献   

14.
Nocturnal enuresis is a common and distressing developmental disease, which may cause various degrees of psychosocial stress and impairment to self-esteem in affected children as well as agitation to their parents or caregivers. Nevertheless, the etiology and pathogenesis of nocturnal enuresis are not understood. Currently, nocturnal enuresis is generally considered a multifactorial disease associated with a complex interaction of somatic, psychosocial, and environmental factors. A variety of postulations have been proposed to explain the occurrence and progression of nocturnal enuresis, including hereditary aberration, abnormal circadian rhythm of antidiuretic hormone secretion during sleep, bladder dysfunction, abnormal sleep, difficulties in arousal, neuropsychological disorders, and maturational delays of the brain. In recent decades, the introduction of functional neuroimaging technologies has provided new approaches for uncovering the mechanisms underlying nocturnal enuresis. The main neuroimaging modalities have included brain morphometry based on structural magnetic resonance imaging (MRI), task-based and event-related functional MRI (fMRI), and resting-state fMRI. The relevant studies have indicated that nocturnal enuresis is associated with functional and structural alterations of the brain. In this review, we briefly summarized the popular hypotheses regarding the pathogenesis of nocturnal enuresis and the current progress of functional neuroimaging studies in examining the underlying mechanisms thereof.  相似文献   

15.
Drugs and food exert their reinforcing effects in part by increasing dopamine (DA) in limbic regions, which has generated interest in understanding how drug abuse/addiction relates to obesity. Here, we integrate findings from positron emission tomography imaging studies on DA's role in drug abuse/addiction and in obesity and propose a common model for these two conditions. Both in abuse/addiction and in obesity, there is an enhanced value of one type of reinforcer (drugs and food, respectively) at the expense of other reinforcers, which is a consequence of conditioned learning and resetting of reward thresholds secondary to repeated stimulation by drugs (abuse/addiction) and by large quantities of palatable food (obesity) in vulnerable individuals (i.e. genetic factors). In this model, during exposure to the reinforcer or to conditioned cues, the expected reward (processed by memory circuits) overactivates the reward and motivation circuits while inhibiting the cognitive control circuit, resulting in an inability to inhibit the drive to consume the drug or food despite attempts to do so. These neuronal circuits, which are modulated by DA, interact with one another so that disruption in one circuit can be buffered by another, which highlights the need of multiprong approaches in the treatment of addiction and obesity.  相似文献   

16.
Some reviews on theories of recovery in aphasia put an emphasis on neural network models based on empirical data from evoked-potentials in aphasia as an approach to mapping recovery of cognitive function to neural structure. We will focus here on what we call an "anatomical" approach to look at recovery in aphasia. "Anatomical" theories of recovery stated by classical aphasiologists have contributed to the understanding of language representations in the human brain. But many aspects of these theories can only be investigated by using modern techniques of lesion analysis, psychometric assessment and functional imaging. Whereas structure-function relations have been primarily established by looking for the association of deficit symptoms with certain lesions, functional activation methods offer a means to study more directly the functional anatomy of recovered or retained functions in neuropsychological patients. To falsify or build up anatomical theories of recovery we will propose a stepwise approach of inference. The methodological pitfalls of this approach will be discussed by focussing on anatomical hypotheses of semantic word comprehension and its impairment and recovery in aphasia.  相似文献   

17.
Wu YM  Bai L  Zhang ZQ  Zheng JL  Han LX  Shu SY 《生理学报》2011,63(4):319-324
本文旨在通过功能磁共振成像(functional magnetic resonance imaging,fMRI)技术研究正常人进行长时数字记忆信息提取的神经基础。选取22名右利手志愿者进行长时数字记忆任务实验,采用组块设计,记忆任务与对照任务交替进行,同时利用Siemens 1.5T超导型磁共振仪进行fMRI成像,采用SPM99软件进行数据分析,脑功能区定位在Talairach坐标中显示。结果显示被试者在进行长时数字记忆提取任务时,激活最显著的皮层是左侧额中回(Brodmann分区9区,BA9区),另外左额叶内侧回、左额下回、右额下回、扣带回、左顶下小叶、左顶上小叶、右顶上小叶、右颞中回、左枕舌回、左枕中回、右中脑、小脑、右尾状核尾部等结构也有激活,各大脑皮层的激活均呈现明显的左侧半球优势。根据上述结果推论,长时数字记忆由以左侧大脑半球为优势的各脑区共同参与完成,其中左侧额叶外侧面可能是信息提取的重要结构,而其它脑叶及其之间的广泛联系可能在数字信息的加工、处理和存储中起重要作用。  相似文献   

18.
Atrophy is one of the major age‐related changes in the brain. The absence of brain atrophy in elderly individuals reflects deceleration in the process of biological aging. Moreover, results from human twin studies suggest a large genetic influence on the variance of human brain tissue volumes. To investigate the association of brain volumes with exceptional longevity, we tested whether middle‐aged to elderly offspring of nonagenarian siblings have larger brain volumes than their spouses using magnetic resonance imaging. No differences in whole brain, gray matter and white matter volume were found. These brain volumes were associated with chronological age in offspring and control subjects (all P < 0.001). Left amygdalar volume of the offspring was larger (P = 0.03) compared with control subjects [mean volume offspring (cm3) (95% confidence interval, CI) = 1.39 (1.36–1.42), mean volume control subjects (cm3) (95% CI) = 1.32 (1.29–1.35)]. Association of left amygdalar volume with familial longevity was particularly pronounced when offspring with the oldest long‐lived parent were compared with control subjects (P = 0.01). Amygdalar volumes were not associated with chronological age in both groups. Our findings suggest that the observed association of a larger left amygdalar volume with familial longevity is not caused by a relative preservation of the left amygdala during the course of aging but most likely a result of early development caused by a genetic familial trait.  相似文献   

19.
20.
This study investigates the neurophysiological basis of EEG feedback for patients with epilepsy. Brain areas are identified that become hemodynamically deactivated when epilepsy patients, trained in EEG self-regulation, generate positive slow cortical potentials (SCPs). Five patients were trained in producing positive SCPs, using a training protocol previously established to reduce seizure frequency in patients with drug refractory epilepsy. Patients attempted to produce positive SCP shifts in a functional magnetic resonance imaging (fMRI) scanner. Two patients were able to reliably produce positive SCP shifts. When these successful regulators were prompted to produce positive SCPs, blood oxygen level-dependent (BOLD) response indicated deactivation, in comparison to a control state, around the recording electrode, frontal lobe, and thalamus. Unsuccessful regulators’ BOLD response indicated no deactivation in cortical areas proximal to the active electrode. No thalamic deactivation was found in poor regulators. Decreased seizure frequency from SCP training may be the result of positively reinforced inhibition in cortical areas proximal to active electrode placement, the frontal cortex, and the thalamus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号