首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《新西兰生态学杂志》2011,32(2):177-185
Browsing by introduced brushtail possums is linked to major declines in mistletoe abundance in New Zealand, yet in some areas mistletoes persist, apparently unaffected by the presence of possums. To determine the cause of this spatial variation in impact I investigated the abundance and condition (crown dieback and extent of possum browse) of two mistletoes (Alepis flavida, Peraxilla tetrapetala) and abundance and diet of possums in two mountain beech (Nothofagus solandri var. cliffortioides) forests in the central-eastern South Island of New Zealand. Mistletoe is common and there are long-established uncontrolled possum populations in both forests. Mistletoes were abundant (216?1359 per hectare) and important in possum diet (41?59% of total diet), but possum density was low (c. 2 per hectare) in both areas. Possum impacts were slight with low browse frequencies and intensities over much of the study sites. However, impacts were significantly greater at a forest margin, where possum abundance was highest, and at a high-altitude site where mistletoe density was lowest. Mistletoe crown dieback was inversely proportional to intensity of possum browsing. These results suggest that the persistence of abundant mistletoe populations at these sites is due to mistletoe productivity matching or exceeding consumption by possums in these forests of low possum-carrying capacity, rather than low possum preference for the local mistletoe populations.  相似文献   

2.
  1. White-tailed deer (Odocoileus virginianus Zimmermann) and insect pests negatively affect soybean production; however, little is known about how these herbivores potentially interact to affect soybean yield. Previous studies have shown deer browse on non-crop plants affects insect density and insect-mediated leaf damage, which together reduce plant reproductive output. In soybeans, reproductive output is influenced by direct and indirect interactions of different herbivores.
  2. Here, we quantified indirect interactions between two groups of herbivores (mammals and insects) and their effects on soybean growth and yield. We examined responses of insect pest communities along a gradient of deer herbivory (29% to 49% browsed stems) in soybean monocultures.
  3. Structural equation models showed that deer browse had direct negative effects on soybean plant height and yield. Deer browse indirectly decreased insect-mediated leaf damage by reducing plant height. Deer browse also indirectly increased pest insect abundance through reductions in plant height. Similarly, deer herbivory had an indirect positive effect on leaf carbon: nitrogen ratios through changes in plant height, thereby decreasing leaf nutrition.
  4. These results suggest that pest insect abundance may be greater on soybean plants in areas of higher deer browse, but deer browse may reduce insect herbivory through reduced leaf nutrition.
  相似文献   

3.
The condition of 79 plants of the loranthaceous mistletoe Tupeia antarcticain a podocarp-hardwood forest in the central North Island, New Zealand, was monitored over 4 years during a period of increasing possum density, following previous possum control. Mistletoe comprised 1.2% of total possum diet during the three years following possum control. Incidence of possum browse on mistletoe plants increased from 2.6% of plants when the trap-catch index of possum density was < 3%, to 75.9% of plants when trap-catch rates reached 4.6%. Mistletoe foliage cover declined from 49.8% to 15.6% and mean plant size declined by about 55% over the same period. The mistletoe population was dominated by plants with large haustoria, located in heavily shaded locations in the lower crown of their Carpodetus serratus hosts. Most plants established more than 20 years ago, and the current potential for recruitment of new individuals into the population is severely limited by possum browsing and the senescent nature of the mistletoe population. Intensive management of host crowns and possum populations will be necessary to ensure the long-term viability of mistletoe at the study site.  相似文献   

4.
This study provides the first quantitative comparison of methods for monitoring herbivory and growth of New Zealand beech mistletoes (Alepis flavida, Peraxilla colensoi and Peraxilla tetrapetala). Four monitoring methods-leaf maps, volume estimates visual estimates of browse and foliage density, and rePeat fixed-point photographs-were used to assess the health of 60 permanently tagged mistletoe plants in four South Island beech forests between February 1997 and February 1998. Leaf maps provided the most detailed information but were extremely labour-intensive so could only be used to monitor a small number of plants. Photographs were much faster to use, and the results corresponded well to leaf map data, but A. flavida could not be photographed because it was frequently hidden by host foliage. Visual scoring methods and volume measurements did not correlate well with leaf maps, probably because leaf loss and growth were not obvious without images of plants from previous seasons. Thus, photographs can provide valuable reference points for future evaluation of plant condition. However, because photos require more time and money than visual scoring and can only be used on a subset of the population, their most practical use is as a supplement to visual scoring.  相似文献   

5.
We examined the effects of leaf herbivory by the dorcas gazelle, Gazella dorcas, on the compensatory growth of the geophyte Pancratium sickenbergeri (Amaryllidaceae) in the Negev desert, Israel. In three populations exposed to different levels of herbivory, we removed different amounts of photosynthetic leaf area from plants in five clipping treatments: 0, 25, 50%-dispersed over all leaves, 50%-entire area of half the leaves, 100%. The population with the lowest level of herbivory showed the lowest relative regrowth rate after clipping. In the population with a constantly high level of herbivory, plants in intermediate-clipping treatments overcompensated in leaf area after clipping. For all the populations, clipped plants produce more new leaves than unclipped plants. In the population with the highest level of herbivory, clipping treatments did not have a significant effect on the number of fruits per plant. In addition, we did not find a trade-off between investments in growth and reproduction in this population. Our results indicated that, in the desert lily, herbivores may select for plant mechanisms that compensate after damage as a tolerant strategy to maintain fitness.  相似文献   

6.
《新西兰生态学杂志》2011,28(2):195-206
This study examined how forest edges influenced leaf and floral herbivory, as well as seed predation, in a native New Zealand mistletoe species, Alepis flavida. Plants growing on forest edges and in forest interior were compared, and effects of plant size and the neighbouring conspecific plant community were also examined. Leaf herbivory by possums was significantly greater on forest edges than in forest interior in a year of high possum damage, but not in a year with low damage levels. Insect leaf herbivory did not differ between forest edges and interior. Although equal numbers of plants on edges v. interior experienced some floral damage by a specialist caterpillar, there were significantly higher levels of damage on plants growing in the forest interior than on forest edges. Plants with floral damage were larger than plants without damage, and distance to neighbouring mistletoe plants was positively correlated with amount of floral damage, but only for plants in the interior. Significantly greater numbers of plants on edges than in the interior exhibited seed predation by the same specialist caterpillar that caused floral damage, suggesting greater fruit abortion rates in the interior. Amounts of seed damage were inversely correlated with plant size. Forest edges had much stronger effects on leaf herbivory by possums, as well as floral herbivory and seed predation, than did plant size or the neighbouring plant community.  相似文献   

7.
Insect herbivores can reduce growth, seed production, and population dynamics of host plants, but do not always do so. Big sagebrush (Artemisia tridentata) has one of the largest ranges of any shrub in North America, and is the dominant and characteristic shrub of the extensive sagebrush steppe ecosystem of the western United States. Nevertheless, the impact of insect herbivores on big sagebrush, its dominant and characteristic shrub, is largely unknown. Occasional large effects of insect herbivore outbreaks are documented, but there is little knowledge of the impact of the more typical, nominal herbivory that is produced by the diverse community of insects associated with big sagebrush in natural communities. In 2008, we removed insects from big sagebrush plants with insecticide to evaluate whether insect herbivores reduced growth and seed production of big sagebrush. Removal of herbivores led to significant and substantial increases in inflorescence growth (22%), flower production (325%), and seed production (1053%) of big sagebrush. Our results showed the impact of insect herbivory in the current growing season on the growth and reproduction of big sagebrush and revealed an unrecognized, significant role of non-outbreak herbivores on big sagebrush.  相似文献   

8.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

9.
10.
Abstract Plant invasions create novel plant–insect interactions. The EICA (evolution of increased competitive ability) hypothesis proposes that invasive plants will reallocate resources from defense to growth and/or reproduction because they have escaped from their co‐evolved insect natural enemies. Testing multiple herbivory by monophagous and oligophagous herbivores and simultaneous measurement of various plant traits will provide new insights into the evolutionary change of invasive plants. In this context, we conducted a common garden experiment to compare plant growth and reproduction, chemical and physical defense, and plant responses to herbivory by different types of herbivores between invasive North American populations and native East Asian populations of mile‐a‐minute weed, Persicaria perfoliata. We found that invasive mile‐a‐minute exhibited lower biomass, flowered earlier and had greater reproductive output than plants from the native range. Compared with native populations, plants from invasive populations had lower tannin content, but exhibited higher prickle density on nodes and leaves. Thus our results partially support the EICA hypothesis. When exposed to the monophagous insect, Rhinoncomimus latipes and the oligophagous insects, Gallerucida grisescens and Smaragdina nigrifrons, more damage by herbivory was found on invasive plants than on natives. R. latipes, G. grisescens and S. nigrifrons had strong, moderate and weak impacts on the growth and reproduction of mile‐a‐minute, respectively. The results indicate that mile‐a‐minute may have evolved a higher reproductive capacity in the introduced range, and this along with a lack of oligophagous and monophagous herbivores in the new range may have contributed to its invasiveness in North America.  相似文献   

11.
12.
To minimize the impacts of introduced pests and to justify and prioritize pest control, managers need to know the relationship between pest density and damage. This relationship can be difficult to quantify because pest impacts can be highly variable. In New Zealand, introduced brushtail possums (Trichosurus vulpecula) browse a wide range of native forest species. However, possum browse is extremely patchy making it difficult to quantify the relationship between density and damage, meaning the benefits of reducing possum densities are poorly understood. We quantified patterns of possum browse on kamahi (Weinmannia racemosa), a common canopy tree species, at 21 forest sites that were repeat‐measured over an 8‐year period in the North Island, New Zealand, during which time possum densities fluctuated widely. We fitted a multilevel statistical model in order to quantify the relationship between possum density and browse damage while simultaneously quantifying how browse varied among trees, sites and years. Higher possum densities were associated with greater browse damage, but browse was also patchily distributed among trees at the same site, and among sites and years for a given possum density. This heterogeneity meant there was no simple density damage relationship, with the relationship differing from tree to tree and among sites and years. Our results show that at most sites reductions in possum density would have little benefit in reducing the probability of heavy browse on kamahi trees, but at a few sites there would be substantial benefits. This approach provides insights into the pattern and potential causes of variability in possum impacts, and a quantitative basis for prioritizing sites for possum control.  相似文献   

13.
We explored consequences of spatial and temporal heterogeneity in herbivory on the survival, growth, and reproduction of the Californian native dune thistle, Cirsium occidentale, in coastal and inland sites, for 2 years. We assessed the relative impacts of insect and mammalian herbivores and compared the relative importance of herbivory in coastal and inland habitats and among locations with different microclimates across a coastal dune. Effects of insect and mammalian herbivores were tested with a combination of insecticidal spray and cage exclusion treatments in a factorial experiment at the coastal site. Mammalian herbivores strongly affected the population dynamics of C. occidentale in both years, and their effects were augmented by fungal infection (1991), herbivory by stem-borers (1990) and, to a lesser extent, by insect seed predators in both years. Mammals caused most plant deaths, but the mammal species responsible differed among sites. Rabbit herbivory altered the vegetative growth of coastal thistles and significantly modified other key aspects of Cirsium demography, including growth rate and timing of reproduction. Small, uncaged plants grazed by rabbits took at least 1 year longer to mature than did caged plants. Larvae of Pyrausta subsequalis were the only insects that killed established plants. In 1990 and 1991, the numbers of insects damaging seed heads before dispersal were low, but were sufficient to cause receptacle and seed damage. The number of mature, undamaged seeds (and percent successful seed production) was reduced significantly only for heads infested by fungi near the ocean in 1991: the fungus occurred in 37% of heads and caused a 77% reduction in mature seeds. Received: 21 October 1996 / Accepted: 27 March 1997  相似文献   

14.
Aquatic macrophytes with floating leaves are often key ecological species that affect entire aquatic ecosystems. Here we describe an investigation of the importance of insect herbivory for population growth and leaf senescence in the yellow water lily (Nuphar lutea). In order to gain a general picture of the importance of herbivory under different conditions, we experimentally manipulated herbivory in a large lily population in natural still water and observed the natural development of 32 smaller populations in flowing water. Herbivory drastically increased leaf senescence, reducing leaf density. In the still water, over one summer, leaf density increased by a factor of 1.23 in the presence of water lily leaf beetles and 1.61 when herbivory was eliminated. In flowing water, population growth was restricted mainly by leaf crowdedness, which limited large dense populations. Herbivory by water lily leaf beetles also had a limiting effect on yellow water lily, again mainly in large dense populations. Small populations supported a lower density of beetles. Previous studies have not addressed population-level responses of vascular plants with floating leaves. Our results suggest that herbivory can result in greater light penetration into the water and reduce “enemy-free space” for aquatic species that find such space in water lily stands. We suggest that the water lily leaf beetle should be considered an “ecological engineer.”  相似文献   

15.
By altering myriad aspects of leaf chemistry, increasing concentrations of CO2 and O3 in the atmosphere derived from human activities may fundamentally alter the relationships between insect herbivores and plants. Because exposure to elevated CO2 can alter the nutritional value of leaves, some herbivores may increase consumption rates to compensate. The effects of O3 on leaf nutritional quality are less clear; however, increased senescence may also reduce leaf quality for insect herbivores. Additionally, changes in secondary chemistry and the microclimate of leaves may render plants more susceptible to herbivory in elevated CO2 and O3. Damage to soybean (Glycine max L.) leaves and the size and composition of the insect community in the plant canopy were examined in large intact plots exposed to elevated CO2 (~550 μmol mol−1) and elevated O3 (1.2*ambient) in a fully factorial design with a Soybean Free Air Concentration Enrichment system (SoyFACE). Leaf area removed by folivorous insects was estimated by digital photography and insect surveys were conducted during two consecutive growing seasons, 2003 and 2004. Elevated CO2 alone and in combination with O3 increased the number of insects and the amount of leaf area removed by insect herbivores across feeding guilds. Exposure to elevated CO2 significantly increased the number of western corn rootworm (Diabrotica virgifera) adults (foliage chewer) and soybean aphids (Aphis glycines; phloem feeder). No consistent effect of elevated O3 on herbivory or insect population size was detected. Increased loss of leaf area to herbivores was associated with increased carbon-to-nitrogen ratio and leaf surface temperature. Soybean aphids are invasive pests in North America and new to this ecosystem. Higher concentrations of CO2 in the atmosphere may increase herbivory in the soybean agroecosystem, particularly by recently introduced insect herbivores. Handling editor: Gary Felton.  相似文献   

16.
Krischik VA  Denno RF 《Oecologia》1990,83(2):182-190
Summary Patterns of growth, reproduction, defense (leaf resin) and herbivory were compared between the sexes of the dioecious shrub Baccharis halimifolia (Compositae). Male plants possessed longer shoots and more tender leaves, grew faster, and flowered and senesced earlier than female plants. Levels of leaf nitrogen, water content, and acetone-soluble resin (shown to deter feeding by polyphagous insect herbivores) did not differ between male and female plants. When offered a choice between leaves from male and female plants, adults of two leaf beetles (Chrysomelidae), the monophagous Trirhabda bacharidis and the polyphagous Paria thoracica, both preferred to feed on male leaves. Similarly, the daily fecundity of older females of T. bacharidis was higher when they were fed leaves from male compared to female plants. However, adult survivorship and total fecundity of T. baccharidis did not differ between male and female leaf treatments. We attribute the feeding preference for and slight increase in fecundity on male plants to the tenderness of male leaves. Larvae of the fly Tephritis subpura (Tephritidae) fed exclusively in the sterile receptacle of male flower heads (85% infested), but the phenology was such that pollen production was not adversely affected. Larvae of two other flies Dasineura sp. and Contarinia sp. (Cecidomyiidae) occupied >95% of only female flower heads where they fed among and on the developing seeds. We conclude that foliage-feeding herbivores are unlikely candidates to explain the female-biased sex ratio (59% female) of B. halimifolia plants in the field, and that their preference for male plants is a result of plant characteristics (e.g. rapid growth) that have been selected by some other factor. However, our data on selective floral herbivory in B. halimifolia are in accord with the argument that dioecy reduces the inadvertent loss of flower parts of one sex when herbivores feed on flower parts of the opposite sex.  相似文献   

17.
Abstract For 150 years mistletoe host-resemblance has been an unsolved puzzle. Mimicry, camouflage, host protection and shape modification by the host tree have all been advanced as possible solutions. No extended examination of herbivory of host-parasite pairs has ever been done, however, to put these explanations to the test. The study was carried out in northeastern Australia from March to July 1994. Rates of leaf herbivory were estimated for seven individuals of Amyema biniflora Barlow (a cryptic mistletoe species), Dendrophthoe glabrescens (Blakely) Barlow (a non-cryptic mistletoe species) and their host trees (Eucalyptus tessellaris F. Muell. and Eucalyptus platyphylla F. Muell., respectively). In addition three measures of leaf palatability–nitrogen content, moisture content and toughness–were also assessed. Variability in mistletoe leaf shape was quantified by measuring the leaf widths of mistletoes on a variety of host tree species. Mistletoes sustained greater levels of herbivory compared to their host trees, but herbivory did not differ between mistletoe species. The non-cryptic mistletoe had lower levels of nitrogen compared to its host tree, but there was no difference in nitrogen levels between the cryptic mistletoe and its host. The moisture content of mistletoe leaves was greater than that of their hosts but not between mistletoe or host species. The mistletoe species had tougher leaves than their host trees. Leaf shape was different for one species of mistletoe growing on different host trees, but constant for another species of mistletoe. The results contradict, in some crucial aspect, all of the mimicry hypotheses currently on offer.  相似文献   

18.
《新西兰生态学杂志》2011,31(2):202-207
Damage by introduced brushtail possums (Trichosurus vulpecula) to Pinus radiata trees was assessed in 41 compartments of a commercial forestry plantation on the Coromandel Peninsula, New Zealand. All the trees assessed were less than 3 years old. Possum damage in the compartments was low (median prevalence 3.3%) but highly variable (range 0?30%). Eight of 37 measured habitat factors differed significantly (P < 0.05) between the sites with damaged and undamaged trees. The best predictor of mean damage was stand age, but this explained only 21% of the variation in damage among compartments. Including both stand age and New Zealand bracken (Pteridium esculentum) cover improved the model significantly and explained 36% of variation in damage. Damage was apparently unrelated to compartment size, distance from the compartment boundary, and possum den-site availability. Surprisingly, the relationship between browse damage and a trap-catch index of possum abundance was weakly negative (rS = −0.53, P = 0.05). The dense understorey associated with young pine stands tends to increase possum damage to associated P. radiata trees, but the possums in such stands may be less mobile at ground level and thus less easily trapped. Assessment of stand age and understorey characteristics, together with visual inspection for early signs of damage, is likely to be more cost-effective than possum surveys for identifying forest compartments at risk from possum browse.  相似文献   

19.
The herbivore assemblage, intensity of herbivory and factors determining herbivory levels on the mangrove Kandelia obovata (previously K. candel, Rhizophoraceae) were studied over a 13-month period at two forests with contrasting growing conditions in Hong Kong. Mai Po was part of an eutrophic embayment in the Pearl River estuary and generally offered more favourable conditions for mangrove growth, whereas Ting Kok had a rocky substratum and oceanic salinity. Twenty-four insect herbivore species were recorded on K. obovata, with lepidopteran larvae that consume leaf lamina being the dominant species. While leaf litter production was similar at the two forests, herbivory level at Mai Po (mean = 3.9% in terms of leaf area loss) was more severe than that at Ting Kok (mean = 2.3%). Peak herbivory levels were found in summer at both locations (6.5% for Mai Po and 3.8% for Ting Kok). Young leaves of K. obovata at both locations were generally preferred by the herbivores from the period of late spring to summer. Concentrations of most feeding deterrents (ash, crude fibre, and total soluble tannins) were significantly higher in both young and mature leaves at Ting Kok, whereas leaf nutrients (total nitrogen and water) were the same at the two sites. Young leaves at Ting Kok contained about 30% more tannins than their counterparts at Mai Po. Significant differences in leaf chemistry also existed between young and mature leaves at either site. The differences were concomitant with the observed patterns of leaf herbivory on K. obovata, and suggest a potential relationship between environmental quality and plant defence against herbivory.  相似文献   

20.
Summary Herbivory can alter the balance between sources and sinks within a plant, and changes in the source-sink ratio often lead to changes in plant photosynthetic rates. We investigated how feeding by three insect herbivores affected photosynthetic rates and growth of goldenrod (Solidago altissima). One, a phloem-sap feeding aphid (Uroleucon caligatum), creates an additional sink, and the other two, a leaf-chewing beetle (Trirhabda sp.) and a xylem-sap feeding spittlebug (Philaenus spumarius) both reduce source supply by decreasing leaf area. Plants were grown outside in large pots and insects were placed on them at predetermined densities, with undamaged plants included as controls. All insects were removed after a 12-day feeding period. We measured photosynthetic rates both of damaged leaves and of undamaged leaves that were produced after insect removal. Photosynthetic rates per unit area of damaged leaves were reduced by spittlebug feeding, but not by beetle or aphid feeding. Conductance of spittlebugdamaged leaves did not differ from controls, but internal carbon dioxide concentrations were increased. These results indicate that spittlebug feeding does not cause stomatal closure, but impairs fixation within the leaf. Effects of spittlebug feeding on photosynthetic rates persisted after the insects were removed from the plants. Photosynthetic rates per unit area of leaves produced after insect removal on spittlegug-damaged plants were lower than control levels, even though the measurements were taken 12 days after insect removal. The measurement leaf on spittlebugdamaged plants was reduced in area by 27% relative to the controls, but specific leaf area (leaf area/leaf weight) was increased by 18%. Because of the shift in specific leaf area, photosynthetic rates were also examined per unit leaf weight, and when this was done there were no significant differences between control and spittlebug-damaged plants. Beetle and aphid feeding had no effects on the photosynthetic rate of the leaves produced after insect removal. Plant relative growth rates (in terms of height) were reduced by spittlebugs during the period that the insects were feeding on the plants. Relative growth rates of spittlebug-damaged plants were increased above control levels after insect removal, but these plants were still shorter than controls 17 days after insect removal. Beetles and aphids did not affect plant relative growth rates or plant height. Feeding by both spittlebugs and beetles reduced leaf area, and the effect of the spittlebug was more severe than that of the beetle. These results show that effects of herbivory on photosynthetic rates cannot be predicted simply by considering changes in the source-sink ratio, and that spittlebug feeding is more damaging to the host plant than beetle or aphid feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号