首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 334 毫秒
1.
A model (GEOCARB) of the long-term, or multimillion year, carbon cycle has been constructed which includes quantitative treatment of (1) uptake of atmospheric CO2 by the weathering of silicate and carbonate rocks on the continents, and the deposition of carbonate minerals and organic matter in oceanic sediments; and (2) the release of CO2 to the atmosphere via the weathering of kerogen in sedimentary rocks and degassing resulting from the volcanic-metamorphic-diagenetic breakdown of carbonates and organic matter at depth. Sensitivity analysis indicates that an important factor affecting CO2 was the rise of vascular plants in the Palaeozoic. A large Devonian drop in CO2 was brought about primarily by the acceleration of weathering of silicate rock by the development of deeply rooted plants in well-drained upland soils. The quantitative effect of this accelerated weathering has been crudely estimated by present-day field studies where all factors affecting weathering, other than the presence or absence of vascular plants, have been held relatively constant. An important additional factor, bringing about a further CO2 drop into the Carboniferous and Permian, was enhanced burial of organic matter in sediments, due probably to the production of microbially resistant plant remains (e.g. lignin). Phanerozoic palaeolevels of atmospheric CO2 calculated from the GEOCARB model generally agree with independent estimates based on measurements of the carbon isotopic composition of palaeosols and the stomatal index for fossil plants. Correlation of CO2 levels with estimates of palaeoclimate suggests that the atmospheric greenhouse effect has been a major factor in controlling global climate over the past 600 million years.  相似文献   

2.
The dramatic decline in atmospheric CO2 evidenced by proxy data during the Devonian (416.0–359.2 Ma) and the gradual decline from the Cretaceous (145.5–65.5 Ma) onwards have been linked to the spread of deeply rooted trees and the rise of angiosperms, respectively. But this paradigm overlooks the coevolution of roots with the major groups of symbiotic fungal partners that have dominated terrestrial ecosystems throughout Earth history. The colonization of land by plants was coincident with the rise of arbuscular mycorrhizal fungi (AMF), while the Cenozoic (c. 65.5–0 Ma) witnessed the rise of ectomycorrhizal fungi (EMF) that associate with both gymnosperm and angiosperm tree roots. Here, we critically review evidence for the influence of AMF and EMF on mineral weathering processes. We show that the key weathering processes underpinning the current paradigm and ascribed to plants are actually driven by the combined activities of roots and mycorrhizal fungi. Fuelled by substantial amounts of recent photosynthate transported from shoots to roots, these fungi form extensive mycelial networks which extend into soil actively foraging for nutrients by altering minerals through the acidification of the immediate root environment. EMF aggressively weather minerals through the additional mechanism of releasing low molecular weight organic chelators. Rates of biotic weathering might therefore be more usefully conceptualized as being fundamentally controlled by the biomass, surface area of contact, and capacity of roots and their mycorrhizal fungal partners to interact physically and chemically with minerals. All of these activities are ultimately controlled by rates of carbon‐energy supply from photosynthetic organisms. The weathering functions in leading carbon cycle models require experiments and field studies of evolutionary grades of plants with appropriate mycorrhizal associations. Representation of the coevolution of roots and fungi in geochemical carbon cycle models is required to further our understanding of the role of the biota in Earth's CO2 and climate history.  相似文献   

3.
How the colonization of terrestrial environments by early land plants over 400 Ma influenced rock weathering, the biogeochemical cycling of carbon and phosphorus, and climate in the Palaeozoic is uncertain. Here we show experimentally that mineral weathering by liverworts—an extant lineage of early land plants—partnering arbuscular mycorrhizal (AM) fungi, like those in 410 Ma-old early land plant fossils, amplified calcium weathering from basalt grains threefold to sevenfold, relative to plant-free controls. Phosphate weathering by mycorrhizal liverworts was amplified 9–13-fold over plant-free controls, compared with fivefold to sevenfold amplification by liverworts lacking fungal symbionts. Etching and trenching of phyllosilicate minerals increased with AM fungal network size and atmospheric CO2 concentration. Integration of grain-scale weathering rates over the depths of liverwort rhizoids and mycelia (0.1 m), or tree roots and mycelia (0.75 m), indicate early land plants with shallow anchorage systems were probably at least 10-fold less effective at enhancing the total weathering flux than later-evolving trees. This work challenges the suggestion that early land plants significantly enhanced total weathering and land-to-ocean fluxes of calcium and phosphorus, which have been proposed as a trigger for transient dramatic atmospheric CO2 sequestration and glaciations in the Ordovician.  相似文献   

4.
R. RIDING 《Geobiology》2006,4(4):299-316
Photosynthetic uptake of inorganic carbon can raise the pH adjacent to cyanobacterial cells, promoting CaCO3 precipitation. This effect is enhanced by CO2 concentrating mechanisms that actively transport into cells for carbon fixation. CO2 concentrating mechanisms presumably developed in response to atmospheric decrease in CO2 and increase in O2 over geological timescales. In present‐day cyanobacteria, CO2 concentrating mechanisms are induced when the atmospheric partial pressure of CO2 (pCO2) falls below ~0.4%. Reduction in pCO2 during the Proterozoic may have had two successive effects on cyanobacterial calcification. First, fall in pCO2 below ~1% (33 times present atmospheric level, PAL) resulted in lower dissolved inorganic carbon (DIC) concentrations that reduced pH buffering sufficiently for isolated CaCO3 crystals to begin to nucleate adjacent to cyanobacterial cells. As a result, blooms of planktic cyanobacteria induced precipitated ‘whitings’ of carbonate mud in the water column whose sedimentary accumulation began to dominate carbonate platforms ~1400–1300 Ma. Second, fall in pCO2 below ~0.4% (10 PAL) induced CO2‐concentrating mechanisms that further increased pH rise adjacent to cells and promoted in vivo cyanobacterial sheath calcification. Crossing of this second threshold is indicated in the fossil record by the appearance of Girvanella 750–700 Ma. Coeval acquisition of CO2 concentrating mechanisms by planktic cyanobacteria further stimulated whiting production. These inferences, that pCO2 fell below ~1%~1400–1300 Ma and below ~0.4% 750–700 Ma, are consistent with empirical and modelled palaeo‐atmosphere estimates. Development of CO2 concentrating mechanisms was probably temporarily slowed by global cooling ~700–570 Ma that favoured diffusive entry of CO2 into cells. Lower levels of temperature and DIC at this time would have reduced seawater carbonate saturation state, also hindering cyanobacterial calcification. It is suggested that as Earth emerged from ‘Snowball’ glaciations in the late Neoproterozoic, global warming and O2 rise reactivated the development of CO2 concentrating mechanisms. At the same time, rising levels of temperature, calcium ions and DIC increased seawater carbonate saturation state, stimulating widespread cyanobacterial in vivo sheath calcification in the Early Cambrian. This biocalcification event promoted rapid widespread development of calcified cyanobacterial reefs and transformed benthic microbial carbonate fabrics.  相似文献   

5.
Evolution of high-productivity angiosperms has been regarded as a driver of Mesozoic ecosystem restructuring. However, terrestrial productivity is limited by availability of rock-derived nutrients such as phosphorus for which permanent increases in weathering would violate mass balance requirements of the long-term carbon cycle. The potential reality of productivity increases sustained since the Mesozoic is supported here with documentation of a dramatic increase in the evolution of nitrogen-fixing or nitrogen-scavenging symbioses, including more than 100 lineages of ectomycorrhizal and lichen-forming fungi and plants with specialized microbial associations. Given this evidence of broadly increased nitrogen availability, we explore via carbon cycle modeling how enhanced phosphorus availability might be sustained without violating mass balance requirements. Volcanism is the dominant carbon input, dictating peaks in weathering outputs up to twice modern values. However, times of weathering rate suppression may be more important for setting system behavior, and the late Paleozoic was the only extended period over which rates are expected to have remained lower than modern. Modeling results are consistent with terrestrial organic matter deposition that accompanied Paleozoic vascular plant evolution having suppressed weathering fluxes by providing an alternative sink of atmospheric CO2. Suppression would have then been progressively lifted as the crustal reservoir's holding capacity for terrestrial organic matter saturated back toward steady state with deposition of new organic matter balanced by erosion of older organic deposits. Although not an absolute increase, weathering fluxes returning to early Paleozoic conditions would represent a novel regime for the complex land biota that evolved in the interim. Volcanism-based peaks in Mesozoic weathering far surpass the modern rates that sustain a complex diversity of nitrogen-based symbioses; only in the late Paleozoic might these ecologies have been suppressed by significantly lower rates. Thus, angiosperms are posited to be another effect rather than proximal cause of Mesozoic upheaval.  相似文献   

6.
The possibility of low but nontrivial atmospheric oxygen (O2) levels during the mid‐Proterozoic (between 1.8 and 0.8 billion years ago, Ga) has important ramifications for understanding Earth's O2 cycle, the evolution of complex life and evolving climate stability. However, the regulatory mechanisms and redox fluxes required to stabilize these O2 levels in the face of continued biological oxygen production remain uncertain. Here, we develop a biogeochemical model of the C‐N‐P‐O2‐S cycles and use it to constrain global redox balance in the mid‐Proterozoic ocean–atmosphere system. By employing a Monte Carlo approach bounded by observations from the geologic record, we infer that the rate of net biospheric O2 production was Tmol year?1 (1σ), or ~25% of today's value, owing largely to phosphorus scarcity in the ocean interior. Pyrite burial in marine sediments would have represented a comparable or more significant O2 source than organic carbon burial, implying a potentially important role for Earth's sulphur cycle in balancing the oxygen cycle and regulating atmospheric O2 levels. Our statistical approach provides a uniquely comprehensive view of Earth system biogeochemistry and global O2 cycling during mid‐Proterozoic time and implicates severe P biolimitation as the backdrop for Precambrian geochemical and biological evolution.  相似文献   

7.
Biogeochemical modelling of the rise in atmospheric oxygen   总被引:1,自引:0,他引:1  
Understanding the evolution of atmospheric molecular oxygen levels is a fundamental unsolved problem in Earth's history. We develop a quantitative biogeochemical model that simulates the Palaeoproterozoic transition of the Earth's atmosphere from a weakly reducing state to an O2‐rich state. The purpose is to gain an insight into factors that plausibly control the timing and rapidity of the oxic transition. The model uses a simplified atmospheric chemistry (parameterized from complex photochemical models) and evolving redox fluxes in the Earth system. We consider time‐dependent fluxes that include organic carbon burial and associated oxygen production, reducing gases from metamorphic and volcanic sources, oxidative weathering, and the escape of hydrogen to space. We find that the oxic transition occurs in a geologically short time when the O2‐consuming flux of reducing gases falls below the flux of organic carbon burial that produces O2. A short timescale for the oxic transition is enhanced by a positive feedback due to decreasing destruction of O2 as stratospheric ozone forms, which is captured in our atmospheric chemistry parameterization. We show that one numerically self‐consistent solution for the rise of O2 involves a decline in flux of reducing gases driven by irreversible secular oxidation of the crust caused by time‐integrated hydrogen escape to space in the preoxic atmosphere, and that this is compatible with constraints from the geological record. In this model, the timing of the oxic transition is strongly affected by buffers of reduced materials, particularly iron, in the continental crust. An alternative version of the model, where greater fluxes of reduced hydrothermal cations from the Archean seafloor consume O2, produces a similar history of O2 and CH4. When climate and biosphere feedbacks are included in our model of the oxic transition, we find that multiple ‘Snowball Earth’ events are simulated under certain circumstances, as methane collapses and rises repeatedly before reaching a new steady‐state.  相似文献   

8.
The role of land plants in establishing our present day atmosphere is analysed. Before the evolution of land plants, photosynthesis by marine and fresh water organisms was not intensive enough to deplete CO2 from the atmosphere, the concentration of which was more than the order of magnitude higher than present. With the appearance of land plants, the exudation of organic acids by roots, following respiratory and photorespiratory metabolism, led to phosphate weathering from rocks thus increasing aquatic productivity. Weathering also replaced silicates by carbonates, thus decreasing the atmospheric CO2 concentration. As a result of both intensive photosynthesis and weathering, CO2 was depleted from the atmosphere down to low values approaching the compensation point of land plants. During the same time period, the atmospheric O2 concentration increased to maximum levels about 300 million years ago (Permo-Carboniferous boundary), establishing an O2/CO2 ratio above 1000. At this point, land plant productivity and weathering strongly decreased, exerting negative feedback on aquatic productivity. Increased CO2 concentrations were triggered by asteroid impacts and volcanic activity and in the Mesozoic era could be related to the gymnosperm flora with lower metabolic and weathering rates. A high O2/CO2 ratio is metabolically linked to the formation of citrate and oxalate, the main factors causing weathering, and to the production of reactive oxygen species, which triggered mutations and stimulated the evolution of land plants. The development of angiosperms resulted in a decrease in CO2 concentration during the Cenozoic era, which finally led to the glacial-interglacial oscillations in the Pleistocene epoch. Photorespiration, the rate of which is directly related to the O2/CO2 ratio, due to the dual function of Rubisco, may be an important mechanism in maintaining the limits of O2 and CO2 concentrations by restricting land plant productivity and weathering.  相似文献   

9.
S. J. Loyd 《Geobiology》2017,15(1):146-157
Concretions are preferentially cemented zones within sediments and sedimentary rocks. Cementation can result from relatively early diagenetic processes that include degradation of sedimentary organic compounds or methane as indicated by significantly 13C‐depleted or enriched carbon isotope compositions. As minerals fill pore space, reduced permeability may promote preservation of sediment components from degradation during subsequent diagenesis, burial heating and outcrop weathering. Discrete and macroscopic organic remains, macro and microfossils, magnetic grains, and sedimentary structures can be preferentially preserved within concretions. Here, Cretaceous carbonate concretions of the Holz Shale are shown to contain relatively high carbonate‐free total organic carbon (TOC) contents (up to ~18.5 wt%) compared to the surrounding host rock (with <2.1 wt%). TOC increases with total inorganic carbon (TIC) content, a metric of the degree of cementation. Pyrite contents within concretions generally correlate with organic carbon contents. Concretion carbonate carbon isotope compositions (δ13Ccarb) range from ?22.5 to ?3.4‰ (VPDB) and do not correlate strongly with TOC. Organic carbon isotope compositions (δ13Corg) of concretions and host rock are similar. Thermal maturity data indicate that both host and concretion organic matter are overmature and have evolved beyond the oil window maturity stage. Although the organic matter in general has experienced significant oxidative weathering, concretion interiors exhibit lower oxygen indices relative to the host. These results suggest that carbonate concretions can preferentially preserve overmature, ancient, sedimentary organic matter during outcrop weathering, despite evidence for organic matter degradation genetic mechanisms. As a result, concretions may provide an optimal proxy target for characterization of more primary organic carbon concentrations and chemical compositions. In addition, these findings indicate that concretions can promote delayed oxidative weathering of organic carbon in outcrop and therefore impact local chemical cycling.  相似文献   

10.
Carbon dioxide consumption during soil development   总被引:5,自引:1,他引:4  
Carbon is sequestered in soils by accumulation of recalcitrant organic matter and by bicarbonate weathering of silicate minerals. Carbon fixation by ecosystems helps drive weathering processes in soils and that in turn diverts carbon from annual photosynthesis-soil respiration cycling into the long-term geological carbon cycle. To quantify rates of carbon transfer during soil development in moist temperate grassland and desert scrubland ecosystems, we measured organic and inorganic residues derived from the interaction of soil biota and silicate mineral weathering for twenty-two soil profiles in arkosic sediments of differing ages. In moist temperate grasslands, net annual removal of carbon from the atmosphere by organic carbon accumulation and silicate weathering ranges from about 8.5 g m–2 yr–1 for young soils to 0.7 g M–2 yr–1 for old soils. In desert scrublands, net annual carbon removal is about 0.2 g m–2 yr–1 for young soils and 0.01 g m–2 yr–1 for old soils. In soils of both ecosystems, organic carbon accumulation exceeds CO2 removal by weathering, however, as soils age, rates of CO2 consumption by weathering accounts for greater amounts of carbon sequestration, increasing from 2% to 8% in the grassland soils and from 2% to 40% in the scrubland soils. In soils of desert scrublands, carbonate accumulation far outstrips organic carbon accumulation, but about 90% of this mass is derived from aerosolic sources that do not contribute to long-term sequestration of atmospheric carbon dioxide.  相似文献   

11.
Anaerobic low temperature conversion (LTC) converts organic residues such as animal meal or meat and bone meal (MBM) to bio‐crude, a solid product, containing carbon and phosphorus, reaction water and non‐condensable gases. The yield of bio‐crude increases with the content of volatile solids. The efficiency of the conversion as well as the calorific value of the liquid fuel produced are favorably affected by the partial recycling of inorganic constituents, high amounts of volatile solids and a low percentage of heteroatoms present in the feeding material. Heating values are 32.3 MJ/kg for bio‐crude from animal meal and 19.5 MJ/kg for bio‐crude from MBM. Both bio‐crude and animal fat produced were effectively converted in a vertical reactor construction with a fixed bed of aluminosilicates of the zeolite family or acidic clays, respectively. Products are bio‐fuels of varying chemical qualities. Depending on the reaction temperature and the catalyst type, aliphatic hydrocarbons (T = 400 °C, ~97 %) or alkylbenzenes (T = 550 °C) are the main products. The calorific values of these bio‐fuels are in a range from 40.1 to 41.9 MJ/kg and the kinematic viscosities are between 0.9 and 2.29 mm2/s. The solid products of LTC from different biomass (sludge, animal meal, MBM) contain a significant amount of phosphorus. In the case of the solid product from MBM it was as high as 242 mg P2O5/g. Solubility in citric acid showed that in the case of MBM, 98.8 % of total phosphorus is potentially available to plants. Pot experiments demonstrated a similar plant growth as with other organic fertilizers.  相似文献   

12.
Spring wheat cv. Minaret was grown to maturity under three carbon dioxide (CO2) and two ozone (O3) concentrations in open-top chambers (OTC). Green leaf area index (LAI) was increased by elevated CO2 under ambient O3 conditions as a direct result of increases in tillering, rather than individual leaf areas. Yellow LAI was also greater in the 550 and 680 μmol mol–1 CO2 treatments than in the chambered ambient control; individual leaves on the main shoot senesced more rapidly under 550 μmol mol–1 CO2, but senescence was delayed at 680 μmol mol–1 CO2. Fractional light interception (f) during the vegetative period was up to 26% greater under 680 μmol mol–1 CO2 than in the control treatment, but seasonal accumulated intercepted radiation was only increased by 8%. As a result of greater carbon assimilation during canopy development, plants grown under elevated CO2 were taller at anthesis and stem and ear biomass were 27 and 16% greater than in control plants. At maturity, yield was 30% greater in the 680 μmol mol–1 CO2 treatment, due to a combination of increases in the number of ears per m–2, grain number per ear and individual grain weight (IGW). Exposure to a seasonal mean (7 h d–1) of 84 nmol mol–1 O3 under ambient CO2 decreased green LAI and increased yellow LAI, thereby reducing both f and accumulated intercepted radiation by ≈ 16%. Individual leaves senesced completely 7–28 days earlier than in control plants. At anthesis, the plants were shorter than controls and exhibited reductions in stem and ear biomass of 15 and 23%. Grain yield at maturity was decreased by 30% due to a combination of reductions in ear number m–2, the numbers of grains per spikelet and per ear and IGW. The presence of elevated CO2 reduced the rate of O3-induced leaf senescence and resulted in the maintenance of a higher green LAI during vegetative growth under ambient CO2 conditions. Grain yields at maturity were nevertheless lower than those obtained in the corresponding elevated CO2 treatments in the absence of elevated O3. Thus, although the presence of elevated CO2 reduced the damaging impact of ozone on radiation interception and vegetative growth, substantial yield losses were nevertheless induced. These data suggest that spring wheat may be susceptible to O3-induced injury during anthesis irrespective of the atmospheric CO2 concentration. Possible deleterious mechanisms operating through effects on pollen viability, seed set and the duration of grain filling are discussed.  相似文献   

13.
Chikov  V.  Bakirova  G. 《Photosynthetica》2000,37(4):519-527
14CO2 uptake in leaves of wheat plants (Triticum aestivum L.) fertilized by urea or Ca(NO3)2 (25 mol m-3) was investigated. The Warburg effect (inhibition of 14CO2 uptake by oxygen) under 0.03 vol. % CO2 concentration was observed only in non-fertilized plants. Under 0.03 vol. % CO2, the Warburg antieffect (stimulation of 14CO2 uptake by oxygen) was detected only in plants fertilized by Ca(NO3)2. Under saturating CO2 concentration (0.30 vol. %), the Warburg antieffect was observed in all variants. Under limitation of ribulose-1,5-bisphosphate carboxylase/oxygenase activity (0.30 vol. % CO2 + 1 vol. % O2), the rate of synthesis of glycollate metabolism products decreased in control and urea-fertilized plants but was enhanced in nitrate-fed plants. Hence, there was an activation of glycollate formation via transketolase reaction in fertilized plants, and the products of nitrate reduction function were oxidants in nitrate-fertilized plants whereas the superoxide radical played this role in urea-fertilized plants.  相似文献   

14.
The eutrophication of lowland lakes in Europe by excess nitrogen (N) and phosphorus (P) is severe because of the long history of land‐cover change and agricultural intensification. The ecological and socio‐economic effects of eutrophication are well understood but its effect on organic carbon (OC) sequestration by lakes and its change overtime has not been determined. Here, we compile data from ~90 culturally impacted European lakes [~60% are eutrophic, Total P (TP) >30 μg P l?1] and determine the extent to which OC burial rates have increased over the past 100–150 years. The average focussing corrected, OC accumulation rate (C ARFC) for the period 1950–1990 was ~60 g C m?2 yr?1, and for lakes with >100 μg TP l?1 the average was ~100 g C m?2 yr?1. The ratio of post‐1950 to 1900–1950 C AR is low (~1.5) indicating that C accumulation rates have been high throughout the 20th century. Compared to background estimates of OC burial (~5–10 g C m?2 yr?1), contemporary rates have increased by at least four to fivefold. The statistical relationship between C ARFC and TP derived from this study (r2 = 0.5) can be used to estimate OC burial at sites lacking estimates of sediment C‐burial. The implications of eutrophication, diagenesis, lake morphometry and sediment focussing as controls of OC burial rates are considered. A conservative interpretation of the results of the this study suggests that lowland European meso‐ to eutrophic lakes with >30 μg TP l?1 had OC burial rates in excess of 50 g C m?2 yr?1 over the past century, indicating that previous estimates of regional lake OC burial have seriously underestimated their contribution to European carbon sequestration. Enhanced OC burial by lakes is one positive side‐effect of the otherwise negative impact of the anthropogenic disruption of nutrient cycles.  相似文献   

15.
There is greater biodiversity (in the senseof genetic distance among higher taxa) ofextant marine than of terrestrialO2-evolvers. In addition tocontributing the genes from one group ofalgae (Class Charophyceae, DivisionChlorophyta) to produce by evolution thedominant terrestrial plants (Embryophyta),the early marine O2-evolvers greatlymodified the atmosphere and hence the landsurface when the early terrestrialO2-evolvers grew. The earliestterrestrial phototrophs (from geochemicalevidence) occurred 1.2 Ga ago, over 0.7 Gabefore the Embryophyta evolved, but wellafter the earliest marine (cyanobacterial)O2 evolvers (3.45 Ga) and marineeukaryotic O2 evolvers (2.1 Ga). Evenby the time of evolution of the earliestterrestrial O2-evolvers the marineO2-evolvers had modified the atmosphereand land environment in at least thefollowing five ways. Once photosyntheticO2 paralleling organic C burial hadsatisfied marine (Fe2+, S2-reductants, atmospheric O2 built (1) upto a considerable fraction of the extantvalue (although some was consumed inoxidising terrestrial exposed Fe2+ and(2) provided stratospheric O3 and thusa UV-screen. (3) CO2 drawdown to20-30times the extant level is attributableto net production, and burial, of organic Cin the oceans (plus other geologicalprocesses). Furthermore, (4) theirproduction of volatile organic S compoundscould have helped to supply S to inland sitesbut also (5) delivered Cl and Br to thestratosphere thus lowering the O3 leveland the extent of UV screening.  相似文献   

16.
The build‐up of phosphorus (P) in soil is a major factor limiting the operating life of a wastewater land treatment system. In this study, effects of long‐term wastewater application on changes in chemical properties, P profiles, and P adsorption capacity were evaluated in soils of the Muskegon wastewater land treatment plant that has been treating wastewater for > 30 years. Results indicate that the major soil properties have been changed. In the 15 cm topsoil, the pH increased from ~ 5–6 in 1973 to ~ 7.4–7.8 in 2003; the soil's total organic carbon (TOC) increased by 10–71 %; and the level of exchangeable Ca in 2003 is 8–9 times higher than that in 1973. The amount of Ca/Mg absorbed in the soil affects the P adsorption capability of the soil; Ca‐ and Mg‐bound P accounts for > 70 % of the total P adsorbed in the soil. The net P accumulated in the Rubicon soil increased from ~ 700 in 1993 to ~ 1345 kg/ha soil in 2001, but the plant available P varied between ~ 100–500 kg/ha soil during the same period, indicating a large amount of the applied P has become the fixed P that is unavailable to plants. P sorption in the soil consists of a fast adsorption and a slow transformation process. The soil's maximum P sorption capacity (Pmax) (based on 1‐day isotherm tests) has been increased by ~ 2–4 times since 1973; the actual Pmax of the Muskegon soils could be much higher than the 1‐day Pmax. Therefore, the life expectancy of the Muskegon system has been extended significantly with the application of wastewater.  相似文献   

17.
Chlorella vulgaris (Beijer.) was grown for 8 d under air in cultures with complete (Control) or with phosphorus-deficient (–P) medium limiting culture growth. The cells assimilated only 5–17 % of orthophosphate supplied from the complete medium, whereas from medium of –P cultures, orthophosphate was almost totally exhausted. Despite limited phosphorus availability, cells in the oldest –P cultures contained the same amount of inorganic orthophosphate as the control cells and only slightly less organic phosphates. The –P cells showed normal chlorophyll concentration and increased Vmax and 1/K0.5 dissolved inorganic carbon (DIC) of photosynthetic O2 evolution. Phosphorus deficiency enhanced production, excretion and metabolism of glycolate during the whole investigated period. In the initial phase of –P culture growth, medium acidification and low DIC concentration were conducive to glycolate production. With subsequent medium alkalization, DIC content and cell carbonic anhydrase activity increased the photosynthetic O2 evolution of –P cells two-fold. At that period, the elevated intrachloroplast O2 concentration might be the main reason of enhancement of glycolate metabolism. The results support the suggestion that involvement of glycolate metabolism in acclimation to low phosphorus supply improves regeneration of inorganic orthophosphate and protects chloroplasts against photoinhibitory damage by consumption of excess of absorbed light energy.  相似文献   

18.
Biological soil crusts (BSCs) are an important source of organic carbon, and affect a range of ecosystem functions in arid and semiarid environments. Yet the impact of grazing disturbance on crust properties and soil CO2 efflux remain poorly studied, particularly in African ecosystems. The effects of burial under wind-blown sand, disaggregation and removal of BSCs on seasonal variations in soil CO2 efflux, soil organic carbon, chlorophyll a and scytonemin were investigated at two sites in the Kalahari of southern Botswana. Field experiments were employed to isolate CO2 efflux originating from BSCs in order to estimate the C exchange within the crust. Organic carbon was not evenly distributed through the soil profile but concentrated in the BSC. Soil CO2 efflux was higher in Kalahari Sand than in calcrete soils, but rates varied significantly with seasonal changes in moisture and temperature. BSCs at both sites were a small net sink of C to the soil. Soil CO2 efflux was significantly higher in sand soils where the BSC was removed, and on calcrete where the BSC was buried under sand. The BSC removal and burial under sand also significantly reduced chlorophyll a, organic carbon and scytonemin. Disaggregation of the soil crust, however, led to increases in chlorophyll a and organic carbon. The data confirm the importance of BSCs for C cycling in drylands and indicate intensive grazing, which destroys BSCs through trampling and burial, will adversely affect C sequestration and storage. Managed grazing, where soil surfaces are only lightly disturbed, would help maintain a positive carbon balance in African drylands.  相似文献   

19.

It is hypothesized that, over Phanerozoic time, the terrigenous organic carbon (orgC) pool became increasingly susceptible to biological decay through (a) reduction in the ratio of phenolic‐rich periderm to total biomass and (b) decline in the extent of lignification in foliage and other plant organs. Fungal evolution, meanwhile, resulted in greater abundance and higher activity levels of lignin‐degrading organisms, and faster turnover of refractory orgC. The result was reduced burial of orgC, which, in turn, checked the accumulation of O2 in the atmosphere and buffered the global redox balance against variation in biomass production by land plants. Feedback from O2 level to fungal metabolism of lignin further stabilized the system. Thus, the relatively small Paleozoic land biota could have caused much greater perturbations of redox balance than were caused by the much larger and more productive land biotas of the Tertiary.  相似文献   

20.
Seaweeds cultivated in traditional land‐based tank systems usually grow under carbon‐limited conditions and consequently have low production rates, if no costly artificial source of inorganic carbon is supplied. In integrated aquaculture, the fish effluents provide an extra source of dissolved inorganic carbon (DIC) to seaweeds due to fish respiration. To evaluate if the tetrasporophyte of Asparagopsis armata (Harv.) F. Schmitz (the Falkenbergia stage) is carbon limited when cultivated with effluents of a fish (Sparus aurata) farm in southern Portugal, we characterized the DIC forms in the water, assessed the species photosynthetic response to the different DIC concentrations and pH values, and inferred for the presence of a carbonic anhydrase (CA)–mediated mechanism. Results showed that A. armata relies mainly on CO2 to meet photosynthetic needs. Nevertheless, from pH 7.5 upward, the CO2 supply to RUBISCO seems to derive also from the external dehydration of HCO3 mediated by CA. The contribution of this mechanism was essential for A. armata to attain fully saturated O2‐evolution rates at the natural seawater DIC concentration (2–2.2 mM) and pH values (~8.0). We revealed in this study that seaweeds cultivated in fish‐farm effluents benefit not only from a rich source of ammonia but also from an important and free source of DIC for their photosynthesis. If supplied at relatively high turnover rates (~100 vol · d?1), fish‐farm effluents provide enough carbon to maximize the photosynthesis and growth even for species with low affinity for HCO3, avoiding the artificial and costly supply of inorganic carbon to seaweed cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号