首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
Synthesis The temporal stability of plant production is greater in communities with high than low species richness, but stability also may depend on species abundances and growth‐related traits. Annual precipitation varied by greater than a factor of three over 11 years in central Texas, USA leading to large variation in production. Stability was greatest in communities that were not dominated by few species and in which dominant species rooted shallowly, had dense leaves, or responded to the wettest year with a minimal increase in production. Stability may depend as much on species abundances and functional traits as on species richness alone. Aboveground net primary productivity (ANPP) varies in response to temporal fluctuations in weather. Temporal stability of community ANPP may be increased by increasing plant species richness, but stability often varies at a given richness level implying a dependence on abundances and functional properties of member species. We measured stability in ANPP during 11 years in field plots (Texas, USA) in which we varied the richness and relative abundances of perennial grassland species at planting. We sought to identify species abundance patterns and functional traits linked to the acquisition and processing of essential resources that could be used to improve richness‐based predictions of community stability. We postulated that community stability would correlate with abundance‐weighted indices of traits that influence plant responses to environmental variation. Annual precipitation varied by a factor of three leading to large inter‐annual variation in ANPP. Regression functions with planted and realized richness (species with > 1% of community ANPP during the final four years) explained 32% and 25% of the variance in stability, respectively. Regression models that included richness plus the fraction of community ANPP produced by the two most abundant species in combination with abundance‐weighted values of either the fraction of sampled root biomass at 20–45 cm depth, leaf dry matter content (LDMC), or response to greater‐than‐average precipitation of plants grown in monocultures explained 58–69% (planted richness) and 58–64% (realized richness) of the variance in stability. Stability was greatest in communities that were not strongly dominated by only two species and in which plants rooted shallowly, had high values of LDMC, or responded to the wettest year with a minimal increase in ANPP. Our results indicate that the temporal stability of grassland ANPP may depend as much on species abundances and functional traits linked to plant responses to precipitation variability as on species richness alone.  相似文献   

2.
Sensitivity of mean annual primary production to precipitation   总被引:1,自引:0,他引:1  
In many terrestrial ecosystems, variation in aboveground net primary production (ANPP) is positively correlated with variation in interannual precipitation. Global climate change will alter both the mean and the variance of annual precipitation, but the relative impact of these changes in precipitation on mean ANPP remains uncertain. At any given site, the slope of the precipitation‐ANPP relationship determines the sensitivity of mean ANPP to changes in mean precipitation, whereas the curvature of the precipitation‐ANPP relationship determines the sensitivity of ANPP to changes in precipitation variability. We used 58 existing long‐term data sets to characterize precipitation‐ANPP relationships in terrestrial ecosystems and to quantify the sensitivity of mean ANPP to the mean and variance of annual precipitation. We found that most study sites have a nonlinear, saturating relationship between precipitation and ANPP, but these nonlinearities were not strong. As a result of these weak nonlinearities, ANPP was nearly 40 times more sensitive to precipitation mean than variance. A 1% increase in mean precipitation caused a ?0.2% to 1.8% change in mean ANPP, with a 0.64% increase on average. Sensitivities to precipitation mean peaked at sites with a mean annual precipitation near 500 mm. Changes in species composition and increased intra‐annual precipitation variability could lead to larger ANPP responses to altered precipitation regimes than predicted by our analysis.  相似文献   

3.
There is considerable uncertainty in the magnitude and direction of changes in precipitation associated with climate change, and ecosystem responses are also uncertain. Multiyear periods of above‐ and below‐average rainfall may foretell consequences of changes in rainfall regime. We compiled long‐term aboveground net primary productivity (ANPP) and precipitation (PPT) data for eight North American grasslands, and quantified relationships between ANPP and PPT at each site, and in 1–3 year periods of above‐ and below‐average rainfall for mesic, semiarid cool, and semiarid warm grassland types. Our objective was to improve understanding of ANPP dynamics associated with changing climatic conditions by contrasting PPT–ANPP relationships in above‐ and below‐average PPT years to those that occurred during sequences of multiple above‐ and below‐average years. We found differences in PPT–ANPP relationships in above‐ and below‐average years compared to long‐term site averages, and variation in ANPP not explained by PPT totals that likely are attributed to legacy effects. The correlation between ANPP and current‐ and prior‐year conditions changed from year to year throughout multiyear periods, with some legacy effects declining, and new responses emerging. Thus, ANPP in a given year was influenced by sequences of conditions that varied across grassland types and climates. Most importantly, the influence of prior‐year ANPP often increased with the length of multiyear periods, whereas the influence of the amount of current‐year PPT declined. Although the mechanisms by which a directional change in the frequency of above‐ and below‐average years imposes a persistent change in grassland ANPP require further investigation, our results emphasize the importance of legacy effects on productivity for sequences of above‐ vs. below‐average years, and illustrate the utility of long‐term data to examine these patterns.  相似文献   

4.
Net primary production (NPP) is a fundamental property of natural ecosystems. Understanding the temporal variations of NPP could provide new insights into the responses of communities to environmental factors. However, few studies based on long‐term field biomass measurements have directly addressed this subject in the unique environment of the Qinghai‐Tibet plateau (QTP). We examined the interannual variations of NPP during 2008–2015 by monitoring both aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP), and identified their relationships with environmental factors with the general linear model (GLM) and structural equation model (SEM). In addition, the interannual variation of root turnover and its controls were also investigated. The results show that the ANPP and BNPP increased by rates of 15.01 and 143.09 g/m2 per year during 2008–2015, respectively. BNPP was mainly affected by growing season air temperature (GST) and growing season precipitation (GSP) rather than mean annual air temperature (MAT) or mean annual precipitation (MAP), while ANPP was only controlled by GST. In addition, available nitrogen (AN) was significantly positively associated with BNPP and ANPP. Root turnover rate averaged 30%/year, increased with soil depth, and was largely controlled by GST. Our results suggest that alpine Kobresia meadow was an N‐limited ecosystem, and the NPP on the QTP might increase further in the future in the context of global warming and nitrogen deposition.  相似文献   

5.
依据中国科学院海北高寒草甸生态系统定位站1980—2007共28年的气温、降水和地上净初级生产力数据,采用墨西哥小帽母函数对其进行周期特征的小波分析.结果表明:气温、降水和地上净初级生产力均存在13年的主要周期,但气温和地上净初级生产力的次要周期(均为2年)对其年际变化的影响较小,而降水次要周期(4年)的影响较大.三者的滞后相关分析发现,地上净初级生产力的变化在20年时间尺度上主要受控于气温,且对后者存在5~9年较弱的延迟效应;而与降水的关系较小.  相似文献   

6.
Variability of above-ground net primary production (ANPP) of arid to sub-humid ecosystems displays a closer association with precipitation when considered across space (based on multiyear averages for different locations) than through time (based on year-to-year change at single locations). Here, we propose a theory of controls of ANPP based on four hypotheses about legacies of wet and dry years that explains space versus time differences in ANPP–precipitation relationships. We tested the hypotheses using 16 long-term series of ANPP. We found that legacies revealed by the association of current- versus previous-year conditions through the temporal series occur across all ecosystem types from deserts to mesic grasslands. Therefore, previous-year precipitation and ANPP control a significant fraction of current-year production. We developed unified models for the controls of ANPP through space and time. The relative importance of current-versus previous-year precipitation changes along a gradient of mean annual precipitation with the importance of current-year PPT decreasing, whereas the importance of previous-year PPT remains constant as mean annual precipitation increases. Finally, our results suggest that ANPP will respond to climate-change-driven alterations in water availability and, more importantly, that the magnitude of the response will increase with time.  相似文献   

7.
Larger, more frequent wildfires in arid and semi‐arid ecosystems have been associated with invasion by non‐native annual grasses, yet a complete understanding of fine fuel development and subsequent wildfire trends is lacking. We investigated the complex relationships among weather, fine fuels, and fire in the Great Basin, USA. We first modeled the annual and time‐lagged effects of precipitation and temperature on herbaceous vegetation cover and litter accumulation over a 26‐year period in the northern Great Basin. We then modeled how these fine fuels and weather patterns influence subsequent wildfires. We found that cheatgrass cover increased in years with higher precipitation and especially when one of the previous 3 years also was particularly wet. Cover of non‐native forbs and native herbs also increased in wet years, but only after several dry years. The area burned by wildfire in a given year was mostly associated with native herb and non‐native forb cover, whereas cheatgrass mainly influenced area burned in the form of litter derived from previous years’ growth. Consequently, multiyear weather patterns, including precipitation in the previous 1–3 years, was a strong predictor of wildfire in a given year because of the time needed to develop these fine fuel loads. The strong relationship between precipitation and wildfire allowed us to expand our inference to 10,162 wildfires across the entire Great Basin over a 35‐year period from 1980 to 2014. Our results suggest that the region's precipitation pattern of consecutive wet years followed by consecutive dry years results in a cycle of fuel accumulation followed by weather conditions that increase the probability of wildfire events in the year when the cycle transitions from wet to dry. These patterns varied regionally but were strong enough to allow us to model annual wildfire risk across the Great Basin based on precipitation alone.  相似文献   

8.
Climate extremes can ultimately reshape grassland services such as forage production and change plant functional type composition. This 3‐year field research studied resistance to dehydration and recovery after rehydration of plant community and plant functional types in an upland perennial grassland subjected to climate and cutting frequency (Cut+, Cut?) disturbances by measuring green tissue percentage and above‐ground biomass production (ANPP). In year 1, a climate disturbance gradient was applied by co‐manipulating temperature and precipitation. Four treatments were considered: control and warming‐drought climatic treatment, with or without extreme summer event. In year 2, control and warming‐drought treatments were maintained without extreme. In year 3, all treatments received ambient climatic conditions. We found that the grassland community was very sensitive to dehydration during the summer extreme: aerial senescence reached 80% when cumulated climatic water balance fell to ?156 mm and biomass declined by 78% at the end of summer. In autumn, canopy greenness and biomass totally recovered in control but not in the warming‐drought treatment. However ANPP decreased under both climatic treatments, but the effect was stronger on Cut+ (?24%) than Cut? (?15%). This decline was not compensated by the presence of three functional types because they were negatively affected by the climatic treatments, suggesting an absence of buffering effect on grassland production. In the following 2 years, lasting effects of climate disturbance on ANPP were observable. The unexpected stressful conditions of year 3 induced a decline in grassland production in the Cut+ control treatment. The fact that this treatment cumulated higher (45%) N export over the 3 years suggests that N plays a key role in ANPP stability. As ANPP in this mesic perennial grassland did not show engineering resilience, long‐term experimental manipulation is needed. Infrequent mowing appears more appropriate for sustaining grassland ANPP under future climate extremes.  相似文献   

9.
Temperature and precipitation explain about half the variation in aboveground net primary production (ANPP) among tropical forest sites, but determinants of remaining variation are poorly understood. Here, we test the hypothesis that the amount of leaf area, and its vertical arrangement, predicts ANPP when other variables are held constant. Using measurements from airborne lidar in a lowland Neotropical rain forest, we quantify vertical leaf‐area profiles and develop models of ANPP driven by leaf area and other measurements of forest structure. Vertical leaf‐area profiles predict 38% of the variation among plots. This number is 4.5 times greater than models using total leaf area (disregarding vertical arrangement) and 2.1 times greater than models using canopy height alone. Furthermore, ANPP predictions from vertical leaf‐area profiles were less biased than alternate metrics. Variation in ANPP not attributable to temperature or precipitation can be predicted by the vertical distribution of leaf area in this system.  相似文献   

10.
Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2‐year experiment in three US Great Plains grasslands – the C4‐dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3‐dominated northern mixed grass prairie (NMP; intermediate ANPP) – to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high‐rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11–13) small or (ii) fewer (3–5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3‐dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above‐ and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands.  相似文献   

11.
Understanding drivers of aboveground net primary production (ANPP) has long been a goal of ecology. Decades of investigation have shown total annual precipitation to be an important determinant of ANPP within and across ecosystems. Recently a few studies at individual sites have shown precipitation during specific seasons of the year can more effectively predict ANPP. Here we determined whether seasonal or total precipitation better predicted ANPP across a range of terrestrial ecosystems, from deserts to forests, using long‐term data from 36 plant communities. We also determined whether ANPP responses were dependent on ecosystem type or plant functional group. We found that seasonal precipitation generally explained ANPP better than total precipitation. Precipitation in multiple parts of the growing season often correlated with ANPP, but rarely interacted with each other. Surprisingly, the amount of variation explained by seasonal precipitation was not correlated with ecosystem type or plant functional group. Overall, examining seasonal precipitation can significantly improve ANPP predictions across a broad range of ecosystems and plant types, with implications for understanding current and future ANPP variation. Further work examining precipitation timing relative to species phenology may further improve our ability to predict ANPP, especially in response to climate change.  相似文献   

12.
Many plant species produce large fruit crops in some years and then produce few or no fruits in others. Synchronous, inter‐annual variation in plant reproduction is known as ‘masting’ and its adaptive significance has yet to be fully resolved. For 8 consecutive years, I quantified every fruit produced by 22 females of a New Zealand tree species (Dysoxylum spectabile), which has an unusual habit of taking a full calendar year to mature fruits after flowering. Fruit production varied strongly among years and was tightly synchronized among trees. Annual variability in fruit production declined with total reproductive output, indicating trees with lower fecundity exhibited a stronger tendency to mast. Although unrelated to temperature, annual fruit production was positively related to precipitation during annual periods of fruit development, and negatively related to fruit production in the previous year. Seedlings had higher rates of survivorship in a wet, high‐seed year than in a dry, low‐seed year, suggesting that seedlings might be drought sensitive. Therefore, D. spectabile produced large fruit crops during periods of high rainfall prior to fruit maturation, which may enhance survivorship of drought‐intolerant seeds. Results were inconsistent with several hypotheses that are widely believed to be the most likely explanations for masting. Instead, results were consistent with the environmental prediction hypothesis, suggesting that this hypothesis may be more important than previously appreciated.  相似文献   

13.
Abstract. We assessed the influence of annual and seasonal climate variability over soil organic matter (SOM), above‐ground net primary production (ANPP) and in situ net nitrogen (N) mineralization in a regional field study across the International Geosphere Biosphere Programme (IGBP) North American mid‐latitude transect (Koch et al. 1995). We hypothesized that while trends in SOM are strongly correlated with mean climatic parameters, ANPP and net N‐mineralization are more strongly influenced by annual and seasonal climate because they are dynamic processes sensitive to short‐term variation in temperature and water availability. Seasonal and monthly deviations from long‐term climatic means, particularly precipitation, were greatest at the semi‐arid end of the transect. ANPP is sensitive to this climatic variability, but is also strongly correlated with mean annual climate parameters. In situ net N‐mineralization and nitrification were weakly influenced by soil water content and temperature during the incubation and were less sensitive to seasonal climatic variables than ANPP, probably because microbial transformations of N in the soil are mediated over even finer temporal scales. We found no relationship between ANPP and in situ net N‐mineralization. These results suggests that methods used to estimate in situ net N‐mineralization are inadequate to represent N‐availability across gradients where microbial biomass, N‐immobilization or competition among plants and microbes vary.  相似文献   

14.
Research on the terrestrial C balance focuses largely on measuring and predicting responses of ecosystem‐scale production and respiration to changing temperatures and hydrologic regimes. However, landscape morphology can modify the availability of resources from year to year by imposing physical gradients that redistribute soil water and other biophysical variables within ecosystems. This article demonstrates that the well‐established biophysical relationship between soil respiration and soil moisture interacts with topographic structure to create bidirectional (i.e., opposite) responses of soil respiration to inter‐annual soil water availability within the landscape. Based on soil respiration measurements taken at a subalpine forest in central Montana, we found that locations with high drainage areas (i.e., lowlands and wet areas of the forest) had higher cumulative soil respiration in dry years, whereas locations with low drainage areas (i.e., uplands and dry areas of the forest) had higher cumulative soil respiration in wet years. Our results indicate that for 80.9% of the forest soil respiration is likely to increase during wet years, whereas for 19.1% of the forest soil respiration is likely to decrease under the same hydrologic conditions. This emergent, bidirectional behavior is generated from the interaction of three relatively simple elements (parabolic soil biophysics, the relative distribution of landscape positions, and inter‐annual climate variability), indicating that terrain complexity is an important mediator of the landscape‐scale soil C response to climate. These results highlight that evaluating and predicting ecosystem‐scale soil C response to climate fluctuation requires detailed characterization of biophysical‐topographic interactions in addition to biophysical‐climate interactions.  相似文献   

15.
Question: How does above‐ground net primary production (ANPP) differ (estimated from remotely sensed data) among vegetation units in sub‐humid temperate grasslands? Location: Centre‐north Uruguay. Methods: A vegetation map of the study area was generated from LANDSAT imagery and the landscape configuration described. The functional heterogeneity of mapping units was analysed in terms of the fraction of photosynthetically active radiation absorbed by green vegetation (fPAR), calculated from the normalized difference vegetation index (NDVI) images provided by the moderate resolution imaging spectroradiometer (MODIS) sensor. Finally, the ANPP of each grassland class was estimated using NDVI and climatic data. Results: Supervised classification presented a good overall accuracy and moderate to good average accuracy for grassland classes. Meso‐xerophytic grasslands occupied 45% of the area, Meso‐hydrophytic grasslands 43% and Lithophytic steppes 6%. The landscape was shaped by a matrix of large, unfragmented patches of Meso‐xerophytic and Meso‐hydrophytic grasslands. The region presented the lowest anthropic fragmentation degree reported for the Rio de la Plata grasslands. All grassland units showed bimodal annual fPAR seasonality, with spring and autumn peaks. Meso‐hydrophytic grasslands showed a radiation interception 10% higher than the other units. On an annual basis, Meso‐hydrophytic grasslands produced 3800 kg dry matter (DM) ha?1 yr?1 and Meso‐xerophytic grasslands and Lithophytic steppes around 3400 kg·DM·ha?1·yr?1. Meso‐xerophytic grasslands had the largest spatial variation during most of the year. The ANPP temporal variation was higher than the fPAR variability. Conclusions: Our results provide valuable information for grazing management (identifying spatial and temporal variations of ANPP) and grassland conservation (identifying the spatial distribution of vegetation units).  相似文献   

16.
荒漠生态系统对大气CO2浓度升高响应的干湿年差异   总被引:1,自引:0,他引:1  
利用一个基于详细生理学过程的生态系统模型PALS-FT,通过模拟实验分析了美国亚利桑那州(Arizona)首府凤凰城(Phoenix)市西郊的Larreatridentata荒漠生态系统在干湿年份(1988-2002年)对大气CO2浓度升高响应的差别。结果表明,生态系统地上净初级生产力(ANPP)和土壤有机质年累积速率(SOM)均随大气CO2浓度升高而呈非线性(湿年)或线性(正常年和干年)增加;所有年份的土壤N含量(Nsoil)则呈非线性显著下降。ANPP与SOM的绝对变化量总是湿年大于正常年和干年,相对变化量则与所分析的CO2处理水平有关;Nsoil的绝对变化量和相对变化量均为湿年大于正常年和干年。不同功能型的植物ANPP对大气CO2浓度升高的绝对变化量均为湿年大于正常年和干年;相对变化量则因具体植物功能型而异,灌木和亚灌木为干年大于正常年和湿年,一年生C3和C4草本均为湿年大于正常年和干年。因此,无论是生态系统水平还是植物功能型(或物种)水平,荒漠生态系统对未来大气CO2浓度升高的响应都将受降水格局的显著影响。  相似文献   

17.
Chen Q  Hooper DU  Lin S 《PloS one》2011,6(3):e16909
Long-term livestock over-grazing causes nitrogen outputs to exceed inputs in Inner Mongolia, suggesting that low levels of nitrogen fertilization could help restore grasslands degraded by overgrazing. However, the effectiveness of such an approach depends on the response of production and species composition to the interactive drivers of nitrogen and water availability. We conducted a five-year experiment manipulating precipitation (NP: natural precipitation and SWP: simulated wet year precipitation) and nitrogen (0, 25 and 50 kg N ha-1 yr-1) addition in Inner Mongolia. We hypothesized that nitrogen fertilization would increase forage production when water availability was relatively high. However, the extent to which nitrogen would co-limit production under average or below average rainfall in these grasslands was unknown.Aboveground net primary production (ANPP) increased in response to nitrogen when precipitation was similar to or higher than the long-term average, but not when precipitation was below average. This shift in limitation was also reflected by water and nitrogen use efficiency. Belowground live biomass significantly increased with increasing water availability, but was not affected by nitrogen addition. Under natural precipitation (NP treatment), the inter-annual variation of ANPP was 3-fold greater than with stable water availability (CVANPP = 61±6% and 17±3% for NP and SWP treatment, respectively) and nitrogen addition increased CVANPP even more (89±14%). This occurred in part because fertilizer nitrogen left in the soil in dry years remained available for uptake during wet years and because of high production by unpalatable annual species in wet years in the NP treatment. In summary, plant growth by residual fertilizer nitrogen could lead to sufficient yields to offset lack of additional production in dry years. However, the utility of fertilization for restoration may be constrained by shifts in species composition and the lack of response by belowground biomass, which reduces replacement of soil carbon and nitrogen.  相似文献   

18.
Grassland Precipitation-Use Efficiency Varies Across a Resource Gradient   总被引:12,自引:2,他引:12  
Aboveground net primary production (ANPP) is positively related to mean annual precipitation, an estimate of water availability. This relationship is fundamental to our understanding and management of grassland ecosystems. However, the slope of the relationship between ANPP and precipitation (precipitation-use efficiency, PUE) has been shown to be different for temporal compared with spatial precipitation series. When ANPP and precipitation are averaged over a number of years for different sites, PUE is similar for grasslands all over the world. Studies for two US Long Term Ecological Research Sites have shown that PUE derived from a long-term dataset (temporal model) has a significantly lower slope than the value derived for sites distributed across the US central grassland region (spatial model). PUE differences between the temporal model and the spatial model may be associated with both vegetational and biogeochemical constraints. Here we use two independent datasets, one derived from field estimates of ANPP and the other from remote sensing, to show that the PUE is low at both the dry end and the wet end of the annual precipitation gradient typical of grassland areas (200–1200 mm), and peaks around 475 mm. The intermediate peak may be related to relatively low levels of both vegetational and biogeochemical constraints at this level of resource availability. Received 2 June 1998; accepted 21 October 1998.  相似文献   

19.
Variation in aboveground net primary production (ANPP) is usually studied across wide environmental gradients focusing on spatial averages of zonal natural communities. We studied the spatial and temporal variation of ANPP of upland sown pastures and lowland natural grasslands across a narrow gradient of precipitation and temperature. The Flooding Pampa (Argentina) encompasses an 850–1000 mm range of mean annual precipitation and a 13.8–16.0°C range of mean annual temperature. For 15 100 × 100 km cells, we obtained mean monthly precipitation, temperature, and paddock-level ANPP of upland pastures and lowland grasslands during 8 years. Mean annual ANPP of lowland grasslands and upland sown pastures was positively related to mean annual precipitation. ANPP of upland pastures was 60–80% larger and increased more steeply with mean annual precipitation. ANPP seasonality also changed across the gradient. In lowland grasslands, as mean annual precipitation increased, ANPP monthly maximum increased, minimum decreased, and the duration of the growing season shortened. In contrast, in upland pastures, ANPP monthly maximum was constant, minimum increased, and the growing season lengthened with increasing precipitation. ANPP was more stable across years for lowland grasslands than for upland pastures. The response of annual ANPP to current-year precipitation decreased across the gradient, while the importance of the previous-year precipitation increased. In summary, we found strong spatial and temporal patterns of ANPP across a narrow environmental gradient. In addition, landscape position and species composition heavily influenced those patterns.  相似文献   

20.
王玉辉  周广胜 《生态学报》2004,24(6):1140-1145
植被生产力对水热因子的反应是气候 -植被关系研究的焦点之一。利用 1981~ 1994年的固定围栏样地植物群落调查数据及同期降水资料 ,分析了羊草草原群落地上初级生产力和降水的年际变化特征及植物群落地上初级生产力的时间动态与降水年际变化的相互关系。结果表明 ,羊草草原年降水以及月降水的年际波动明显 ;年内降水分配不均匀 ,降水集中分布于 6~ 8月份。月均降水以 7月份最高 ,基本呈对称分布。群落地上初级生产力年际间变化介于年降水与月降水的年际变化之间。影响群落地上初级生产力时间动态最显著的因子是植物生长周期内前一年 10月至当年 8月的累积降水 ,而与年降水和月降水无显著相关。群落地上初级生产力时间动态对累积降水波动的反应呈显著的二次曲线关系 ,与空间尺度上地上初级生产力与年降水呈线性相关关系不同。因此 ,降水波动对羊草草原地上初级生产力的影响是一个累积效应 ,确定对植物生长产生影响的有效降水时间对建立羊草草原生产力模型关系具有十分重要的意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号