首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 15 毫秒
1.
Fundamental to our understanding of the ecology of animal communities in the tropics is knowledge of the effect of seasonal changes in the abundance of food sources in consumer diets. We determined stable‐isotope composition (13C/12C and 15N/14N) in whole blood of 14 resident avian species in a tropical dry forest to quantify the origin of their assimilated protein. We used a probabilistic approach (IsoSource) to estimate the relative contribution of C3 plants, CAM‐C4 plants, C3 insects, and CAM‐C4 insects during the dry and rainy seasons. IsoSource iteratively creates each possible combination of source contribution and produces a distribution of all feasible combinations that adequately predict the observed isotopic signature of the consumer. Granivore–frugivores and granivore–frugivore–insectivores were modeled as predominantly dependent upon plants whereas insectivorous birds were modeled to derive protein almost exclusively from insects. Between these extremes there were several species using mixed diets such as insectivore–frugivores or insectivore–granivores. In most species, virtually all assimilated food was of C3 origin with the exception of Ruddy Ground‐Doves (Columbina talpacoti) in which CAM or C4 plants contributed significantly. Seasonal changes in relative food source contribution were followed in eight species of birds. Of these species, White‐tipped Doves (Leptotila verreauxi), Grayish Saltators (Saltator coerulescens), and Social Flycatchers (Myiozetetes similis) increased their use of insects in the rainy season, in contrast to Great Kiskadees (Pitangus sulphuratus), which decreased their use of insects. Our study suggests that that diverse strategies are used by various avian species to obtain dietary proteins within seasonal habitats.  相似文献   

2.
Marco Tschapka 《Biotropica》2005,37(3):409-415
I studied the reproduction of the 9 g nectarivorous bat Glossophaga commissarisi (Phyllostomidae: Glossophaginae) in relation to its food choice in a Costa Rican lowland rain forest over more than 2 yr. Reproduction was bimodal with birth peaks in April/May and October/November. The first birth peak coincided with a period of frugivory, whereas the second occurred during a period of almost exclusive nectarivory. All adult females recaptured in consecutive reproductive periods were reproductively active on both occasions, indicating that individual G. commissarisi females regularly reproduce twice per year at the study site. Throughout the annual cycle the mean testis length of the males correlated best with the proportion of females lactating, suggesting a post partum estrous pattern. Animals became reproductively active at about 1 yr of age. Fecal samples showed that females consumed significantly more insects than males.  相似文献   

3.
4.
5.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   

6.
In young individuals of the obligate myrmecophytic liana Vitex thyrsiflora, several species of ants and other arthropods compete for resources offered by the plant. In mature individuals, the only inhabitant is the ant species Tetraponera tessmanni, which is completely restricted to Vitex lianas as its sole host. Established colonies of this ant provide effective defense against herbivores. The association between V. thyrsiflora and T. tessmanni is unusual in two respects. First, the climbing life form is rare among myrmecophytes. Secondly, it is surprising that a pseudomyrmecine should be the obligate associate of a liana. Pseudomyrmecine plant‐ants often prune vegetation contacting their host plant. This behavior functions in part to protect against invasion of the host by ecologically dominant ants. In contrast, T. tessmanni does not prune and is associated with a plant whose success, and thus that of its resident ant colony, depends on contacts with many other plants. Several traits of V. thyrsiflora and T. tessmanni combine to make the colonization of host plants by potential competitors very difficult. These include behavioral and morphological filters restricting entrance into the plant and exploitation of the resources it can supply; plant anatomical organization that enables T. tessmanni workers to carry out all activities, except leaf patrolling, within a single, branched private nesting space within which all food resources offered by the plant are produced; and polygyny, permitting the colony to monopolize a large, rapidly growing and long‐lived territory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号