首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
A Hawaiian isolate of Cymbidium mosaic virus (CyMV-H) was purified from Dendrobium orchid, and a cDNA library was constructed. Clones containing the coat protein (CP) gene and movement protein (MP) gene were identified by colony hybridization and polymerase chain reaction (PCR). The Hawaiian isolate of Odontoglossum ringspot virus (ORSVH) was purified from Cattleya orchid. The CyMV CP gene was PCR amplified from a cDNA done. The ORSV CP and 54 kDa putative replicase genes and CyMV-MP gene were cloned by RT-PCR Sequences of these genes of CyMV-H and ORSV-H were compared with those of CyMV and ORSV from Singapore, Japan. Korea, and Germany. The high degree of sequence identity (91–99%) at the nucleotide level for all gene sequences analysed, shows that CyMV and ORSV from different countries are closely related. Sequence comparison results show that CyMV strains can be divided into two groups based on differences in amino acid sequences of the coat protein gene: CyMV-H closely resembles CyMV-SI while CyMV-S2 resembles CyMV-K, A sensitive, rapid, and reliable immunocapture PCR (ICPCR) assay was developed to detect both viruses, CyMV was detected from dilutions equivalent to 100 mg of orchid material and ORSV was detected from dilutions equivalent to 10 μg of orchid material. IC-PCR was compared with direct binding PCR (DB-PCR) and ELISA for their sensitivities.  相似文献   

3.
4.
Occurrence and Genome Analysis of Cucurbit chlorotic yellows virus in Iran   总被引:1,自引:0,他引:1  
In 2011 and 2012, several cucurbit‐growing regions of Iran were surveyed and samples with symptoms similar to those induced by Cucurbit chlorotic yellows virus (CCYV) were collected. The pathogen was transmitted to cucumber and melon under greenhouse conditions by whiteflies (Bemisia tabaci). RT‐PCR using designed CCYV‐specific primer pair (CCYV‐F/CCYV‐R) resulted in amplification of the predicted size DNA fragment (870 bp) for the coat protein (CP) gene in samples collected from Boushehr, Eyvanakay and Varamin. Nucleotide sequences of the CP of the three Iranian CCYV isolates were compared with five CCYV isolates obtained from GenBank and analysed. Phylogenetically, all CCYV isolates clustered in two groups; Group I is composed of five non‐Iranian isolates from China, Lebanon, Japan, Sudan and Taiwan, and the three Iranian isolates formed Group 2. Among Iranian isolates, the Eyvanakay isolate clustered in a distinct clade with the Boushehr and Varamin isolates. A phylogenetic tree based on amino acid identity of CP showed that CCYV was closely related to Lettuce chlorosis virus (LCV), Bean yellow disorder virus (BnYDV) and Cucurbit yellow stunting disorder virus (CYSDV). This is the first report of CCYV in Iran.  相似文献   

5.
The complete nucleotide sequence of an Indian strain of Cymbidium mosaic virus (CymMV) was determined and compared with other potexviruses. Phylogenetic analyses on the basis of RNA-dependent RNA polymerase (RdRp), triple gene block protein and coat protein (CP) amino acid sequences revealed that CymMV is closely related to the Narcissus mosaic virus (NMV), Scallion virus X (SVX), Pepino mosaic virus (PepMV) and Potato aucuba mosaic virus (PAMV). Different sets of primers were used for the amplification of different regions of the genome through RT-PCR and the amplified genes were cloned in a suitable vector. The full genome of the Indian isolate of CymMV from Phaius tankervilliae shares 96–97% similarity with isolates reported from other countries. It was found that the CP gene of CymMV shares a high similarity with each other and other potexviruses. One of the Indian isolates seems to be a recombinant formed by the intermolecular recombination of two other CymMV isolates. The phylogenetic analyses, Recombination Detection Program (RDP2) analyses and sequence alignment survey provided evidence for the occurrence of a recombination between an Indian isolate (AM055720) as the major parent, and a Korean type-2 isolate (AF016914) as the minor parent. Recombination was also observed between a Singapore isolate (U62963) as the major parent, and a Taiwan CymMV (AY571289) as the minor parent.  相似文献   

6.
Genetic diversity of the chrysovirus within the four fungal strains was analyzed by comparing the full-length sequences of cloned chrysoviral genes encoding the RNA-dependent RNA polymerase (RdRp) and capsid protein (CP). Because the morphological characteristics of four chrysovirus-infected Cryphonectria spp. strains were different, strain identification was conducted via sequence comparison of the internal transcribed spacers (ITSs) of the fungal rRNA gene. Phylogenic analysis of the ITS regions revealed that the four strains were closely clustered with the reference strain of Cryphonectria nitschkei, while they were more distantly related to other common Cryphonectria species, indicating that they were likely C. nitschkei. Sequence comparison among chrysoviruses from Korean C. nitschkei strains revealed that similarities of the RdRp and CP genes ranged from 98% to 100% and from 95% to 100%, respectively, at the protein level. Their corresponding nucleotide sequences showed 97% to 100% and 84% to 100% identities, respectively. Compared to RdRp, the CP gene had more divergence, suggesting the presence of genes possessing different evolutionary rates within the chrysovirus genome. Sequence comparisons with other known chrysoviruses showed that the four Korean chrysoviruses were clustered together at the next lineage level. Discovering why two strains (bsl31 and bsl32) containing identical ITS sequences and chrysoviruses display different phenotypes should prove interesting.  相似文献   

7.
Gambierdiscus spp. are epiphytic, benthic dinoflagellates. Some species have been shown to be toxic and cause ciguatera fish poisoning. We report, for the first time, the occurrence of Gambierdiscus caribaeus isolated from the waters off Jeju Island in Korea. Its morphology was similar to that of the original Belize strains of G. caribaeus. Gambierdiscus caribaeus has been reported in the tropical and subtropical waters of the Pacific, Gulf of Mexico, Caribbean Sea, and Floridian coast. Our report extends its range to the North Pacific Ocean. The plates of the Korean strain were arranged in a Kofoidian series of Po, 3′, 7′′, 6c, 6s, 5′′′, 1p, and 2′′′′, morphologically closer to other strains of G. caribaeus than to G. carpenteri. When properly aligned, its small subunit (SSU) rDNA was 0.5% different from those of Gambierdiscus sp. C‐1, a strain that was isolated from the waters off eastern Japan, but was 2.4–4.0% different from those of the NOAA strains of G. caribaeus and 3.1–3.4% different from those of the NOAA strains of G. carpenteri. Additionally, the D1–D3 large subunit (LSU) rDNA sequence of the Korean strain of G. caribaeus was 4.7–5.3% different from those of the NOAA strains of G. caribaeus and 7.1–7.5% different from those of all reported G. carpenteri strains, including the NOAA strains. In phylogenetic trees based on SSU and LSU rDNA sequences, our Korean strain was basal to the clade consisting of the NOAA strains of G. caribaeus, which in turn was sister clade to all reported G. carpenteri strains.  相似文献   

8.
Cymbidium mosaic virus (CyMV) is the most prevalent virus infecting orchids. Here, we report the isolation of partial cDNA clones encoding the genomic RNA of CyMV. Like most of the polyadenylated monopartite positive-strand RNA viruses, the open reading frame (ORF) coding for the viral coat protein (CP) is located at the 3 end. The ORF predicts a polypeptide chain of 220 amino acids with a molecular weight of 23 600. Sequence comparison of this ORF to the CP sequences of potato virus X(PVX) and white clover mosaic virus (WCIMV) revealed a strong amino acid homology in the mid-portion of the CP, but the overall homology was low. The CyMV CP gene was placed downstream of a cauliflower mosaic virus 35S promoter and the chimaeric gene was transferred into Nicotiana benthamiana. Transgenic plants expressing the CyMV CP were protected against CyMV infection.  相似文献   

9.
In this study, Streptococcus gordonii‐specific quantitative real‐time polymerase chain reaction (qPCR) primers, RTSgo‐F2/RTSgo‐R2, were developed based on the nucleotide sequences of RNA polymerase β‐subunit gene (rpoB). The specificity of the RTSgo‐F2/RTSgo‐R2 primers was assessed by conventional PCR on 99 strains comprising 63 oral bacterial species, including the type strain and eight clinical isolates of S. gordonii. PCR products were amplified from the genomic DNAs of only S. gordonii strains. The qPCR primers were able to detect as little as 40 fg of S. gordonii genomic DNA at a cycle threshold value of 33. These findings suggest that these qPCR primers detect S. gordonii with high specificity and sensitivity.  相似文献   

10.
Polytomella is a genus of colorless green algae in the Reinhardtinia clade of the Chlamydomonadales, which has proven useful for a broad range of studies particularly those exploring the evolutionary loss of photosynthesis and mitochondrial genomics/biochemistry. Although 13 Polytomella strain accessions are currently available from public culture collections, the taxonomic status and redundancy of many of these strains is not clear because of possible mix‐ups, deficient historical records, and incomplete molecular data. This study therefore considers previously available and/or new cox1 and mitochondrial DNA telomere sequences from all 13 Polytomella strain accessions. Among four of these, namely P. parva SAG 63‐3, P. piriformis SAG 63‐10, P. capuana SAG 63‐5, and P. magna SAG 63‐9, cox1 and mitochondrial telomere regions are both highly divergent between strains. All of the remaining nine Polytomella strain accessions have cox1 sequences that are identical to that of P. parva SAG 63‐3 and although five of these have a mitochondrial telomere haplotype that is identical to that of P. parva SAG 63‐3, the remaining four have one of three different haplotypes. Among the 10 strains with identical cox1 sequences, we suggest that three of the telomere haplotypes are associated with distinct geographical isolates of Polytomella and the fourth evolved from one of these isolates during 50 years of active culture.  相似文献   

11.
Coolia spp. are epiphytic and benthic dinoflagellates. Herein, we report for the first time, the occurrence of Coolia canariensis and Coolia malayensis in Korean waters. The morphology of the Korean strains of C. canariensis and C. malayensis isolated from the waters off Jeju Island, Korea was similar to that of the original Canary lslands strains and Malaysian strains, respectively. We found several pores and a line of small knobs on the pore plate, and perforations within the large pores of both C. canariensis and C. malayensis. The plates of the Korean strains of C. canariensis and C. malayensis were arranged in a Kofoidian series of Po, 3′, 7′′, 6c, 6s, 5′′′, and 2′′′′, and Po, 3′, 7′′, 7c, 6–7s, 5′′′, and 2′′′′, respectively. When properly aligned, the large subunit (LSU) rDNA sequence of the Korean strain of C. canariensis was identical to that of the Biscayan strains, but it was 2–3% different from the Canary lslands strain VGO0775 and the Australian strain. In addition, the sequences of small subunit (SSU) and/or LSU rDNA from the two Korean strains of C. malayensis were < 1% different from the Malaysian strains of C. malayensis and the Florida strain CCMP1345 and New Zealand strain CAWD39 (“Coolia monotis”). In phylogenetic trees based on LSU rDNA sequences, the Korean strains of C. malayensis belonged to a clade including the Malaysian strains and these two strains. Therefore, based on genealogical analyses, we suggest that the Korean strain of C. canariensis is closely related to two Atlantic strains and the Australian strain, whereas the Korean strains of C. malayensis are related to the Malaysian strains of C. malayensis and the Florida and New Zealand strains.  相似文献   

12.
Tobacco leaf curl is widespread in several states in India including Andhra Pradesh, Gujarat, Karnataka, Bihar and West Bengal. Tobacco leaf curl virus (TbLCV) isolates collected from five different parts of India induced four distinct symptom phenotypes (group I, II, III & IV) on tobacco cultivars Samsun and Anand 119 (Valand & Muniyappa, 1992). PCR was performed on DNA extracted from group I and IV leaf curl‐affected tobacco from Karnataka, India using degenerate begomovirus‐specific primers. Subsequent cloning and sequencing of PCR products revealed preliminary evidence for the presence of at least three begomoviruses in the affected material following alignment of a 333 bp region of the coat protein gene (CP). The complete CP and common region (CR) of two putative begomoviruses, Tobacco leaf curl virus‐Karnataka1 (TbLCV‐Kar1) and Tobacco leaf curl virus‐Karnataka2 (TbLCV‐Kar2), were sequenced using PCR clones obtained with designed sequence‐specific primers. Phylogenetic analysis of the CP and CR of TbLCV‐Kar1 and TbLCV‐Kar2 placed them in the Asian Old World begomovirus cluster. The two viruses differed from each other significantly in both the CP gene and the CR (< 90% nucleotide sequence identity). This difference, in conjunction with distinct iterative sequences strongly suggests that these begomoviruses are distinct from one another. Group I and IV tobacco were also found to harbour a possible third begomovirus following the 333 bp CP alignment. Comparison of TbLCV‐Kar1 and TbLCV‐Kar2 with other geminiviruses, showed that both sequences shared high nucleotide sequence identity (> 90%) with other begomoviruses in either the CP or CR, thereby suggesting these viruses to be possible strains of other reported begomoviruses. Combined comparison of the CP and CR sequences however, suggests that the two viruses are not strains of other reported begomoviruses, but may be distinct begomoviruses that could have arisen through recombination events during mixed infections. Phylogenetic comparison demonstrated no significant homology between the Indian tobacco begomoviruses and a tobacco‐infecting begomovirus from Zimbabwe, again showing that as with other geminiviruses, there is a geographic basis for phylogenetic relationships rather than an affiliation with tobacco as a host.  相似文献   

13.
Lim SH  Ko MK  Lee SJ  La YJ  Kim BD 《Molecules and cells》1999,9(6):603-608
The nucleotide sequence of the 3'-terminal region of the Korean isolate of cymbidium mosaic virus (CyMV-Ca) from a naturally infected cattleya was determined. The sequence contains an open reading frame (ORF) coding for the viral coat protein (CP) at the 3'-end and three other ORFs (triple gene block or movement protein) of CyMV. The CP gene encodes a polypeptide chain of 220 amino acids with a molecular mass of 23,760 Da. The deduced CP sequence showed a strong homology with those of two CyMVs reported. A construct of the CyMV-Ca CP gene in the antisense orientation in the plant expression vector pMBP1 was transferred via Agrobacterium tumefaciens-mediated transformation into Nicotiana occidentalis which is a propagation host of CyMV. The T1 progeny of the transgenic plants were inoculated with CyMV and found to be highly resistant to CyMV infection.  相似文献   

14.
Agrobacterium radiobacter strains K84, K1026 and K84 Agr produced in vitro an antibiotic‐like substance (ALS 84), different from agrocin 84 and observed in mannitol‐glutamate medium. Twenty five out of 39 A. tumefaciens strains of biovars 1, 2 and 3 were sensitive to ALS 84 regardless of their sensitivity to agrocin 84. Sensitivity in A. tumefaciens strain C58 was not encoded by the Ti‐plasmid. Most isolates tested of Erwinia carotovora subsp. carotovora E. carotovora subsp. atroseptica, Pseudomonas corrugata P. cichorii and unidentified isolates from galls were also sensitive to this substance. ALS 84 was not affected by the proteases studied, nor by treatment at 62°C for 30 min and had a bacteriostatic effect. The production of ALS 84 might play a role in the complex mechanism of biological control of crown gall, especially in strains resistant to agrocin 84 and sensitive to ALS 84, and by the creation of an ecological niche favourable to A. radiobacter strains K84, K1026 or K84 Agr.  相似文献   

15.
Six unicellular diazotrophic cyanobacteria were isolated from the coast around Singapore. The isolates grew under both light:dark (L:D) cycles and continuous illumination (CL) in media without combined nitrogen and exhibited an ability to fix nitrogen (as measured by acetylene reduction) under aerobic conditions. The cells of all isolates were surrounded by a thick fibrous outer wall layer, and they divided by transverse binary fission. The arrangement of photosynthetic thylakoids was of the dispersed type. Three isolates were identified as form‐genus Gloeothece as cells were divided in a single plane, and the other three isolates were identified as form‐genus Gloeocapsa as cells were divided in multiple planes. Phylogenetic analyses based on the DNA sequences of the genes encoding 16S rRNA and dinitrogenase reductase (nifH) revealed the following: (i) Our six isolates formed a monophyletic cluster. (ii) The monophyletic cluster was subdivided into two phylogenetic groups, which taxonomically corresponded with the form‐genera Gloeothece and Gloeocapsa. However, (iii) a diazotrophic strain of form‐genus Gloeothece, Gloeothece membranacea (Rabenh.) Bornet PCC6501, was not closely related to our isolates, and (iv) some, but not all, diazotrophic unicellular strains of form‐genus Cyanothece were observed to be in a close relationship with our isolates.  相似文献   

16.
17.
18.
During a series of sampling in 2008 and 2009, stem rot disease was detected in Hylocereus polyrhizus plantations in Malaysia, with symptom appeared as circular, brown sunken lesion with orange sporodochia and white mycelium formation on the lesion surface. Eighty‐three isolates of Fusarium were isolated from 20 plantations and were morphologically identified as F. proliferatum based on the variability of colony appearance, pigmentation, growth rate, length of chains, production of bluish sclerotia, concentric ring aerial mycelium and sporodochia. Three species‐specific primers, namely ITS1/proITS‐R, PRO1/2 and Fp3‐F/4‐R successfully produced PCR products and confirmed that the isolates from stem rot of H. polyrhizus were F. proliferatum isolates. From BLAST search of translation elongation factor 1‐alpha (TEF1‐α) sequences, the isolates showed 99–100% similarity with F. proliferatum deposited in GenBank which further confirmed that the isolates were F. proliferatum. The results from amplification of MAT‐allele specific primers indicated that 14.5% of F. proliferatum isolates carried MAT‐1 allele and 85.5% carried MAT‐2. Crossing results showed that all 83 F. proliferatum isolates were male fertile showing positive crosses with the tester strains of MATD‐1 and MATD‐2. Perithecia oozing ascospore were produced. Forty isolates as representative were evaluated for pathogenicity test, produced rot symptoms similar to those observed in the fields which confirmed the isolates as the causal agent of stem rot of H. polyrhizus. To our knowledge, this is the first report of stem rot of H. polyrhizus caused by F. proliferatum in Malaysia.  相似文献   

19.
Background: A remarkable variety of restriction‐modification (R‐M) systems is found in Helicobacter pylori. Since they encompass a large portion of the strain‐specific H. pylori genes and therefore contribute to genetic variability, they are suggested to have an impact on disease outcome. Type I R‐M systems comprise three different subunits and are the most complex of the three types of R‐M systems. Aims: We investigated the genetic diversity and distribution of type I R‐M systems in clinical isolates of H. pylori. Material and methods: Sixty‐one H. pylori isolates from a Swedish hospital based case‐control study and 6 H. pylori isolates of a Swedish population‐based study were analyzed using polymerase chain reaction for the presence of the three R‐M systems' subunits. Representative gene variants were sequenced. Results: Although the hsdM and hsdR genes appeared conserved in our clinical H. pylori isolates, the sequences of the hsdS loci were highly variable. Despite their sequence diversity, the genes per se were present at high frequencies. We identified a number of novel allelic hsdS variants, which are distinct from corresponding hsdS loci in the sequenced H. pylori strains 26695, J99 and HPAG1. In analyses of paired H. pylori isolates, obtained from the same individuals with a 4‐year interval, we observed genetic modifications of hsdS genes in patients with atrophic gastric mucosa. Discussion: We propose that the genetic variability of hsdS genes in a bacterial population will give rise to new specificities of these enzymes, which might lead to adaptation to an ever‐changing gastric environment.  相似文献   

20.
The 3′‐terminal sequences (c. 1700 nt) of the RNA genome of 10 Turnip mosaic virus (TuMV) isolates from different hosts in Zhejiang province, China, were determined. Phylogenetic analysis of the coat protein nucleotide sequences revealed that most TuMV sequences fell into two distinct clusters. The Chinese isolates B1‐B4 (from Brassica spp.) were similar and placed in the largest group (Group 1), while the isolates R1‐R6 (from Raphanus) were usually placed in a distinct but smaller group (Group 2). There were only approximately 90% identical nucleotides between the two groups. However, one isolate (R5) showed evidence of recombination in that the region between nucleotides 430 and 450, from the start of the coat protein gene and its 3′‐terminus, was a Group 1 type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号