首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Objective: Glucocorticoids acting through the central nervous system are postulated to play a role in the hyperinsulinemia and increased adiposity of obesity. We investigated the role of parasympathetic activation in glucocorticoid‐induced hyperinsulinemia. Research Methods and Procedures: Plasma pancreatic polypeptide (PP) levels were used as an index of parasympathetic output. Insulinemia and plasma PP levels were measured basally and after intravenous glucose injection (300 mg/kg) in adrenalectomized male rats infused with dexamethasone (7.5 μg/kg per day) intracerebroventricularly (ICV) or subcutaneously (SC) for 3 to 6 days in the presence or absence of acute atropine blockade (1.0 mg/kg). Food intake was controlled between groups. Results: Compared with normal rats, adrenalectomy decreased white adipose tissue depot weights and leptinemia, and these were restored to normal values by ICV but not SC dexamethasone infusion. Adrenalectomy significantly reduced insulinemia below normal levels, which was restored by SC dexamethasone replacement. However, ICV dexamethasone replacement increased insulinemia of adrenalectomized rats to levels higher than normal control values (basal, 500 ± 40 pM vs. 280 ± 40 pM; 1‐minute postglucose, 2500 ± 180 pM vs. 1240 ± 260 pM; p < 0.0001) and increased plasma PP levels, which were correlated with insulinemia. Atropine significantly reduced plasma insulin and PP to levels similar to normal controls but had no effect in any other group. Discussion: These data show that glucocorticoids act within the brain to increase insulinemia, most likely through activation of parasympathetic efferent fibers. Such an affect would contribute to the adipogenic effects of central glucocorticoids.  相似文献   

2.
Glucagon-like peptide-1 (GLP-1) influences energy balance by exerting effects on food intake and glucose metabolism, through mechanisms that are partially dependent on the vagal pathway. The aim of this study was to characterize the effects of chronic GLP-1 stimulation on energy homeostasis and glucose metabolism in the absence of vagal innervation Truncal vagotomized (VGX) and sham operated rats (SHAM) received an intraperitoneal GLP-1 infusion (3.5 pmol/kg/min) trough mini-osmotic pumps. To dissect the effects derived from vagal denervation on food intake, an additional group was included consisting of sham operated rats that were PAIR FED to VGX. Food intake and body weight were recorded throughout the experimental period, while the percentage of white and brown adipose tissue, fasting glucose, insulin, gastro-intestinal hormonal profile, hypothalamic, and BAT gene expression were assessed at endpoint. VGX rats had significantly lower food intake, body weight gain, and leptin levels when compared with SHAM rats. Despite having similar body weight, PAIR-FED rats had lower fasting leptin, insulin and insulin resistance, while having higher ghrelin levels than VGX. GLP-1 infusion did not influence food intake or body weight, but was associated with lower leptin levels in VGX and lower pancreatic α-cells ki-67 staining in SHAM. Concluding, this study corroborates that the vagus nerve may modulate whole body energy homeostasis by acting in peripheral signals. Our data suggest that in the absence of vagal or parasympathetic tonus, GLP-1 mediated inhibition of cell proliferation markers in α-cells is prevented, meanwhile leptin suppression, associated with a negative energy balance, is partially overridden.  相似文献   

3.
Objective: To investigate the effect of S 23521, a new glucagon‐like peptide‐1‐(7‐36) amide analogue, on food intake and body weight gain in obese rats, as well as on gene expression of several proteins involved in energy homeostasis. Research Methods and Procedures: Lean and diet‐induced obese rats were treated with either S 23521 or vehicle. S 23521 was given either intraperitoneally (10 or 100 μg/kg) or subcutaneously (100 μg/kg) for 14 and 20 days, respectively. Because the low‐dose treatment did not affect food intake and body weight, the subcutaneous treatment at high dose was selected to test the effect on selected end‐points. Results: Treated obese rats significantly decreased their cumulative energy intake in relation to vehicle‐treated counterparts (3401 ± 65 vs. 3898 ± 72 kcal/kg per 20 days; p < 0.05). Moreover, their body weight gain was reduced by 110%, adiposity was reduced by 20%, and plasma triglyceride levels were reduced by 38%. The treatment also improved glucose tolerance and insulin sensitivity of obese rats. Regarding gene expression, no changes in uncoupling protein‐1, uncoupling protein‐3, leptin, resistin, and peroxisome proliferator‐activated receptor (PPAR)‐γ were observed. Discussion: S 23521 is an effective glucagon‐like peptide‐1‐(7‐36) amide analogue, which induced a decrease in energy intake, body weight, and adiposity in a rat model of diet‐induced obesity. In addition, the treatment also improved glucose tolerance and insulin sensitivity of obese rats. These results strongly support S 23521 as a putative molecule for the treatment of obesity.  相似文献   

4.
Objective: To evaluate insulin action on substrate use and insulinemia in nondiabetic class III obese patients before and after weight loss induced by bariatric surgery. Research Methods and Procedures: Thirteen obese patients (four men/nine women; BMI = 56.3 ± 2.7 kg/m2) and 13 lean subjects (five men/eight women; BMI = 22.4 ± 0.5 kg/m2) underwent euglycemic clamp, oral glucose tolerance test, and indirect calorimetry. The study was carried out before (Study I) and after (~40% relative to initial body weight; Study II) weight loss induced by Roux‐en‐Y Gastric bypass with silastic ring surgery. Results: The obese patients were insulin resistant (whole‐body glucose use = 19.7 ± 1.5 vs. 51.5 ± 2.4 μmol/min per kilogram fat‐free mass, p < 0.0001) and hyperinsulinemic in the fasting state (332 ± 86 vs. 85 ± 5 pM, p < 0.0001) and during the oral glucose tolerance test compared with the lean subjects. Fasting plasma insulin normalized after weight loss, whereas whole‐body glucose use increased (35.5 ± 3.7 μmol/min per kilogram fat‐free mass, p < 0.05 vs. Study I). The higher insulin clearance of obese did not change during the follow‐up period. Insulin‐induced glucose oxidation and nonoxidative glucose disposal were lower in the obese compared with the lean group (all p < 0.05). In Study II, the former increased slightly, whereas nonoxidative glucose disposal reached values similar to those of the control group. Fasting lipid oxidation was higher in the obese than in the control group and did not change significantly in Study II. The insulin effect on lipid oxidation was slightly improved (p = 0.01 vs. Study I). Discussion: The rapid weight loss after surgery in obese class III patients normalized insulinemia and improved insulin sensitivity almost entirely due to glucose storage, whereas fasting lipid oxidation remained high.  相似文献   

5.
Objective: In healthy lean individuals, changes in insulin sensitivity occurring as a consequence of a 2‐day dexamethasone administration are compensated for by changes in insulin secretion, allowing glucose homeostasis to be maintained. This study evaluated the changes in glucose metabolism and insulin secretion induced by short‐term dexamethasone administration in obese women. Research Methods and Procedures: Eleven obese women with normal glucose tolerance were studied on two occasions, without and after 2 days of low‐dose dexamethasone administration. A two‐step hyperglycemic clamp (7.5 and 10 mM glucose) with 6, 6 2H2 glucose was used to assess insulin secretion and whole body glucose metabolism. Results were compared with those obtained in a group of eight lean women. Results: Without dexamethasone, obese women had higher plasma insulin concentrations in the fasting state, during the first phase of insulin secretion, and at the two hyperglycemic plateaus. However, they had normal whole body glucose metabolism compared with lean women, indicating adequate compensation. After dexamethasone, obese women had a 66% to 92% increase in plasma insulin concentrations but a 15.4% decrease in whole body glucose disposal. This contrasted with lean women, who had a 91% to 113% increase in plasma insulin concentrations, with no change in whole body glucose disposal. Discussion: Dexamethasone administration led to a significant reduction in whole body glucose disposal at fixed glycemia in obese but not lean women. This indicates that obese women are unable to increase their insulin secretion appropriately.  相似文献   

6.

Objective:

Dietary supplement may potentially help to fight obesity and other metabolic disorders such as insulin‐resistance and low‐grade inflammation. The present study aimed to test whether supplementation with Agaricus blazei murill (ABM) extract could have an effect on diet‐induced obesity in rats.

Design and Methods:

Wistar rats were fed with control diet (CD) or high‐fat diet (HF) and either with or without supplemented ABM for 20 weeks.

Results:

HF diet‐induced body weight gain and increased fat mass compared to CD. In addition HF‐fed rats developed hyperleptinemia and insulinemia as well as insulin resistance and glucose intolerance. In HF‐fed rats, visceral adipose tissue also expressed biomarkers of inflammation. ABM supplementation in HF rats had a protective effect against body weight gain and all study related disorders. This was not due to decreased food intake which remained significantly higher in HF rats whether supplemented with ABM or not compared to control. There was also no change in gut microbiota composition in HF supplemented with ABM. Interestingly, ABM supplementation induced an increase in both energy expenditure and locomotor activity which could partially explain its protective effect against diet‐induced obesity. In addition a decrease in pancreatic lipase activity is also observed in jejunum of ABM‐treated rats suggesting a decrease in lipid absorption.

Conclusions:

Taken together these data highlight a role for ABM to prevent body weight gain and related disorders in peripheral targets independently of effect in food intake in central nervous system.  相似文献   

7.
Objective : Insulin resistance is observed in individuals with normal glucose tolerance. This indicates that increased insulin secretion can compensate for insulin resistance and that additional defects are involved in impaired glucose tolerance or type 2 diabetes. The objective of this study was to evaluate a procedure aimed at assessing the compensatory mechanisms to insulin resistance. Research Methods and Procedures : Eight healthy nonobese female patients were studied on two occasions, before and after administration of 2 mg/d dexamethasone for 2 days during a two‐step hyperglycemic clamp. Insulin secretion was assessed from plasma insulin concentrations. Insulin sensitivity was assessed from the ratio of whole‐body glucose use (6, 6 2H2 glucose) to plasma insulin concentrations. This procedure is known to induce a reversible impairment of glucose tolerance and insulin resistance. Results : In all subjects, dexamethasone induced a decrease in insulin sensitivity and a proportionate increase in first‐phase insulin secretion and in insulin concentrations at both steps of glycemia. The resulting hyperinsulinemia allowed the restoration of normal whole‐body glucose uptake and the suppression of plasma free fatty acids and triglycerides. In contrast, the suppression of endogenous glucose production was impaired after dexamethasone (p < 0.01). Discussion : Increased insulin secretion fully compensates dexamethasone‐induced insulin resistance in skeletal muscle and adipose tissue but not in the liver. This suggests that failure to overcome hepatic insulin resistance can impair glucose tolerance. The compensatory insulin secretion in response to insulin resistance can be assessed by means of a hyperglycemic clamp after a dexamethasone challenge.  相似文献   

8.
Objective: The effects of a very low‐carbohydrate (VLC), high‐fat (HF) dietary regimen on metabolic syndrome were compared with those of an isocaloric high‐carbohydrate (HC), low‐fat (LF) regimen in dietary obese rats. Research Methods and Procedures: Male Sprague‐Dawley rats, made obese by 8 weeks ad libitum consumption of an HF diet, developed features of the metabolic syndrome vs. lean control (C) rats, including greater visceral, subcutaneous, and hepatic fat masses, elevated plasma cholesterol levels, impaired glucose tolerance, and fasting and post‐load insulin resistance. Half of the obese rats (VLC) were then fed a popular VLC‐HF diet (Weeks 9 and 10 at 5% and Weeks 11 to 14 at 15% carbohydrate), and one‐half (HC) were pair‐fed an HC‐LF diet (Weeks 9 to 14 at 60% carbohydrate). Results: Energy intakes of pair‐fed VLC and HC rats were less than C rats throughout Weeks 9 to 14. Compared with HC rats, VLC rats exhibited impaired insulin and glycemic responses to an intraperitoneal glucose load at Week 10 and lower plasma triacylglycerol levels but retarded loss of hepatic, retroperitoneal, and total body fat at Week 14. VLC, HC, and C rats no longer differed in body weight, plasma cholesterol, glucose tolerance, or fasting insulin resistance at Week 14. Progressive decreases in fasting insulin resistance in obese groups paralleled concomitant reductions in hepatic, retroperitoneal, and total body fat. Discussion: When energy intake was matched, the VLC‐HF diet provided no advantage in weight loss or in improving those components of the metabolic syndrome induced by dietary obesity and may delay loss of hepatic and visceral fat as compared with an HC‐LF diet.  相似文献   

9.
Objective: There is conflicting evidence about the propensity of trans fatty acids (TFAs) to cause obesity and insulin resistance. The effect of moderately high intake of dietary monounsaturated TFAs on body composition and indices of glucose metabolism was evaluated to determine any pro‐diabetic effect in the absence of weight gain. Research Methods and Procedures: Male African green monkeys (Chlorocebus aethiops; n = 42) were assigned to diets containing either cis‐monounsaturated fatty acids or an equivalent diet containing the trans‐isomers (~8% of energy) for 6 years. Total calories were supplied to provide maintenance energy requirements and were intended to not promote weight gain. Longitudinal body weight and abdominal fat distribution by computed tomography scan analysis at 6 years of study are reported. Fasting plasma insulin, glucose, and fructosamine concentrations were measured. Postprandial insulin and glucose concentrations, and insulin‐stimulated serine/threonine protein kinase (Akt), insulin receptor activation, and tumor necrosis factor‐α concentrations in subcutaneous fat and muscle were measured in subsets of animals. Results: TFA‐fed monkeys gained significant weight with increased intra‐abdominal fat deposition. Impaired glucose disposal was implied by significant postprandial hyperinsulinemia, elevated fructosamine, and trends toward higher glucose concentrations. Significant reduction in muscle Akt phosphorylation from the TFA‐fed monkeys suggested a mechanism for these changes in carbohydrate metabolism. Discussion: Under controlled feeding conditions, long‐term TFA consumption was an independent factor in weight gain. TFAs enhanced intra‐abdominal deposition of fat, even in the absence of caloric excess, and were associated with insulin resistance, with evidence that there is impaired post‐insulin receptor binding signal transduction.  相似文献   

10.
Objective: This study investigated which aspect of energy balance was responsible for the decrease in body fat content of rats fed a high‐calcium, high—dairy protein diet. Research Methods and Procedures: Male Wistar rats were fed a control diet (25% kcal fat, 14% kcal protein from casein, 0.4% by weight calcium) or high‐calcium diet (25% kcal fat, 7% kcal protein from nonfat dry milk, 7% kcal protein from casein, 2.4% calcium) for 85 days. Body weights, digestible energy intakes, energy expenditures, rectal temperatures, body composition, and serum glucose, insulin, free fatty acids, triglycerides, and 1, 25‐dihydroxyvitamin D were measured. Results: Rats fed high‐calcium diet gained significantly less weight than controls and had 29% less carcass fat. Gross energy intake was not significantly different between groups, but digestible energy was 90% of gross energy in the high‐calcium diet compared with 94% in the control diet because of increased fecal excretion of dietary lipid. The difference in digestible energy intake accounted for differences in carcass energy. Body temperatures and energy expenditures of the rats were not different. The high‐calcium diet reduced serum triglycerides by 23% and serum 1, 25‐dihydroxyvitamin D by 86%. Discussion: These results confirm that a high‐calcium diet decreases body weight and fat content due to a lower digestible energy intake caused by increased fecal lipid and a nonsignificant reduction in gross energy intake.  相似文献   

11.
Objective: To determine the impact of diet‐induced weight loss on cardiac autonomic nervous system modulation and arrhythmias in subjects with severe obesity and the influence of a high‐fat or a high‐carbohydrate diet regimen on heart rate variability in reduced‐obese individuals. Research Methods and Procedures: Eight severely obese subjects (BMI ≥ 40.0 kg/m2) underwent a 3‐month weight loss program followed by a 3‐month reduced‐weight maintenance regimen. Thereafter, each subject was admitted for an inpatient period of 17 days on two separate occasions. A high‐carbohydrate (60%) or high‐fat (55%) diet of appropriate energy content for weight maintenance was prescribed during each inpatient phase. Heart rate variability was derived from a 24‐hour Holter monitoring system in all subjects during their inpatient stay. Cardiac Holter monitoring was performed at three occasions (baseline, diet phase I, and diet phase II), including the second night of a two overnight calorimetry chamber stay. Results: After the diet regimen, there was a 10% decrease in weight. There were no significant changes in systolic and diastolic blood pressure, arrhythmias, glucose, insulin, total cholesterol, low‐density lipoprotein‐cholesterol, high‐density lipoprotein‐cholesterol, respiratory exchange ratio, and resting energy expenditure between experiments. Mean heart rate was lower after weight loss compared with baseline (p < 0.001). After weight loss, there was an increase in the parasympathetic indices of heart rate variability showing an increase in cardiac vagal modulation (all p < 0.05). Discussion: Weight loss is associated with significant improvement in autonomic cardiac modulation through enhancement of parasympathetic modulation, which clinically translates into a decrease in heart rate.  相似文献   

12.
Objective: To characterize a model of atypical antipsychotic drug‐induced obesity and evaluate its mechanism. Research Methods and Procedures: Chronically, olanzapine or clozapine was self‐administered via cookie dough to rodents (Sprague‐Dawley or Wistar rats; C57Bl/6J or A/J mice). Chronic studies measured food intake, body weight, adiponectin, active ghrelin, leptin, insulin, tissue wet weights, glucose, clinical chemistry endpoints, and brain dopaminergic D2 receptor density. Acute studies examined food intake, ghrelin, leptin, and glucose tolerance. Results: Olanzapine (1 to 8 mg/kg), but not clozapine, increased body weight in female rats only. Weight changes were detectable within 2 to 3 days and were associated with hyperphagia starting ~24 hours after the first dose. Chronic administration (12 to 29 days) led to adiposity, hyperleptinemia, and mild insulin resistance; no lipid abnormalities or changes in D2 receptor density were observed. Topiramate, which has reversed weight gain from atypical antipsychotics in humans, attenuated weight gain in rats. Acutely, olanzapine, but not clozapine, lowered plasma glucose and leptin. Increases in glucose, insulin, and leptin following a glucose challenge were also blunted. Discussion: A model of olanzapine‐induced obesity was characterized which shares characteristics of patients with atypical antipsychotic drug‐induced obesity; these characteristics include hyperphagia, hyperleptinemia, insulin resistance, and weight gain attenuation by topiramate. This model may be a useful and inexpensive model of uncomplicated obesity amenable to rapid screening of weight loss drugs. Olanzapine‐induced weight gain may be secondary to hyperphagia associated with acute lowering of plasma glucose and leptin, as well as the inability to increase plasma glucose and leptin following a glucose challenge.  相似文献   

13.
Few randomized trials attempt to improve insulin sensitivity and associated metabolic risks in overweight Latino youth. The purpose of this study is to examine the effects of a modified carbohydrate nutrition program combined with strength training on insulin sensitivity, adiposity, and other type 2 diabetes risk factors in overweight Latino adolescents. In a 16‐week randomized trial, 54 overweight Latino adolescents (15.5 ± 1.0 years) were randomly assigned to: (i) Control (C; n = 16), (ii) Nutrition (N; n = 21), or (iii) Nutrition + Strength training (N+ST; n = 17). The N group received modified carbohydrate nutrition classes (once per week), while the N+ST received the same nutrition classes plus strength training (twice per week). The following were measured at pre‐ and postintervention: strength by 1‐repetition maximum, dietary intake by 3‐day records, body composition by dual‐energy X‐ray absorptiometry, glucose/insulin indices by oral glucose tolerance test (OGTT) and intravenous glucose tolerance test with minimal modeling. Across intervention group effects were tested using analysis of covariance with post hoc pairwise comparisons. A significant overall intervention effect was found for improvement in bench press (P < 0.001) and reductions in energy (P = 0.05), carbohydrate (P = 0.04) and fat intake (P = 0.03). There were no significant intervention effects on insulin sensitivity, body composition, or most glucose/insulin indices with the exception of glucose incremental area under the curve (IAUC) (P = 0.05), which decreased in the N and N+ST group by 18 and 6.3% compared to a 32% increase in the C group. In conclusion, this intense, culturally tailored intervention resulted in no significant intervention effects on measured risk factors with the exception of a beneficial effect on glycemic response to oral glucose.  相似文献   

14.
Ketogenesis, inferred by the production of acetoacetate plus ß‐hydroxybutyrate, in isolated perfused livers from 24‐h fasted diabetic rats submitted to short‐term insulin‐induced hypoglycemia (IIH) was investigated. For this purpose, alloxan‐diabetic rats that received intraperitoneal regular insulin (IIH group) or saline (COG group) injection were compared. An additional group of diabetic rats which received oral glucose (gavage) (100 mg kg?1) 15 min after insulin administration (IIH + glucose group) was included. The studies were performed 30 min after insulin (1.0 U kg?1) or saline injection. The ketogenesis before octanoate infusion was diminished (p < 0.05) in livers from rats which received insulin (COG vs. IIH group) or insulin plus glucose (COG vs. IIH + glucose group). However, the liver ketogenic capacity during the infusion of octanoate (0.3 mM) was maintained (COG vs. IIH group and COG vs. IIH + glucose group). In addition, the blood concentration of ketone bodies was not influenced by the administration of insulin or insulin plus glucose. Taken together, the results showed that inspite the fact that insulin and glucose inhibits ketogenesis, livers from diabetic rats submitted to short‐term IIH which received insulin or insulin plus glucose showed maintained capacity to produce acetoacetate and ß‐hydroxybutyrate from octanoate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
16.
AimsWe investigated whether hypothalamic leptin alters β-cell function and mass directly via the sympathetic nervous system (SNS) or indirectly as the result of altered insulin resistant states.Main methodsThe 90% pancreatectomized male Sprague Dawley rats had sympathectomy into the pancreas by applying phenol into the descending aorta (SNSX) or its sham operation (Sham). Each group was divided into two sections, receiving either leptin at 300 ng/kg bw/h or artificial cerebrospinal fluid (aCSF) via intracerebroventricular (ICV) infusion for 3 h as a short-term study. After finishing the infusion study, ICV leptin (3 μg/kg bw/day) or ICV aCSF (control) was infused in rats fed 30 energy % fat diets by osmotic pump for 4 weeks. At the end of the long-term study, glucose-stimulated insulin secretion and islet morphometry were analyzed.Key findingsAcute ICV leptin administration in Sham rats, but not in SNSX rats, suppressed the first- and second-phase insulin secretion at hyperglycemic clamp by about 48% compared to the control. Regardless of SNSX, the 4-week administration of ICV leptin improved glucose tolerance during oral glucose tolerance tests and insulin sensitivity at hyperglycemic clamp, compared to the control, while it suppressed second-phase insulin secretion in Sham rats but not in SNSX rats. However, the pancreatic β-cell area and mass were not affected by leptin and SNSX, though ICV leptin decreased individual β-cell size and concomitantly increased β-cell apoptosis in Sham rats.SignificanceLeptin directly decreases insulin secretion capacity mainly through the activation of SNS without modulating pancreatic β-cell mass.  相似文献   

17.
Objective: Rats with ventromedial hypothalamic lesion (VMH) are massively obese with endogenous hyperinsulinemia, insulin resistance, low sympathetic activity, and high parasympathetic activity, which are likely to induce hypertension. The goal was to follow in this model the long‐term hemodynamic changes and to investigate the role of autonomic nervous system and insulin resistance in these changes. Research Metho ds and Procedures: Heart rate and blood pressure were monitored for 12 weeks after operation using a telemetric system in VMH and sham rats. Plasma catecholamines and heart β‐adrenoceptors were measured. Glucose tolerance was studied after an intravenous glucose injection and insulin sensitivity during a euglycemic hyperinsulinemic clamp test. Results: A marked bradycardia and only a mild increase in blood pressure occurred in VMH rats compared with sham animals. Response to autonomic‐acting drugs showed an increase in heart vagal tone and responsiveness to a β‐agonist drug. Plasma catecholamine levels were markedly increased, and the density and affinity of heart β‐adrenoceptors were similar in VMH, sham, and control rats. Muscle glucose use was reduced by 1 week after operation in VMH animals. Discussion: These results show the following in this model of massively obese rats with sympathetic impairment: 1) adrenal medulla secretion is increased, probably as a result of hyperinsulinemia and increased vagal activity; 2) cardiac responsiveness to β‐agonist stimulation is increased; and 3) despite these changes and suspected resistance to the vasodilative effect of insulin, blood pressure does not increase. We conclude that high vagal activity may be protective against hypertension associated with obesity.  相似文献   

18.
《Endocrine practice》2010,16(5):763-769
ObjectiveTo study the mechanism of increased insulin secretion in response to short-term administration of dexamethasone.MethodsMale Wistar rats were injected intraperitoneally with dexamethasone (dexamethasone; 200 mcg/kg body weight per day) or saline for 3 consecutive days. Insulin secretion in response to glucose, ionomycin, and KCl was quantified in islets isolated from the animals, and the amount of glucokinase was measured by Western blot.ResultsDexamethasone-treated animals had 1.18-fold higher fasting blood glucose concentration and 6.5-fold increase in fasting serum insulin concentration compared with findings from animals injected with saline. Compared with islets isolated from control rats, islets from dexamethasone-treated rats secreted more insulin at 60 minutes in response to 5.5 mM glucose (416.4 vs 115.6 fmoles/10 islets, P = .011) and in response to 16.6 mM glucose (985.5 vs 520.6 fmoles/10 islets, P = .014); no change in insulin secretion was observed at 10 minutes. Insulin secretion from islets of dexamethasone-treated rats and control rats was not differentially augmented in response to either ionomycin or potassium chloride. Glucokinase expression was not altered by treatment with dexamethasone.ConclusionsAugmentation of insulin secretion in response to glucose in the pancreatic islets from dexamethasone-treated rats is preserved in islets studied in vitro. The increase in glucose-stimulated insulin secretion appears to be mediated by steps upstream to β -cell membrane depolarization and the attended increase in intracellular calcium in the signaling pathway of insulin secretion. (Endocr Pract. 2010;16:763-769)  相似文献   

19.
The action of orally administered dexamethasone (0.2 mg kg−1 day−1) on metabolic parameters of adjuvant-induced arthritic rats was investigated. The body weight gain and the progression of the disease were also monitored. Dexamethasone was very effective in suppressing the Freund’s adjuvant-induced paw edema and the appearance of secondary lesions. In contrast, the body weight loss of dexamethasone-treated arthritic rats was more accentuated than that of untreated arthritic or normal rats treated with dexamethasone, indicating additive harmful effects. The perfused livers from dexamethasone-treated arthritic rats presented high content of glycogen in both fed and fasted conditions, as indicated by the higher rates of glucose release in the absence of exogenous substrate. The metabolization of exogenous l-alanine was increased in livers from dexamethasone-treated arthritic rats in comparison with untreated arthritic rats, but there was a diversion of carbon flux from glucose to l-lactate and pyruvate. Plasmatic levels of insulin and glucose were significantly higher in arthritic rats following dexamethasone administration. Most of these changes were also found in livers from normal rats treated with dexamethasone. The observed changes in l-alanine metabolism and glycogen synthesis indicate that insulin was the dominant hormone in the regulation of the liver glucose metabolism even in the fasting condition. The prevalence of the metabolic effects of dexamethasone over those ones induced by the arthritis disease suggests that dexamethasone administration was able to suppress the mechanisms implicated in the development of the arthritis-induced hepatic metabolic changes. It seems thus plausible to assume that those factors responsible for the inflammatory responses in the paws and for the secondary lesions may be also implicated in the liver metabolic changes, but not in the body weight loss of arthritic rats.  相似文献   

20.
Objective: To assess the effect of massive weight loss in relation to insulin resistance and its correlation to changes in glycemic homeostasis and lipid profile in severely obese patients. Research Methods and Procedures: A prospective clinical intervention study was carried out with 31 morbidly obese women (body mass index: 54.2 ± 8.8 kg/m2) divided into three groups according to their glucose tolerance test: 14 normal, 8 impaired glucose tolerance, and 9 type 2 diabetes. All subjects underwent an insulin tolerance test with intravenous bolus of 0.1 U insulin/kg body weight before silastic ring vertical gastroplasty Roux‐en‐Y gastric bypass surgery, and again at 2, 4, 6, and 12 months postoperatively. Fasting plasma glucose, hemoglobin A1c, and lipid profile were also evaluated. Results: A reduction of 68 ± 15% in initial excess body weight was evident within 1 year. Along with weight loss, the following statistically significant changes were found: an increase in the insulin‐sensitivity index (Kitt) and a decrease in fasting plasma glucose and hemoglobin A1c, most notably in the type 2 diabetes group. An overall improvement in lipid profile was observed in all three groups. Discussion: Bariatric surgery was an effective therapeutic approach for these obese patients because it reduced both weight and insulin resistance, along with improving metabolic parameters. Significant correlations were found between insulin resistance and metabolic improvements. Weight loss after bariatric surgery induced an improvement in metabolic fitness, related to the reduction in insulin resistance over a range of glucose tolerance statuses from normal to diabetic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号