共查询到20条相似文献,搜索用时 0 毫秒
1.
Objective: : Treeless meadows and parks are widespread but poorly understood features of the montane vegetation of the western USA. These communities frequently form reversed treelines where grassy valleys occur below forested slopes above. Our purpose was to assess the environmental correlates of such treelines, as well as patterns in the composition and diversity of grasslands and forest margins in the Valles Caldera National Preserve. Location: Valles Caldera National Preserve (35°50′‐36°00’ N, 106°24′‐106°37’ W, 2175–3150 m), Jemez Mountains, New Mexico, USA. Methods: We conducted a gradient analysis based on 200 nested quadrats on transects crossing reversed treelines and spanning the compositional heterogeneity of grasslands. We used cluster analysis and non‐metric multidimensional scaling to assess relationships between compositional variation and environmental variables. Results: We found strong, highly significant relationships of the vegetation to gradients in slope inclination, soil texture, moisture, nutrient availability, and nighttime minimum temperatures. Reversed treelines are most strongly associated with shifts in the thermal regime, exhibit weaker relationships with soil texture and nutrient content, and show no relationship with gravimetric soil moisture. Gradients in aspect, soil moisture, and annual mean temperature are associated with compositional variation within grasslands and forest margins. Conclusions: Lower nightly minimum temperatures and fewer consecutive frost‐free days resulting from cold‐air drainage may prevent tree seedling establishment in valley bottoms via photo‐inhibition, tissue damage, or frost heaving. Fine‐textured soils may also impede tree seedling establishment in valley bottoms. These findings lay the groundwork for experimental and physiological tests of these potential causes of these reversed treelines. 相似文献
2.
Abstract. The hypothesis that mole burrowing activity alters soil nutrient fluxes and that, as a response to the new conditions, a specialized guild of species develops on the molehills, was tested in an area located in the southwestern Spanish Pyrenees, on a spectrum of montane grassland communities that varies from xeric to temporally waterlogged. Evidence for an association between disturbance and nutrient availability was reported for nitrogen. Mole‐disturbed soils had elevated amounts of inorganic nitrogen compared to soils in surrounding pastures. At the first stages of mound revegetation, changes in nitrate flushes and in species competitive relationships following disturbance appeared to facilitate the establishment of ruderal and non‐mycorrhizal species. The diversity of the whole grassland was enhanced by the existence of these sets of species, abundant on mounds and rarer in the pasture. However, the difference was mainly quantitative, as exclusive colonizers of molehills were not found. 相似文献
3.
4.
Questions: 1. How are the long‐term dynamics of the root hemiparasite Rhinanthus angustifolius related to vegetation structure, grassland management and climate? 2. Does R. angustifolius have a long‐term impact on standing crop and community composition? Location : A formerly fertilized grassland, part of a larger brook valley system in the nature reserve ‘Drentsche Aa’, near Groningen, The Netherlands. Methods : Vegetation development has been monitored since 1973 in 54 permanent plots in nine management regimes without fertilizer application. Results : 1. The hemiparasite established when standing crop was less than 600 g.m?2 and performed best under annual haymaking using machinery. Since its appearance, the population fluctuated stochastically, with two peaks. Coinciding collapses in six adjacent grasslands and comparison with an integrated climatic index suggest that the population collapses are induced by spring drought. 2. We did not find a relationship between total standing crop and R. angustifolius cover. Cover of grasses was negatively related to the abundance of the hemiparasite in the same and the previous year. Forb cover tended to increase with the parasite. Conclusions : R. angustifolius shows stochastic population fluctuations, mainly determined by spring drought, to which this species is probably highly vulnerable because of its parasitic and annual life style without a persistent seed bank. The hemiparasite also shows long‐term relationships with grass cover (negative) and forb cover (positive), but it seems to have no lasting impact on standing crop. 相似文献
5.
Jnos Podani 《植被学杂志》2006,17(1):113-117
Abstract. This article investigates whether the Braun‐Blanquet abundance/dominance (AD) scores that commonly appear in phytosociological tables can properly be analysed by conventional multivariate analysis methods such as Principal Components Analysis and Correspondence Analysis. The answer is a definite NO. The source of problems is that the AD values express species performance on a scale, namely the ordinal scale, on which differences are not interpretable. There are several arguments suggesting that no matter which methods have been preferred in contemporary numerical syntaxonomy and why, ordinal data should be treated in an ordinal way. In addition to the inadmissibility of arithmetic operations with the AD scores, these arguments include interpretability of dissimilarities derived from ordinal data, consistency of all steps throughout the analysis and universality of the method which enables simultaneous treatment of various measurement scales. All the ordination methods that are commonly used, for example, Principal Components Analysis and all variants of Correspondence Analysis as well as standard cluster analyses such as Ward's method and group average clustering, are inappropriate when using AD data. Therefore, the application of ordinal clustering and scaling methods to traditional phytosociological data is advocated. Dissimilarities between relevés should be calculated using ordinal measures of resemblance, and ordination and clustering algorithms should also be ordinal in nature. A good ordination example is Non‐metric Multidimensional Scaling (NMDS) as long as it is calculated from an ordinal dissimilarity measure such as the Goodman & Kruskal γ coefficient, and for clustering the new OrdClAn‐H and OrdClAn‐N methods. 相似文献
6.
Questions: Is species diversity affected in protected areas where human activities are permitted or tolerated? On plots of a fixed size, does stem density alone predict number of species? Are differences in density related to disturbance and altitude? Location: Achanakmar‐Amarkantak Biosphere Reserve, central India. Methods: 42 sites, each with three replicate 10‐m radius plots, were examined. All trees (≥ 30 cm GBH) in each plot were measured for girth at breast height. α‐diversity, species richness and evenness were calculated for each site. The sites were ordinated by Nonmetric Multidimensional Scaling (NMS) using relative importance values of component species. Correspondence Analysis was used to broadly delineate communities. Anthropogenic disturbances were recorded in terms of percentage of trees lopped, scale of lopping, number of domestic livestock dung piles and foot trails (both livestock and people) for each plot. Results: The NMS analysis exhibited a near linear arrangement of sites with no evidence of discrete vegetation zones. NMS axes were significantly related to altitude and disturbance scores. With increasing elevation, basal area increased but number of species, α‐diversity and its components declined monotonically. The number of species and indices of species diversity were positively associated with tree lopping and also with total disturbance. Number of species was controlled by stem density only in plots not dominated by Shorea robusta. Conclusions: Recent levels of human disturbance are associated with higher species diversity in this biosphere reserve. There is some evidence that stands at all altitudes follow the same successional pattern to dominance by Shorea, a successional pattern that also results in decreased diversity without disturbance. 相似文献
7.
Chang-Fu Hsieh Zueng-Sang Chen Yueh-Mei Hsu Kuoh-Chieng Yang Tsung-Hsin Hsieh 《植被学杂志》1998,9(2):201-212
Abstract. Evergreen broad-leaved forest was studied in a transect on the northwestern slope of Mount Lopei in order to reveal altitudinal zonation in structure and floristic composition and the decisive environmental factors. 20 plots of 20 m × 20 m at altitudes from 540 m to 1320 m were analysed. 144 woody species were found. The results of a DCA ordination clearly pointed to a single dominant altitudinal gradient. Nevertheless, wind-exposure associated topography was found to account for additional variation for a given altitudinal range. Along the altitudinal gradient, four dominance-based forest types were recognized. Tree density, species diversity and evenness of the four types differed significantly but total basal area and tree volume were not significantly different. The 95 % turnover range for woody species as measured by the Community Coefficient was calculated as 1030 m, and the 50 % turnover range as 238 m. For the understorey, the change in species composition with altitude was less obvious. Species population structures of 57 sufficiently abundant species revealed four characteristic patterns, but most species showed a good fit to the negatively exponential or power function distribution and thus appeared to have good reproduction and regular recruitment. Both ANOVA and Redundancy Analysis (RDA) showed that significant differences among forest types were found for most soil variables. Organic C, exchangeable Na and K tended to increase with altitude, while pH and available N showed a reverse trend. There was little evidence that the differences in soil pH and available N were responsible for the variation in forest growth. 相似文献
8.
Question: What environmental factors and physiological traits determine the juvenile survival rates of 11 dipterocarp species (Dipterocarpaceae) co-occurring in a Bornean tropical rain forest? Location: Tropical northwestern Borneo. Methods: In 248 quadrats, distributed over 12 ha, the juvenile (height< 2.0 m) survival of 11 shade-tolerant dipterocarp species was monitored for one year. The probability of survival for each species was expressed as a logistic function of plant height and three environmental factors: canopy openness, soil water potential and conspecific individual density. The correlation between survival under shaded conditions and several physiological traits of juveniles was tested by normal Pearson correlation and a phylogeny based manner using independent contrasts. Results: Seven species had increased survival under more open canopies, one species had increased and two species had decreased survival at drier sites. Six species had higher survival as the density of conspecifics increased, whereas two species had lower survival. The magnitudes of the effects for the three environmental factors were similar. However, the interspecific difference in survival was largely determined by a dependence of small seedlings on the light environment. Survival under low light was correlated positively with root dry mass and negatively with total leaf area of juveniles. Conclusions: Responses of seedlings to the fine-scale gradient of light availability were considerably different among the 11 species. Species that suffered increased mortality under low light had a set of structural traits that would potentially allow rapid growth under bright conditions. Differential performance along the light gradient may contribute to the stable coexistence of these species. 相似文献
9.
Abstract. Fen meadows (Cirsio dissecti‐Molinietum) are seriously threatened by desiccation, acidification and eutro‐phication. In The Netherlands several projects were launched to restore damaged fen meadows. This review describes how successes and failures of these restoration projects depend on hydrological systems. Six hydrological systems have been distinguished, which all provide the site conditions required by this community. Nowadays, the best developed fen meadows are found in the higher Pleistocene landscape of The Netherlands, where they depend on base‐rich groundwater discharging from local or large groundwater systems. Fen meadows of the lower Holocene landscape usually occur in man‐made surface water systems. Almost all stands have been severely deteriorated. Restoration of fen meadows in the Pleistocene landscape is promising when the hydrology is only slightly disturbed or when hydrological measures are taken in combination with sod cutting. Restoration prospects of fen meadows in the Holocene landscape are low. Until now a complete regeneration of Cirsio‐Molinietum meadows has not been realized. Restoration measures failed to restore high pH values in the top soil. It is hypothesized that viable seeds of many target species lack in the soil seed bank. In addition, the dispersal capacities of these species seem to be limited. 相似文献
10.
Abstract. Methods for coupling two data sets (species composition and environmental variables for example) are well known and often used in ecology. All these methods require that variables of the two data sets have been recorded at the same sample stations. But if the two data sets arise from different sample schemes, sample locations can be different. In this case, scientists usually transform one data set to conform with the other one that is chosen as a reference. This inevitably leads to some loss of information. We propose a new ordination method, named spatial‐RLQ analysis, for coupling two data sets with different spatial sample techniques. Spatial‐RLQ analysis is an extension of co‐inertia analysis and is based on neighbourhood graph theory and classical RLQ analysis. This analysis finds linear combinations of variables of the two data sets which maximize the spatial cross‐covariance. This provides a co‐ordination of the two data sets according to their spatial relationships. A vegetation study concerning the forest of Chizé (western France) is presented to illustrate the method. 相似文献
11.
Abstract. We studied the germinable soil seed bank of tall‐tussock grasslands along an altitudinal gradient in the mountains of central Argentina. We selected 10 sampling plots at three altitudinal levels (1200 m, 1600 m and 2200 m). We assessed the composition of the established vegetation and took ten compound soil samples (0 ‐ 5 cm depth) at each plot in autumn and spring. The soil samples were sieved, chilled, and incubated in a glasshouse to assess the composition of the seed bank. The similarity between the composition of the seed bank flora and that of the established vegetation was low throughout the gradient. Most species did not change their seed bank strategy along the gradient. Seed bank richness and density increased with altitude. Most species had a persistent seed bank at all altitudinal levels, and the proportion of such species increased with altitude. These results suggest that a cold climate directly and/or indirectly favours the formation of seed banks and seed persistence in the soil. 相似文献
12.
Einar Heegaard 《植被学杂志》2002,13(4):493-504
Abstract. The focus of this study is the response of species to time of snowmelt and altitude in alpine areas and an examination of changes in species response to snowmelt as altitude increases and temperature decreases. Transects (n= 43) were placed evenly along an altitudinal gradient at Finse, Hardanger‐vidda, western Norway, from ridges to late snowbeds. These gradients were systematically sampled (‘Repeated Gradient Analysis, RGA’) and an adjusted F‐test was used to determine repeated trends in species distribution along the transects. Of the 41 taxa analysed 22 showed a significant change in expected occurrence in response to time of snowmelt (when a site becomes free of snow) as altitude increased. Three types of response were observed: (1) no change in response: (2) increased occurrence as altitude increases, i.e. the taxon invades snow‐free sites as altitude increases, and (3) decreased occurrence as altitude increases, i.e. the taxon retreats from snow covered areas. It is suggested that the changes in response are due to both environmental factors (temperature related) and biological interactions. Decreases in expected occurrence are probably due to increased environmental severity as altitude increases (temperature related decreases). These species are represented by taxa preferring intermediate cover of snow. The invasion of earlier snow‐free sites is probably due to reduced competition from lee‐side taxa as altitude increases. A predictive model based on the species‐environmental relationships suggests that a 1°K temperature increase changes the limits of occurrence in response to time of snowmelt from 3 to 20 days for the different taxa. 相似文献
13.
Abstract. The syntaxonomy of the perennial nitrophilous vegetation assigned to the Artemisietea vulgaris of the northern part of the Iberian Peninsula (Basque Country and surrounding areas) was revised. The study area is of biogeographic importance due to its transitional character - here, the ruderal vegetation of the Mediterranean and that of temperate Europe meet. Numerical ordination of the communities was performed in order to reveal systematic relations between the syntaxa. Two subclasses, Artemisienea vulgaris and Onopordenea, encompassing five orders, Convolvuletalia, Galio-Alliarietalia, Artemisietalia, Onopordetalia, Carthametalia lanati, and seven alliances with 12 associations and two rankless communities were distinguished. 相似文献
14.
Milan Chytrý 《应用植被学》1998,1(2):177-188
Abstract. The concept of mapping potential replacement vegetation (PRV) is proposed as a parallel to potential natural vegetation (PNV). Potential replacement vegetation (PRV) is an abstract and hypothetical vegetation which is in balance with climatic and soil factors currently affecting a given habitat, with environmental factors influencing the habitat from outside such as air pollution, and with an abstract anthropogenic influence (management) of given type, frequency and intensity. For every habitat, there is a series of possible PRV-types corresponding to the different anthropogenic influences, e.g. grazing, mowing, trampling or growing cereals. The PRV-concept is especially useful in large-scale mapping (scales > 1 : 25 000) of small areas where replacement vegetation is the focus of attention for managers and land-use planners, for example in nature reserves where the aim is conservation of replacement vegetation managed in a traditional way, or in restoration ecology where the concept may be used for defining restoration goals and evaluating the success of restoration efforts. At smaller scales, PRV-mapping may be useful for revealing the biogeographical patterns of larger areas which may be different from the corresponding PNV patterns, because replacement vegetation and natural vegetation may respond to environmental gradients at different scales. An example of medium-scale PRV-mapping through the coincidence of diagnostic species of vegetation types, based on species distribution grid data, is presented. In cultural landscapes, the advantage of using the PRV-concept instead of PNV is its direct relationship to the replacement vegetation. In the habitat mapping with respect to the replacement vegetation, the PRV concept yields more valuable results than the mapping of actual vegetation, as the latter is strongly affected by spatially variable anthropogenic influences which may be largely independent from climatic and soil factors. 相似文献
15.
Abstract. We examined the response of tree seedling emergence and survival to the dieback of Sasa and canopy gap formation in an old‐growth forest near Lake Towada, northern Japan. Synchronous death of Sasa occurred in 1995. We established four types of sampling sites differing in forest canopy conditions (Closed or Gap) and Sasa status (Dead or Live). Gap‐Dead sites had the highest light levels and the greatest fluctuation in soil temperatures. The death of Sasa alone facilitated the emergence (Acer japonicum, Fagus crenata, Fraxinus lanuginosa, and Tilia japonica) and survival (Acanthopanax sciadophylloides, F. crenata, F. lanuginosa, Kalopanax pictus, and Sorbus commixta) of species with a seedling bank strategy. Cercidiphyllum japonicum grew at all sites at a higher density than other species, but survived well only in Gap‐Dead sites. This behaviour was associated with a seed rain strategy. The additive effects of Sasa death and canopy gap formation promoted seedling emergence of pioneer tree species (Betula maximowicziana, Lindera umbellata, and Magnolia obovata), probably through break of dormancy by the large temperature fluctuation. In addition, the scarcity of advance regeneration in canopy gaps due to Sasa cover facilitates the regeneration of pioneer species. The dominance and dieback cycle of Sasa contributes to species diversity in this forest. 相似文献
16.
Abstract. This study examines whether competition between the unpalatable grass Hilaria mutica and three co‐occurring, palatable grasses in a Texan mixed prairie is altered by non‐selective or selective defoliation. In this four‐year study, plants were grown in monoculture or in combination with the unpalatable Hilaria in a replacement design. Under no defoliation, the unpalatable Hilaria had a lower growth potential than Bouteloua curtipendula and Nassella leucotricha that were of equal stature, and produced only as much as the shorter grass, Buchloe dactyloides. Bouteloua had the highest growth potential under no‐defoliation and was defoliation tolerant, except when defoliated at ground level. Nassella was more productive than the unpalatable Hilaria, since the ability to grow earlier in the year enabled it to compete successfully with Hilaria. These results indicate that with adequate deferment Bouteloua and Nassella should compete successfully with Hilaria and Buchloe should be able to maintain itself in the presence of Hilaria. Under non‐selective defoliation, Hilaria was able to compete successfully only with Buchloe. Hilaria was sensitive to defoliation, despite being rhizomatous, and competed less successfully with Buchloe after non‐selective defoliation than it did when not defoliated. This indicates that the management practice of burning and stocking heavily with livestock until Hilaria is avoided, resulting in non‐selective defoliation, will not cause Hilaria to be more competitive with the more palatable Bouteloua, Buchloe or Nassella. Hilaria was able to compete most successfully under selective defoliation when it was not defoliated. Under selective defoliation, by avoiding herbivory, Hilaria is able to compete strongly with at least Buchloe and Nassella. The reaction of Nassella and Buchloe to selective defoliation indicates that they may have been displaced by Hilaria in the past. In contrast, under the short‐term and non‐limiting growth conditions of this study, Bouteloua competed successfully with Hilaria even under selective defoliation. These results do not rule out the possibility that, through selective defoliation, Hilaria may have displaced other grasses including Bouteloua in the past. 相似文献
17.
Questions : What is the variability of succession over a large geographical area? What is the relative importance of (1) local site factors and (2) landscape factors in determining spontaneous vegetation succession? Location : Various regions of the Czech Republic, Central Europe. The regions represent two categories characterized by agrarian lowlands, with a relatively warm and dry climate, and predominant woodland uplands with a relatively cold and wet climate. Methods : Gravel‐sand pits ranged in age from 1–75 years since abandonment. Three types of sites were distinguished: dry, wet and hydric in shallow flooded sites. Vegetation relevés were recorded with species cover (%) visually estimated using the space‐for‐time substitution approach. Local site factors, such as water table and soil characteristics, and landscape characteristics, namely climatic parameters, presence of nearby (semi‐) natural plant communities and main land cover categories in the wider surroundings, were evaluated. Results : Ordination analyses showed that water table was the most important local site factor influencing the course of spontaneous vegetation succession. Succession was further significantly influenced by soil texture, pH, macroclimate, the presence of some nearby (semi‐) natural communities and some land cover categories in the wider surroundings. Spontaneous vegetation succession led to the formation of either shrubby grassland, deciduous woodland, alder and willow carrs, and tall sedge or reed and Typha beds in later stages depending predominantly on the site moisture conditions. Conclusions: Although the water table was the most influential on the course of vegetation succession, the landscape factors together explained more vegetation variability (44%) than local site factors (23%). 相似文献
18.
Abstract. This paper compares the regeneration by seeds of heath and meadow and studies relationships between the floristic composition of phases in the regeneration pathway. Seed densities in the seed rain and seed bank as well as the densities of emerged seedlings in gaps and in closed vegetation were greater in the meadow than in the heath. In the heath, environmental constraints hindered seedling emergence almost completely so seeds accumulated in the seed bank. In the meadow, the decrease in the seed bank was due to high seedling emergence. Within both plant communities, seedling emergence in gaps and in closed vegetation was comparable. In the meadow, the seed rain and seedling emergence in gaps, as well as the seed bank and seedling emergence in gaps were positively correlated. Differences in seed and adult plant sizes were reasons for the low correlation between the standing vegetation and the other phases. In DCA ordination the first axis separated the phase of seedling emergence in closed vegetation and seed bank. The second axis separated the standing vegetation from the other phases. The structure of the seed rain was more heterogeneous than that of other phases. In the heath, the standing vegetation and the seed rain were positively correlated. The ordination of these phases reflected the patchiness of standing vegetation and the ability of the diaspores of Betula nana to disperse over long distances. 相似文献
19.
Abstract. Vegetation and soil seed banks of a threatened Atlantic fen meadow community were studied using recent phytosociological records and seedling emergence from soil samples. Similarly managed but differently degraded stands that suffered different levels of species impoverishment were compared. The actual vegetation was related to a set of phytosociological references representing the subassociations of the community. DCA positions of reference relevés from the different subassociations were overlapping, suggesting that in all references many common species occur. Recent records were positioned in‐between the seed bank samples and the references. The soil seed banks of all stands were dominated by ordinary species. Most character species had at most sparse seed banks and no seedlings of locally extinct character species, mentioned in historic floristic records, were detected. In contrast species of pioneer and small‐sedge communities as well as those of heathlands were abundant in the seed banks. Based on the vertical distribution of seeds in the soil layers most fen meadow species were classified into transient or short‐term persistent seed bank types. We concluded that complete restoration of the Cirsio dissecti‐Molinietum without reintroduc‐tion is only likely in stands that were degraded only a few years ago. On the other hand, the presence of viable seeds of Nanocyperion and Parvocaricetea species is promising for the restoration of these communities even after decades. Recreation of pioneer habitats by sod cutting will preserve these species. 相似文献
20.
Merel B. Soons 《应用植被学》2006,9(2):271-278
Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long‐distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long‐distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources. 相似文献