首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hypothesis that extravagant ornaments signal parasite resistancehas received support in several species for ornamented malesbut more rarely for ornamented females. However, recent theorieshave proposed that females should often be under sexual selection,and therefore females may signal the heritable capacity toresist parasites. We investigated this hypothesis in the sociallymonogamous barn owl, Tyto alba, in which females exhibit on average more and larger black spots on the plumage than males,and in which males were suggested to choose a mate with respectto female plumage spottiness. We hypothesized that the proportionof the plumage surface covered by black spots signals parasiteresistance. In line with this hypothesis, we found that theectoparasitic fly, Carnus hemapterus, was less abundant onyoung raised by more heavily spotted females and those flieswere less fecund. In an experiment, where entire clutches werecross-fostered between nests, we found that the fecundity ofthe flies collected on nestlings was negatively correlatedwith the genetic mother's plumage spottiness. These resultssuggest that the ability to resist parasites covaries with theextent of female plumage spottiness. Among females collecteddead along roads, those with a lot of black spots had a smallbursa of Fabricius. Given that parasites trigger the developmentof this immune organ, this observation further suggests thatmore spotted females are usually less parasitized. The same analyses performed on male plumage spottiness all provided non-significant results. To our knowledge, this study is the first one showingthat a heritable secondary sexual characteristics displayedby females reflects parasite resistance.  相似文献   

2.
Two nonmutually exclusive hypotheses can explain why divorce is an adaptive strategy to improve reproductive success. Under the ‘better option hypothesis’, only one of the two partners initiates divorce to secure a higher‐quality partner and increases reproductive success after divorce. Under the ‘incompatibility hypothesis’, partners are incompatible and hence they may both increase reproductive success after divorce. In a long‐term study of the barn owl (Tyto alba), we address the question of whether one or the two partners derive fitness benefits by divorcing. Our results support the hypothesis that divorce is adaptive: after a poor reproductive season, at least one of the two divorcees increase breeding success up to the level of faithful pairs. By breeding more often together, faithful pairs improve coordination and thereby gain in their efficiency to produce successful fledglings. Males would divorce to obtain a compatible mate rather than a mate of higher quality: a heritable melanin‐based signal of female quality did not predict divorce (indicating that female absolute quality may not be the cause of divorce), but the new mate of divorced males was less melanic than their previous mate. This suggests that, at least for males, a cost of divorce may be to secure a lower‐quality but compatible mate. The better option hypothesis could not be formally rejected, as only one of the two divorcing partners commonly succeeded in obtaining a higher reproductive success after divorce. In conclusion, incompatible partners divorce to restore reproductive success, and by breeding more often together, faithful partners improve coordination.  相似文献   

3.
Knowledge of the genetic basis of sexual ornaments is essential to understand their evolution through sexual selection. Although carotenoid‐based ornaments have been instrumental in the study of sexual selection, given the inability of animals to synthesize carotenoids de novo, they are generally assumed to be influenced solely by environmental variation. However, very few studies have directly estimated the role of genes and the environment in shaping variation in carotenoid‐based traits. Using long‐term individual‐based data, we here explore the evolutionary potential of a dynamic, carotenoid‐based ornament (namely skin coloration), in male and female common kestrels. We first estimate the amount of genetic variation underlying variation in hue, chroma and brightness. After correcting for sex differences, the chroma of the orange‐yellow eye ring coloration was significantly heritable (h2 ± SE = 0.40 ± 0.17), whereas neither hue (h2 = 0) nor brightness (h2 = 0.02) was heritable. Second, we estimate the strength and shape of selection acting upon chromatic (hue and chroma) and achromatic (brightness) variation and show positive and negative directional selection on female but not male chroma and hue, respectively, whereas brightness was unrelated to fitness in both sexes. This suggests that different components of carotenoid‐based signals traits may show different evolutionary dynamics. Overall, we show that carotenoid‐based coloration is a complex and multifaceted trait. If we are to gain a better understanding of the processes responsible for the generation and maintenance of variation in carotenoid‐based coloration, these complexities need to be taken into account.  相似文献   

4.
5.
Variants of the melanocortin‐1 receptor (MC1R) gene result in abrupt, naturally selected colour morphs. These genetic variants may differentially affect sexual dimorphism if one morph is naturally selected in the two sexes but another morph is naturally or sexually selected only in one of the two sexes (e.g. to confer camouflage in reproductive females or confer mating advantage in males). Therefore, the balance between natural and sexual selections can differ between MC1R variants, as suggest studies showing interspecific correlations between sexual dimorphism and the rate of nonsynonymous vs. synonymous amino acid substitutions at the MC1R. Surprisingly, how MC1R is related to within‐species sexual dimorphism, and thereby to sex‐specific selection, has not yet been investigated. We tackled this issue in the barn owl (Tyto alba), a species showing pronounced variation in the degree of reddish pheomelanin‐based coloration and in the number and size of black feather spots. We found that a valine (V)‐to‐isoleucine (I) substitution at position 126 explains up to 30% of the variation in the three melanin‐based colour traits and in feather melanin content. Interestingly, MC1R genotypes also differed in the degree of sexual colour dimorphism, with individuals homozygous for the II MC1R variant being 2 times redder and 2.5 times less sexually dimorphic than homozygous individuals for the VV MC1R variant. These findings support that MC1R interacts with the expression of sexual dimorphism and suggest that a gene with major phenotypic effects and weakly influenced by variation in body condition can participate in sex‐specific selection processes.  相似文献   

6.
Natural selection typically constrains the evolution of sexually‐selected characters. The evolution of naturally‐ and sexually‐selected traits can be intertwined if they share part of their genetic machinery or if sex traits impair foraging success or increase the risk of depredation. The present study investigated phenotypic correlations between naturally‐ and sexually‐selected plumage traits in the Tytonidae (barn owls, grass owls, and masked owls). Phenotypic correlations indicate the extent to which selection on one trait will indirectly influence the evolution of another trait. In this group of birds, the ventral body side varies from white to dark reddish, a naturally‐selected pheomelanin‐based colour trait with important roles in predator–prey interactions. Owls also exhibit eumelanin‐based black spots, for which number and size signal different aspects of individual quality and are used in mate choice. These three plumage traits are strongly heritable and sexually dimorphic, with females being on average darker reddish and more spotted than males. Phenotypic correlations were measured between these three plumage traits in 3958 free‐living barn owls in Switzerland and 10 670 skin specimens from 34 Tyto taxa preserved in museums. Across Tyto taxa, the sexually‐selected plumage spottiness was positively correlated with the naturally‐selected reddish coloration, with redder birds being more heavily spotted. This suggests that they are genetically constrained or that natural and sexual selection are not antagonistically exerted on plumage traits. In a large sample of Swiss nestlings and within 34 Tyto taxa, the three plumage traits were positively correlated. The production of melanin pigments for one plumage trait is therefore not traded off against the production of melanin pigments for another plumage trait. Only in the most heavily‐spotted Tyto taxa do larger‐spotted individuals display fewer spots. This indicates that, at some threshold value, the evolution of many spots constrains the evolution of large spots. These analyses raise the possibility that different combinations of melanin‐based plumage traits may not be selectively equivalent.  相似文献   

7.
We report 21 new polymorphic microsatellite markers in the European barn owl (Tyto alba). The polymorphism of the reported markers was evaluated in a population situated in western Switzerland and in another from Tenerife, Canary Islands. The number of alleles per locus varies between two and 31, and expected heterozygosity per population ranges from 0.16 to 0.95. All loci are in Hardy-Weinberg equilibrium and no linkage disequilibrium was detected. Two loci exhibit a null allele in the Tenerife population.  相似文献   

8.
9.
Island biogeography has provided fundamental hypotheses in population genetics, ecology and evolutionary biology. Insular populations usually face different feeding conditions, predation pressure, intraspecific and interspecific competition than continental populations. This so‐called island syndrome can promote the evolution of specific phenotypes like a small (or large) body size and a light (or dark) colouration as well as influence the evolution of sexual dimorphism. To examine whether insularity leads to phenotypic differentiation in a consistent way in a worldwide‐distributed nonmigratory species, we compared body size, body shape and colouration between insular and continental barn owl (Tyto alba) populations by controlling indirectly for phylogeny. This species is suitable because it varies in pheomelanin‐based colouration from reddish‐brown to white, and it displays eumelanic black spots for which the number and size vary between individuals, populations and species. Females are on average darker pheomelanic and display more and larger eumelanic spots than males. Our results show that on islands barn owls exhibited smaller and fewer eumelanic spots and lighter pheomelanic colouration, and shorter wings than on continents. Sexual dimorphism in pheomelanin‐based colouration was less pronounced on islands than continents (i.e. on islands males tended to be as pheomelanic as females), and on small islands owls were redder pheomelanic and smaller in size than owls living on larger islands. Sexual dimorphism in the size of eumelanic spots was more pronounced (i.e. females displayed much larger spots than males) in barn owls living on islands located further away from a continent. Our study indicates that insular conditions drive the evolution towards a lower degree of eumelanism, smaller body size and affects the evolution of sexual dichromatism in melanin‐based colour traits. The effect of insularity was more pronounced on body size and shape than on melanic traits.  相似文献   

10.
Peacocks are a classic example of sexual selection, where females preferentially mate with males who have longer, more elaborate trains. One of the central hypotheses of sexual selection theory is that large or elaborate male ‘ornaments’ may signal high genetic quality (good genes). Good genes are thought to be those associated with disease resistance and as diversity at the major histocompatibility complex (MHC) has been shown to equate to superior immune responses, we test whether the peacock’s train reveals genetic diversity at the MHC. We demonstrate via a captive breeding experiment that train length of adult males reflects genetic diversity at the MHC while controlling for genome‐wide diversity and that peahens lay more, and larger, eggs for males with a more diverse MHC, but not for males with longer trains. Our results suggest that females are assessing and responding to male quality in terms of MHC diversity, but this assessment does not appear to be via train length, despite the fact that train length reflects MHC diversity.  相似文献   

11.
12.
Theory states that genes on the sex chromosomes have stronger effects on sexual dimorphism than genes on the autosomes. Although empirical data are not necessarily consistent with this theory, this situation may prevail because the relative role of sex‐linked and autosomally inherited genes on sexual dimorphism has rarely been evaluated. We estimated the quantitative genetics of three sexually dimorphic melanin‐based traits in the barn owl (Tyto alba), in which females are on average darker reddish pheomelanic and display more and larger black eumelanic feather spots than males. The plumage traits with higher sex‐linked inheritance showed lower heritability and genetic correlations, but contrary to prediction, these traits showed less pronounced sexual dimorphism. Strong offspring sexual dimorphism primarily resulted from daughters not expressing malelike melanin‐based traits and from sons expressing femalelike traits to similar degrees as their sisters. We conclude that in the barn owl, polymorphism at autosomal genes rather than at sex‐linked genes generate variation in sexual dimorphism in melanin‐based traits.  相似文献   

13.
Because the magnitude of selection can vary between sexes and in space and time, sexually antagonistic selection is difficult to demonstrate. In a Swiss population of barn owls (Tyto alba), a heritable eumelanic colour trait (size of black spots on ventral feathers) was positively selected with respect to yearling survival only in females. It remains unclear whether the absence of negative selection in males is typical in this species. To tackle this issue indirectly, we measured the size of black spots in 1733 skin specimens collected by museums from 1816 to 2001 in seven European countries and in the Middle-East. The temporal change in spot size was sex- and country-specific. In males, spots became smaller particularly in three countries (Middle-East, Italy and Switzerland). In females, the size of spots increased significantly in two countries (UK and Spain) and decreased in two others (Germany and Switzerland). Because migration and phenotypic plasticity cannot explain these results, selection is the most likely cause. The weaker temporal change in spot size in females than males may be because of the combined effect of strong genetic correlation between the sexes and stronger negative selection in males than positive selection in females. We thus suggest that in the barn owl, spot size (or genetically correlated traits) is sexually antagonistically selected and that its pattern of selection may account for the maintenance of its variation and sexual dimorphism.  相似文献   

14.
Selection due to social interactions comprises competition over matings (sexual selection stricto sensu) plus other forms of social competition and cooperation. Sexual selection explains sex differences in ornamentation and in various other phenotypes, but does not easily explain cases where those phenotypes are similar in males and females. Understanding such similarities requires knowing how phenotypes influence nonsexual social interactions as well, which can be very important in gregarious animals, but whose role for phenotypic evolution has been overlooked. For example, ‘mate choice’ experiments often found preferences for ornamentation, but have not assessed whether those are strictly sexual or are general social preferences. Using choice experiments with a gregarious and mutually ornamented finch, the common waxbill (Estrilda astrild), we show that preferences for ornamentation in the opposite‐sex also extend to same‐sex interactions. Waxbills discriminated between opposite‐ and same‐sex individuals, but most preferences for colour traits were similar when interacting with either sex. Similar preferences in sexual and nonsexual associations may be widespread in nature, either as social adaptations or as by‐product of mate preferences. In either case, such preferences may set the stage for the evolution of mutual ornamentation and of various other similarities between the sexes.  相似文献   

15.
Conspicuous female signals have recently received substantial scientific attention, but it remains unclear if their evolution is the result of selection acting on females independently of males or if mutual selection facilitates female change. Species that express female, but not male, phenotypic variation among populations represents a useful opportunity to address this knowledge gap. White‐shouldered fairywrens (Malurus alboscapulatus) are tropical songbirds with a well‐resolved phylogeny where female, but not male, coloration varies allopatrically across subspecies. We explored how four distinct signaling modalities, each putatively associated with increased social selection, are expressed in two populations that vary in competitive pressure on females. Females in a derived subspecies (M. a. moretoni) have evolved more ornamented plumage and have shorter tails (a signal of social dominance) relative to an ancestral subspecies (M. a. lorentzi) with drab females. In response to simulated territorial intrusions broadcasting female song, both sexes of M. a. moretoni are more aggressive and more coordinated with their mates in both movement and vocalizations. Finally, M. a. moretoni songs are more complex than M. a. lorentzi, but song complexity does not vary between sexes in either population. These results suggest that correlated phenotypic shifts in coloration and tail morphology in females as well as song complexity and aggression in both sexes may have occurred in response to changes in the intensity of social selection pressures. This highlights increased competitive pressures in both sexes can facilitate the evolution of complex multimodal signals.  相似文献   

16.
In sedentary externally fertilizing species, direct interactions between mating partners are limited and prefertilization communication between sexes occurs largely at the gamete level. Certain combinations of eggs and sperm often have higher fertilization success than others, which may be contingent on egg‐derived chemical factors that preferentially attract sperm from compatible males. Here, we examine the mechanisms underlying such effects in the marine mussel Mytilus galloprovincialis, where differential sperm attraction has recently been shown to be associated with variation in offspring viability. Specifically, we focus on the sperm surface glycans, an individually unique layer of carbohydrates that moderate self‐recognition and other cellular‐level interactions. In many species egg‐derived factors trigger remarkable changes in the sperm's glycan layer, physiology, and swimming behavior, and thus potentially moderate mate choice at the gamete level. Here, we show that sperm glycan modifications and the strength of acrosome reaction are both dependent on specific male–female interactions (male–female combination). We also find associations between female‐induced sperm glycan changes and the Ca2+ influx into sperm–‐a key regulator of fertilization processes from sperm capacitation to gamete fusion. Together, our results suggest that female‐induced remote regulation of sperm physiology may constitute a novel mechanism of gamete‐level mate choice.  相似文献   

17.
Variation in intensity and targets of sexual selection on multiple traits has been suggested to play a major role in promoting phenotypic differentiation between populations, although the divergence in selection may depend on year, local conditions or age. In this study, we quantified sexual selection for two putative sexual signals across two Central and East European barn swallow (Hirundo rustica rustica) populations from Czech Republic and Romania over multiple years. We then related these differences in selection to variation in sexual characters among barn swallow populations. Our results show that tail length and ventral coloration vary between populations, sexes, and age classes (first‐time breeders vs. experienced birds). We found that selection on tail length was stronger in first‐time breeders than in experienced birds and in males than in females in the Romanian population, while these differences between age groups and sexes were weak in Czech birds. We suggest that the populational difference in selection on tail length might be related to the differences in breeding conditions. Our results show that ventral coloration is darker (i.e., has lower brightness) in the Romanian than in the Czech population, and in experienced birds and males compared with first‐time breeders and females, respectively. The sexual difference in ventral coloration may suggest sexual selection on this trait, which is supported by the significant directional selection of ventral coloration in first‐time breeding males on laying date. However, after controlling for the confounding effect of wing length and tarsus length, the partial directional selection gradient on this trait turned nonsignificant, suggesting that the advantage of dark ventral coloration in early breeding birds is determined by the correlated traits of body size. These findings show that ventral coloration may be advantageous over the breeding season, but the underlying mechanism of this relationship is not clarified.  相似文献   

18.
Sexual conflict theory is based on the observation that females of many species are harmed through their interactions with males. Direct harm to females, however, can potentially be counterbalanced by indirect genetic benefits, where females make up for a reduction in offspring quantity by an increase in offspring quality through a generic increase in offspring fitness (good genes) and/or one restricted to the context of sexual selection (sexy sons). Here, we quantify the magnitude of the good genes mechanism of indirect benefits in a laboratory-adapted population of Drosophila melanogaster. We find that despite high-standing genetic variance for fitness, females gain at most only a modest benefit through the good genes form of indirect benefits--far too little to counterbalance the direct cost of male-induced harm.  相似文献   

19.
Genital coevolution is a pervasive phenomenon as changes in one sex tend to impose fitness consequences on the other, generating sexual conflict. Sexual conflict is often thought to cause stronger selection on males due to the Darwin–Bateman's anisogamy paradigm. However, recent studies have demonstrated that female genitalia may be equally elaborated and perform diverse extra‐copulatory functions. These characteristics suggest that female genitals can also be primary targets of selection, especially where natural selection acts on female‐exclusive functions such as oviposition. Here, we test this hypothesis in a statistical phylogenetic framework across the whole beetle (Coleoptera) phylogeny, investigating whether coevolution of specific genital traits may be triggered by changes in females. We focus on traits of the proctiger, which composes part of the male terminalia and the female ovipositor. Our results present a comprehensive case of male–female genital coevolution and provide solid statistical evidence for a female‐initiated coevolutionary process where the vast majority of evolutionary transitions in males have occurred only after changes in females. We corroborate the hypothesis that female traits may change independently and elicit counter‐adaptations in males. Furthermore, by showing a consistent pattern across the phylogeny of the most diverse group of animals, our results suggest that this female‐driven dynamics may persist through long time scales.  相似文献   

20.
‘Good genes’ models of sexual selection show that females can gain indirect benefits for their offspring if male ornaments are condition‐dependent signals of genetic quality. Recurrent deleterious mutation is viewed as a major contributor to variance in genetic quality, and previous theoretical treatments of ‘good genes’ processes have assumed that the influx of new mutations is constant. I propose that this assumption is too simplistic, and that mutation rates vary in ways that are important for sexual selection. Recent data have shown that individuals in poor condition can have higher mutation rates, and I argue that if both male sexual ornaments and mutation rates are condition‐dependent, then females can use male ornamentation to evaluate their mate’s mutation rate. As most mutations are deleterious, females benefit from choosing well‐ornamented mates, as they are less likely to contribute germline‐derived mutations to offspring. I discuss some of the evolutionary ramifications of condition‐dependent mutation rates and sexual selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号