首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
1 In south‐western Australia, Eucalyptus globulus plantations are defoliated by a complex of beetle species, yet only scant information exists on these species under such climatic conditions. To improve management of these defoliating beetles in the region, canopy fogging and shoot clipping were conducted in plantations between 1999 and 2002 to identify and document the phenology of the beetle species present. 2 Eucalyptus weevil, Gonipterus scutellatus, was the most common and destructive defoliating beetle. Gonipterus scutellatus undergoes one principal generation each year with a lesser second generation or cohort in some seasons, which contrasts greatly with reports of two to four annual generations for the species in other regions. This limited reproduction by G. scutellatus may be due to the limited availability from summer onwards of new flushing foliage, which is essential for feeding and oviposition. 3 Several species of chrysomelid beetles were collected in plantations, but these were present in much lower numbers than G. scutellatus and were only a minor concern. However, some species, such as Chrysophtharta variicollis, appear to be capable of developing short‐lived outbreaks. 4 A diverse suite of natural enemies was fogged from plantations but they were significantly less abundant than defoliating beetles and are not likely to provide significant control of beetles. 5 In terms of managing these defoliating beetles, monitoring and control should focus on G. scutellatus, and be conducted during spring when most damage occurs.  相似文献   

2.
Summary In south‐eastern Australia, the introduced Red Fox (Vulpes vulpes) is a major predator of native wildlife and livestock. Fox control in agricultural landscapes is heavily reliant on the laying of poisoned baits by private landholders, yet there have been few assessments of the application or success of landholder‐baiting practices. We evaluated a community‐based fox‐baiting campaign, typical of programs employed throughout the agricultural regions of south‐eastern Australia to control foxes. We recorded the spatial coverage of 1080 baits deployed by landholders, assessed baiting procedures, monitored the survival of six radio‐collared foxes during and after baiting, and compared the spatial coverage and likely effectiveness of the baiting program with two alternative (theoretical) baiting strategies. Relative to other baiting programs, coordination among neighbours was reasonably high, with 37.5% of baited properties (n = 40) adjoining ≥3 neighbouring properties that also contained baits. Nevertheless, the maximum distance from the centre of a baited property to the nearest edge of an unbaited property was <750 m (mean = 380 m ± 147 m SD). On average, 33% (±17% SD) of each fox’s home range overlapped with baited properties, but only two foxes died during the baiting program. The remaining four foxes were still alive 10 weeks after baiting ceased. Modelling of simulated fox home ranges showed that 13.5% contained no bait stations based on the community baiting program, whereas alternative roadside‐ and grid‐baiting strategies (theoretically) delivered baits to all simulated home ranges. Some landholders employed practices that could reduce the effectiveness of baiting programs such as not removing decayed baits before deploying new ones or placing bait stations too close together. Our research illustrates the difficulties of managing a coordinated baiting program on private land that effectively controls foxes. Alternative baiting strategies such as roadside baiting need to be considered to improve fox control in agricultural landscapes.  相似文献   

3.
Insect species inventories along with pest prevalence, foraging behavior of pollinators and their effect on fruit set of mango were studied in a mango‐based agroforestry area in Bangladesh during January to June 2013. Of 1751 collected insects, 11 species in five orders and nine families were pests, 13 species in six orders and eight families were predators and eight species belonging to three orders and seven families were found as pollinators. The pests exerted significantly higher abundance but lower diversity than pollinator, predator and other insects. The pollinator richness was found to be lowest but showed higher as well as similar diversity to other category insects. Three pest species prevailed throughout the season and hoppers showed significant abundance. Among the predators, ants were most abundant. Sulphur butterfly and syrphid fly revealed statistically identical and higher abundance than other pollinators. During the flowering season, pests were dominant and the abundance of insects was observed to peak at 11.00 h. The pollinators differed in their landing duration on flowers and their activity led to higher levels of fruit set. This study provides baseline information on insect abundance in an agroforestry system, which stresses the importance of conservation of beneficial insects.  相似文献   

4.
This study investigated the impacts of livestock grazing on native plant species cover, litter cover, soil surface condition, surface soil physical and chemical properties, surface soil hydrology, and near ground and soil microclimate in remnant Eucalyptus salmonophloia F. Muell woodlands. Vegetation and soil surveys were undertaken in three woodlands with a history of regular grazing and in three woodlands with a history of little or no grazing. Livestock grazing was associated with a decline in native perennial cover and an increase in exotic annual cover, reduced litter cover, reduced soil cryptogam cover, loss of surface soil microtopography, increased erosion, changes in the concentrations of soil nutrients, degradation of surface soil structure, reduced soil water infiltration rates and changes in near ground and soil microclimate. The results suggest that livestock grazing changes woodland conditions and disrupts the resource regulatory processes that maintain the natural biological array in E. salmonophloia woodlands. Consequently the conditions and resources in many remnant woodlands may be above or below critical thresholds for many species. The implications of these findings for restoration of plant species diversity and community structure are discussed. Simply removing livestock from degraded woodlands is unlikely to result in the restoration of plant species diversity and community structure. Restoration will require strategies that capture resources, increase their retention and improve microclimate.  相似文献   

5.
Recent analyses of geographical variation in cats’ diet across Australia have been used to highlight rabbit control as a conservation risk, on the basis that prey‐switching by cats following rabbit control is likely to threaten Australian fauna. There is no direct evidence to support that proposition. However, there is direct evidence of repeated prey‐switching due to seasonal fluctuations in uncontrolled rabbit populations, of long‐term suppression of rabbit numbers by effective rabbit control, and that reduced rabbit abundance leads to reduced cat abundance, reduced predation of native fauna and recovery of threatened prey populations. Furthermore, rabbits are a known threat to many Australian native plants and rabbit control has proven benefits for their recovery, thereby offering long‐term benefits for dependent fauna and broader ecosystem function. On the balance of evidence, rabbit control should be encouraged in Australia wherever possible, as a national conservation priority.  相似文献   

6.
Responses of three locally endemic (Eucalyptus brevistylis, Eucalyptus jacksonii and Eucalyptus guilfoylei) and three co‐occurring regional eucalypts (Eucalyptus marginata, Eucalyptus diversicolor and Corymbia calophylla) to moderate‐ and high‐intensity fires were examined in granitic terrain of the Tingle Mosaic, south‐western Australia. Significant associations between diameter distributions and community type (CT) for each species (P < 0.001) suggest that fire response will also vary according to the habitat/fire interaction. None of the species were fire sensitive, although responses differed both within and between species, and with CT. All species examined predominately consisted of several cohorts of regeneration within a forest stand. Each species had thick bark and re‐sprouted from crown epicormics following 100% scorch of the mature tree. The quantity and type of regeneration in relation to gaps created by individual dead trees following fire differed between species; for example, E. guilfoylei regeneration was strongly associated with gaps, and C. calophylla with non‐gaps. However, regeneration of the two tall open‐forest species, E. jacksonii and E. diversicolor were not most associated with either gaps or non‐gaps. The very low levels of regeneration of E. brevistylis following fire and the high proportion of stems of E. jacksonii that were hollow butted (40% of stems > 1 m DBHOB) may be factors associated with narrow endemism of these species and may affect the vulnerability of these eucalypts to fire. The interaction of seed availability, intense fires and subsequent rainfall may be critical in the long term survival of these species. Eucalyptus guilfoylei, by contrast, appears well adapted to the increasing levels of disturbance likely in the region where these species occur. The vulnerability of a locally endemic species in a fire‐prone environment is likely to reflect differences to the prevailing adaptations of the dominant species rather than an inherent ability of the species to survive or respond. Management regimes must account for variations in species responses to fire in different CTs if the long‐term survival chances of local endemics are to be enhanced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号