首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: Secreted protein acidic and rich in cysteine (SPARC) is expressed in most tissues and is also secreted by adipocytes. The associations of SPARC mRNA expression in visceral adipose tissue (VAT), subcutaneous abdominal adipose tissue (SAT), serum SPARC concentration, and metabolic parameters in Korean women are investigated. Design and Methods: This is a cross‐sectional study. Fifty‐eight women were recruited, of whom 15 women who underwent bariatric surgery for morbid obesity (BMI mean ± SD: 40.2±5.7 kg/m2), 16 who underwent metabolic surgery for type 2 diabetes (BMI: 28.9±4.5 kg/m2), and, as a control group, 27 who underwent gynecological surgery (BMI: 22.7±2.4 kg/m2). Anthropometric variables, metabolic parameters, SPARC mRNA expression in adipose tissue, and serum SPARC concentration were measured. Results: In all subjects, SPARC mRNA expression was significantly higher in SAT than in VAT. Serum SPARC concentrations (mean ± SE) in morbidly obese subjects, subjects with type 2 diabetes, and normal weight subjects were 267.3±40.2 ng/mL, 130.4±33.0 ng/mL, and 53.1±2.8 ng/mL, respectively. SPARC mRNA in SAT was significantly correlated with BMI, whereas SPARC mRNA in VAT was significantly correlated with BMI and VAT area. Serum SPARC concentration was significantly correlated with BMI, waist circumference, total adipose tissue area, and SAT area. After BMI adjustment, serum SPARC concentration was significantly correlated with fasting insulin concentration and HOMA‐IR score. Multivariate regression analysis showed that BMI and HOMA‐IR were independently associated with serum SPARC concentration. Conclusions: Serum SPARC concentration is significantly correlated with obesity indices and might be influenced by insulin resistance. These findings suggest that SPARC may contribute to the metabolic dysregulation associated with obesity in humans.  相似文献   

2.
3.
Objectives: Obesity and a physically inactive lifestyle are associated with increased risk of developing insulin resistance. The hypothesis that obesity is associated with increased adipose tissue (AT) interleukin (IL)‐18 mRNA expression and that AT IL‐18 mRNA expression is related to insulin resistance was tested. Furthermore, we speculated that acute exercise and exercise training would regulate AT IL‐18 mRNA expression. Research Methods and Procedures: Non‐obese subjects with BMI < 30 kg/m2 (women: n = 18; men; n = 11) and obese subjects with BMI >30 kg/m2 (women: n = 6; men: n = 7) participated in the study. Blood samples and abdominal subcutaneous AT biopsies were obtained at rest, immediately after an acute exercise bout, and at 2 hours or 10 hours of recovery. After 8 weeks of exercise training of the obese group, sampling was repeated 48 hours after the last training session. Results: AT IL‐18 mRNA content and plasma IL‐18 concentration were higher (p < 0.05) in the obese group than in the non‐obese group. AT IL‐18 mRNA content and plasma IL‐18 concentration was positively correlated (p < 0.05) with insulin resistance. While acute exercise did not affect IL‐18 mRNA expression at the studied time‐points, exercise training reduced AT IL‐18 mRNA content by 20% in both sexes. Discussion: Because obesity and insulin resistance were associated with elevated AT IL‐18 mRNA and plasma IL‐18 levels, the training‐induced lowering of AT IL‐18 mRNA content may contribute to the beneficial effects of regular physical activity with improved insulin sensitivity.  相似文献   

4.
5.
Cystatin C, an endogenous inhibitor of cathepsin proteases has emerged as a biomarker of cardiovascular risk and reduced renal function. Epidemiological studies indicate that serum cystatin C increased in human obesity. Here, we evaluated the contribution of adipose tissue to this elevation, based on our previous observation that cystatin C is produced by in vitro differentiated human adipocytes. We measured serum cystatin C in 237 nonobese (age: 51 ± 0.8 years; BMI: 22.8 ± 0.11 kg/m2) and 248 obese subjects (age: 50 ± 0.8 years; BMI: 34.7 ± 0.29 kg/m2). Creatinine‐based estimated glomerular filtration rate (eGFR) was calculated to account for renal status. Cystatin C gene expression and secretion were determined on surgical adipose tissue biopsies in a distinct group of subjects. Serum cystatin C is elevated in obese subjects of both genders, independently of reduced eGFR. Cystatin C mRNA is expressed in subcutaneous and omental adipose tissue, at twice higher levels in nonadipose than in adipose cells. Gene expression and cystatin C release by adipose tissue explants increase two‐ to threefold in obesity. These data confirm elevation of serum cystatin C in human obesity and strongly argue for a contribution of increased production of cystatin C by enlarged adipose tissue. Because cystatin C has the potential to affect adipose tissue and vascular homeostasis through local and/or systemic inhibition of cathepsins, this study adds a new factor to the list of adipose tissue secreted bioactive molecules implicated in obesity and obesity‐linked complications.  相似文献   

6.
7.
8.
Objective: Perilipins are phosphoproteins that are localized to the surface of triacylglycerol droplets within adipocytes where they regulate the rate of lipolysis. We sought to determine the effects of severe obesity and depot [omental (Om) vs. subcutaneous (Sc)] on perilipin expression in the adipose tissue of individuals. Research Methods and Procedures: Samples of Om and Sc adipose tissues obtained at surgery from severely obese subjects and fat aspirations from nonobese subjects were analyzed for perilipin protein and mRNA levels by Northern and Western analysis. Results: Perilipin A (periA) was the major perilipin expressed in adipose tissues. periA mRNA relative abundance was significantly lower in Sc adipose tissue from severely obese compared to that from nonobese subjects. Western blotting of adipose tissue extracts showed that periA protein levels expressed relative to tissue protein or fat cell surface area were significantly lower (~ ?40%) in abdominal Sc adipose tissue from severely obese compared to that from nonobese subjects. However, the calculated mass of perilipin per fat cell did not differ between the two groups. Perilipin mRNA levels were higher in Sc compared to Om adipose tissue from obese individuals (p < 0.025; n = 26; 17 women, 9 men); however, periA protein levels did not differ. In addition, perilipin protein, but not mRNA, levels were higher in Sc adipose tissue from obese men than from women (p < 0.025). Discussion: Variations in perilipin expression may contribute to the higher basal lipolytic rates observed in obese compared to nonobese individuals and in obese women compared to obese men.  相似文献   

9.
10.
Objective: To explore the activity of monoamine oxidases (MAOs) and semicarbazide‐sensitive amine oxidases (SSAOs) in adipose tissue and blood of lean and moderately obese subjects and to study whether there is a link between these hydrogen peroxide‐generating enzymes and blood markers of oxidative stress. Research Methods and Procedures: Nine obese male subjects (BMI 32.6 ± 0.4 kg/m2) and nine controls (BMI 23.4 ± 0.5) of 24‐ to 40‐year‐old subjects were included in the study. MAO and SSAO activities were measured on microbiopsies of abdominal subcutaneous adipose tissue by quantifying 14C‐tyramine and 14C‐benzylamine oxidation. Levels of soluble SSAO, lipid peroxidation products, and antioxidant agents were measured in plasma, whereas cytoprotective enzymes were determined in blood lysates. Results: The high MAO activity found in adipose tissue was diminished by one‐half in obese subjects (maximum initial velocity of 1.2 vs. 2.3 nmol tyramine oxidized/mg protein/min). There was no change in SSAO activity, either under its adipose tissue‐bound or plasma‐soluble form. Plasma levels of lipid peroxidation products and antioxidant vitamins remained unmodified, as well as erythrocyte antioxidant enzymes, whereas circulating triglycerides, insulin, and leptin were increased. Discussion: Although they already exhibited several signs of endocrino‐metabolic disorders, the obese men did not exhibit the increase in blood markers of oxidative stress or the decrease in antioxidant defenses reported to occur in very obese or diabetic subjects. The reduced MAO and the unchanged SSAO activities found in obesity suggest that these hydrogen peroxide‐generating enzymes expressed in adipocytes are probably not involved in the onset of the oxidative stress found in severe obesity and/or in its complications.  相似文献   

11.
12.
13.
Objective: To characterize the gastrointestinal tract at the onset and in well‐established obesity. Methods and Procedures: Lean (+/?) and obese (cp/cp) male JCR:LA‐cp rats lacking a functional leptin receptor were killed at 3.5 weeks and 9 months of age and plasma concentrations of satiety hormones determined. The small intestine, colon, and stomach were measured, weighed, and mRNA levels of satiety genes quantified. Results: At the onset of obesity, obese rats had greater intestine, colon, and liver mass when adjusted for body weight compared to lean rats. Conversely, adult rats with established obesity had lower intestine and colon mass and length after adjustment for body weight. Early changes in gene expression included decreased ghrelin mRNA levels in stomach and increased peptide YY (PYY) mRNA levels in duodenum of young obese rats. After massive accumulation of adipose tissue had occurred, adult obese rats had increased proglucagon and ghrelin mRNA expression in the proximal intestine. In the distal small intestine, obese rats had lower proglucagon, ghrelin, and PYY mRNA levels. Finally, at the onset and in well‐established obesity, obese rats had higher plasma insulin, amylin, glucagon like peptide‐1 (GLP‐1), and PYY, a finding, with the exception of insulin, unique to this model. Plasma total ghrelin levels were significantly lower at the onset of obesity and established obesity compared to the lean rats. Discussion: Several defects are manifested in the obese gut early on in the disease before the accumulation of large excesses of body fat and represent potential targets for early intervention in obesity.  相似文献   

14.

Background

FABP4 is predominantly expressed in adipose tissue, and its circulating levels are linked with obesity and a poor atherogenic profile.

Objective

In patients with a wide BMI range, we analyze FABP4 expression in adipose and hepatic tissues in the settings of obesity and insulin resistance. Associations between FABP4 expression in adipose tissue and the FABP4 plasma level as well as the main adipogenic and lipolytic genes expressed in adipose tissue were also analyzed.

Methods

The expression of several lipogenic, lipolytic, PPAR family and FABP family genes was analyzed by real time PCR. FABP4 protein expression in total adipose tissues and its fractions were determined by western blot.

Results

In obesity FABP4 expression was down-regulated (at both mRNA and protein levels), with its levels mainly predicted by ATGL and inversely by the HOMA-IR index. The BMI appeared as the only determinant of the FABP4 variation in both adipose tissue depots. FABP4 plasma levels showed a significant progressive increase according to BMI but no association was detected between FABP4 circulating levels and SAT or VAT FABP4 gene expression. The gene expression of FABP1, FABP4 and FABP5 in hepatic tissue was significantly higher in tissue from the obese IR patients compared to the non-IR group.

Conclusion

The inverse pattern in FABP4 expression between adipose and hepatic tissue observed in morbid obese patients, regarding the IR context, suggests that both tissues may act in a balanced manner. These differences may help us to understand the discrepancies between circulating plasma levels and adipose tissue expression in obesity.  相似文献   

15.
16.
Objective: To assess the relationship between serum leptin and 24‐hour blood pressure (BP) in obese women, according to body fat distribution. Research Methods and Procedures: A cross‐sectional study was carried out in a population of 70 nondiabetic, normotensive, obese women (40 with android and 30 with gynoid type of obesity) and 20 nonobese healthy women as a control group. All subjects underwent 24‐hour ambulatory BP monitoring. Blood samples were collected for serum leptin and plasma insulin measurements. Total cholesterol and high‐density lipoprotein cholesterol were also measured. Results: Serum leptin levels were significantly higher in obese subjects than in controls, and they were more elevated in android obese women than in gynoid ones. Leptin levels were positively related to body mass index (BMI), insulin, and waist and hip circumferences in the android group. Among gynoid subjects, leptin levels showed positive associations with BMI and insulin. In women with android obesity, strong positive correlations (p < 0.001) were found between leptin levels and 24‐hour systolic BP (SBP), daytime SBP, nighttime SBP, 24‐hour diastolic BP (DBP), and daytime DBP. Multiple regression analyses, including age, insulin and leptin concentrations, BMI, and waist and hip circumferences on 24‐hour and daytime SBP and DBP, showed that only leptin levels contributed to the variability of BP. Conclusions: Our study shows that serum leptin levels are directly related to 24‐hour BP levels in normotensive women with android fat distribution, independently of BMI.  相似文献   

17.
Alterations in the expression level of genes may contribute to the development and pathophysiology of obesity. To find genes differentially expressed in adipose tissue during obesity, we performed suppression subtractive hybridization on epididymal fat mRNA from goldthioglucose (GTG) obese mice and from their lean littermates. We identified the secreted protein acidic and rich in cysteine (SPARC), a protein that mediates cell-matrix interactions and plays a role in modulation of cell adhesion, differentiation, and angiogenesis. SPARC mRNA expression in adipose tissue was markedly increased (between 3- and 6-fold) in three different models of obesity, i.e. GTG mice, ob/ob mice, and AKR mice, after 6 weeks of a high fat diet. Immunoblotting of adipocyte extracts revealed a similar increase in protein level. Using a SPARC-specific ELISA, we demonstrated that SPARC is secreted by isolated adipocytes. We found that insulin administration to mice increased SPARC mRNA in the adipose tissue. Food deprivation had no effect on SPARC expression, but after high fat refeeding SPARC mRNA levels were significantly increased. Our results reveal both hormonal and nutritional regulation of SPARC expression in the adipocyte, and importantly, its alteration in obesity. Finally, we show that purified SPARC increased mRNA levels of plasminogen activator inhibitor 1 (PAI-1) in cultured rat adipose tissue suggesting that elevated adipocyte expression of SPARC might contribute to the abnormal expression of PAI-1 observed in obesity. We propose that SPARC is a newly identified autocrine/paracrine factor that could affect key functions in adipose tissue physiology and pathology.  相似文献   

18.
Objective: Adipocytes secrete a series of acute phase proteins including serum amyloid A (SAA); the link with metabolic status is unknown. We studied the variations of expression of the SAA gene in adipose and liver tissues and of SAA serum levels, as well as their relationships with metabolic features during weight loss. Research Methods and Procedures: Plasmatic variations of SAA, inflammatory markers (high sensitivity C‐reactive protein, interleukin‐6, fibrinogen, and orosomucoid), and adipokines (adiponectin, leptin) were studied in 60 morbidly obese patients before and after gastric surgery. For 10 subjects, SAA mRNA expression was measured at baseline in subcutaneous white adipose tissue (scWAT) and visceral white adipose tissue (vWAT) and in the liver. The evolution of SAA mRNA expression was also studied after surgery in scWAT. Results: SAA serum concentration displayed a significant reduction 3 months after surgery and remained stable beyond 6 months. mRNA expression of inducible SAA isoforms (SAA 1 and 2) in scWAT was higher than in vWAT (p = 0.01) and the liver (p < 0.01) and correlated significantly with BMI, SAA, and high sensitivity C‐reactive protein serum concentrations but not with metabolic markers (glucose, insulin, lipid parameters, adiponectin). SAA serum level and its variation during weight loss significantly correlated with adiposity markers (BMI and adipocyte volume, p < 0.01) and inflammatory markers but not with variations of metabolic parameters. The variations of SAA expression in scWAT after surgery correlated with changes in BMI and SAA protein serum levels (p < 0.05). Discussion: SAA can be considered as a marker of adiposity‐induced low‐grade inflammation but not of the metabolic status of obese subjects.  相似文献   

19.
20.
Ceramide is involved in development of insulin resistance. However, there are no data on ceramide metabolism in human adipose tissue. The aim of our study was to examine sphingolipid metabolism in fat tissue from obese nondiabetic (n = 11), obese diabetic (n = 11), and lean nondiabetic (n = 8) subjects. The content of ceramide (Cer), dihydroceramide (dhCer), sphingosine (SPH), sphinganine (SPA), sphingosine‐1‐phosphate (S1P; pmol/mg of protein), the expression (mRNA) and activity of key enzymes responsible for Cer metabolism: serine palmitoyltransferase (SPT), neutral and acidic sphingomyelinase (nSMase and aSMase, respectively), and neutral and acidic ceramidase (nCDase and aCDase, respectively) were examined in human adipose tissue. The contents of SPA and Cer were significantly lower whereas the content of dhCer was higher in both obese groups than the respective values in the lean subjects. The expression of examined enzymes was elevated in both obese groups. The SPT and CDases activity increased whereas aSMase activity deceased in both obese groups. We have found correlation between adipose tissue Cer content and plasma adiponectin concentration (r = 0.69, P < 0.001) and negative correlation between total Cer content and HOMA‐IR index (homeostasis model of insulin resistance) (r = ?0.67, P < 0.001). We have found that both obesity and diabetes affected pathways of sphingolipid metabolism in the adipose tissue. J. Cell. Physiol. 227: 550–557, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号