首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The endemic New Caledonian conifer Agathis ovata occurs as an emergent tree in fire‐prone shrublands (maquis), and fire‐sensitive rainforest. Growth, survivorship and recruitment over 5 yr were compared for populations from forest and maquis on ultramafic substrates in New Caledonia to investigate whether demographic behaviour varied in response to the strongly contrasting forest and shrubland environments. Growth of seedlings and of small (30–100 cm height) and large (100 cm height; 5 cm DBH) saplings was slow, but varied significantly among stages, site types and years. The greatest difference in growth rates was among stages, seedlings growing 0.34 cm.yr?1, small saplings 1.06 cm.yr?1 and large saplings 2.13 cm.yr?1. Tree DBH increased by only 0.05 cm.yr?1 and, based on these rates, individuals with DBH of 30 cm are estimated to be more than 700 yr old. Few trees (3.5%) produced cones in any year and seedling recruitment was low, but some recruitment was recorded each year in both maquis and forest. Rates of recruitment per parent were highest in forest (1.28.yr?1, cf 0.78.yr?1), but the higher density of trees in maquis meant that overall recruitment was greater there (92 ha?1.yr?1, cf 56 ha?1.yr?1). Seedling mortality ranged from 0.9 to 2.9% among years with no significant difference between maquis and forest. No sapling mortality was recorded, but annual tree mortality ranged from 0 to 1.4%. Evidence from a recently burned site indicated that while trees may survive fire, seedlings and saplings do not. Post‐fire seedling recruitment per ha from surviving trees was four times lower than in unburned sites, but growth rates were four times higher. Similar demographic attributes, including high survivorship, low growth rate and low rates of recruitment over a long reproductive life, characterize Agathis ovata populations in both maquis and rainforest in New Caledonia and are indicative of a broad tolerance of light environments that is unusual among tree species. These demographic attributes help to explain the long‐term persistence of the species in these strongly contrasting habitats.  相似文献   

2.
Tree cover in savannas is determined as much by disturbances from fire and herbivory as by rainfall and soil resources. Fire especially acts to limit tree cover via a demographic bottleneck, limiting the recruitment of tree saplings to adults. Because sapling growth rates determine rates of sapling to tree recruitment, predicting changes in tree cover requires data on sapling growth rates, commonly expressed as population means. Here, we discuss the variability in sapling growth rates in Acacia populations in a savanna in Hluhluwe iMfolozi Park in South Africa. Saplings growing at mean rates under typical fire regimes in African savannas would likely never escape the fire‐trap to become adults. Only the fastest growing saplings could grow above the flame zone between fires. We suggest that maximum growth rates are more ecologically relevant than mean growth rates in natural populations and experiments. Maximum growth rates are better than mean growth rates as predictors of sapling release within species, as shown here, and probably of which species are likely ‘winners’ in savanna tree communities.  相似文献   

3.
Abstract In late 2001 a category 3 cyclone impacted forest plots that were established in Tonga in 1995, and additionally, one plot was accidentally burned by an escaped land‐clearing fire. Subsequent surveys provide observations of 10 years of forest dynamics in this poorly studied region, and the first reported observations of large interannual variation in juvenile (seedling and sapling) abundance in the western tropical Pacific. The severely disturbed (burned) plot was initially colonized by a non‐native early pioneer, Carica papaya L., but 3.5 years later a native pioneer, Macaranga harveyana (Muell. Arg.) Muell. Arg., was the most abundant tree species. The seedling layer included some long‐lived pioneers and shade‐tolerant species. Two mature forest plots affected only by the cyclone changed very little over a decade. Late‐successional shade‐tolerant species that dominated the overstory were also abundant as seedlings and saplings. This is in contrast with a 30‐ to 40‐year‐old, formerly cultivated, secondary forest plot that still shows no recruitment of late‐successional dominants, in spite of the proximity of remnant forest patches. This study suggests differing pathways of succession following shifting cultivation versus cyclone and fire disturbances in Tonga. Land use legacies appear to have a long‐lasting effect on community composition.  相似文献   

4.
Forest community structure may be influenced by seedling density dependence, however, the effect is loosely coupled with population dynamics and diversity in the short term. In the long term the strength of conspecific density dependence may fluctuate over time because of seedling abundance, yet few long‐term studies exist. Based on 11 years of seedling census data and tree census data from a 25‐ha temperate forest plot in Northeast China, we used generalized linear mixed models to test the relative effects of local neighborhood density and abiotic factors on seedling density and seedling survival. Spatial point pattern analysis was used to determine if spatial patterns of saplings and juveniles, in relation to conspecific adults, were in accordance with patterns uncovered by conspecific negative density dependence at the seedling stage. Our long‐term results showed that seedling density was mainly positively affected by conspecific density, suggesting dispersal limitation of seedling development. The probability of seedling survival significantly decreased over 1 year with increasing conspecific density, indicating conspecific negative density dependence in seedling establishment. Although there was variation in conspecific negative density dependence at the seedling stage among species and across years, a dispersed pattern of conspecific saplings relative to conspecific adults at the local scale (<10 m) was observed in four of the 11 species examined. Overall, sapling spatial patterns were consistent with the impacts of conspecific density on seedling dynamics, which suggests that conspecific negative density dependence is persistent over the long term. From the long‐term perspective, conspecific density dependence is an important driver of species coexistence in temperate forests.  相似文献   

5.
Woodland restoration sites planted with Quercus lobata (valley oak) often have serious invasions of nonnative annual grasses and thistles. Although prescribed fire can effectively control these exotics, restoration managers may be reluctant to use fire if it causes substantial mortality of recently planted saplings. We studied the effects of prescribed fires on the survival and subsequent growth of 5‐ and 6‐year‐old valley oak saplings at a research field near Davis, California. One set of blocks was burned in summer 2003 at a time that would control yellow star thistle, a second set of blocks was burned in spring 2004 at a time that would control annual grasses, and a third set was left unburned. Very few oaks died as a result of either fire (3–4%). Although a large proportion was top‐killed (66–72%), virtually all these were coppiced and most saplings over 300 cm tall escaped top‐kill. Tree height, fire temperature, and understory biomass were all predictive of the severity of sapling response to fire. Although the mean sapling height was initially reduced by the fires, the growth rates of burned saplings significantly exceeded the growth rates of unburned control trees for 2 years following the fires. By 2–3 years after the fires, the mean height of spring‐ and summer‐burned saplings was similar to that of the unburned control saplings. The presence of valley oak saplings does not appear to preclude the use of a single prescribed burn to control understory invasives, particularly if saplings are over 300 cm tall.  相似文献   

6.
Understanding demographic transitions may provide the key to explain the high diversity of tropical tree communities. In a faunally intact Amazonian forest, we compared the spatial distribution of saplings of 15 common tree species with patterns of conspecific seed fall, and examined the seed-to-sapling transition in relation to locations of conspecific trees. In all species, the spatial pattern of sapling recruitment bore no resemblance to predicted distributions based on the density of seed fall. Seed efficiency (the probability of a seed producing a sapling) is strongly correlated with distance from large conspecific trees, with a >30-fold multiplicative increase between recruitment zones that are most distant vs. proximal to conspecific adults. The striking decoupling of sapling recruitment and conspecific seed density patterns indicates near-complete recruitment failure in areas of high seed density located around reproductive adults. Our results provide strong support for the spatially explicit predictions of the Janzen-Connell hypothesis.  相似文献   

7.
Abstract. As part of a wider study examining regeneration pathways in monsoon rain forest vegetation in northern Australia, a one-off, dry season census of saplings was undertaken along transects sampled at each of 33 relatively undisturbed sites broadly representative of the range of regional monsoon rain forest vegetation. Four floristic quadrat groups were derived through TWINSPAN classification. Subsequent analyses involved: (1) comparison of mean dry season stockings of juveniles occurring in different rain forest types, and their structural and environmental correlates; (2) comparison of the contributions of different life forms, and the influence of clonal reproduction in the sapling regeneration banks of different forest types; and (3) exploration of relationships between the distributions of saplings of common tree species with respect to seed bank, floristic, structural, and environmental variables. While data presented here require cautious interpretation given that processes of seedling/sapling recruitment and mortality are highly dynamic, sapling banks were found to be most dense on coarse-textured, moist soils, and least dense on coarse-textured, seasonally dry soils. Canopy cover and fire impact were shown to be highly influential on sapling distribution, especially for saplings of tree species and those growing on seasonally dry sites. Sapling densities were little influenced by proximity to rain forest margins, except for shrubs. The potential for clonal reproduction was significantly greater on dry sites, especially for trees. The majority of saplings sampled were derived from relatively few common, non-clonal, canopy tree species. Sapling distributions of 20 out of 23 common tree species were clumped in the vicinity of conspecific adults; for most species the strength of this relationship was greater than that for any other variable. These data support observations in the literature concerning the distribution of sapling banks in moist and dry tropical forests.  相似文献   

8.
Seed predation and seedling mortality can act as strong demographic “bottlenecks” to sapling recruitment in African savanna woodlands. Fire also limits tree recruitment from saplings by suppressing their growth. I conducted field experiments with 13 woody plant species to assess the effects of seed burial on seedling emergence rates and effects of fire on seedling and sapling survival and growth rates over a period of 8 years at a savanna plot in central Zambia, southern Africa. Seed removal rates by small rodents varied among years and buried seeds had significantly higher emergence rates than seeds exposed to predators in most but not all the species. Annual burning reduced sapling growth in some species but in other species saplings experienced successive shoot die back even in the absence of fire. The findings show that for some woody species, seed predation is an important constraint to seedling recruitment but not for others and annual fires are important hindrances to demography and growth for some species but not others. Thus, demographic “bottlenecks” occur at different life history stages in different savanna woody species and these have the potential to alter woody tree competitive relationships and ultimately savanna structure.  相似文献   

9.
The role of tree mortality in the global carbon balance is complicated by strong spatial and temporal heterogeneity that arises from the stochastic nature of carbon loss through disturbance. Characterizing spatio‐temporal variation in mortality (including disturbance) and its effects on forest and carbon dynamics is thus essential to understanding the current global forest carbon sink, and to predicting how it will change in future. We analyzed forest inventory data from the eastern United States to estimate plot‐level variation in mortality (relative to a long‐term background rate for individual trees) for nine distinct forest regions. Disturbances that produced at least a fourfold increase in tree mortality over an approximately 5 year interval were observed in 1–5% of plots in each forest region. The frequency of disturbance was lowest in the northeast, and increased southwards along the Atlantic and Gulf coasts as fire and hurricane disturbances became progressively more common. Across the central and northern parts of the region, natural disturbances appeared to reflect a diffuse combination of wind, insects, disease, and ice storms. By linking estimated covariation in tree growth and mortality over time with a data‐constrained forest dynamics model, we simulated the implications of stochastic variation in mortality for long‐term aboveground biomass changes across the eastern United States. A geographic gradient in disturbance frequency induced notable differences in biomass dynamics between the least‐ and most‐disturbed regions, with variation in mortality causing the latter to undergo considerably stronger fluctuations in aboveground stand biomass over time. Moreover, regional simulations showed that a given long‐term increase in mean mortality rates would support greater aboveground biomass when expressed through disturbance effects compared with background mortality, particularly for early‐successional species. The effects of increased tree mortality on carbon stocks and forest composition may thus depend partly on whether future mortality increases are chronic or episodic in nature.  相似文献   

10.
Sapling communities in Amazonian white-water forests   总被引:1,自引:0,他引:1  
Aim Structure and floristic composition of forest regeneration (trees between 1 and 10 cm diameter at breast height (d.b.h), ≥ 1 m growth height) was described in three forest types of Amazonian white‐water forests (várzea), in order to analyse whether floristic composition of saplings is related to the successional stage of the forests, whether it differs in comparision with the mature flora, and if there exists a zonation of sapling species along the gradients of flooding and irradiation. Location Mamirauá Sustainable Development Reserve, Western Brazilian Amazon. Methods The investigated forests were of the low and the high várzea type, on an annual average flooded around 4 and 1 months, respectively. The two low‐várzea forests belonged to the secondary and to the late‐successional stage, the high‐várzea forest also to the late‐successional stage. A total of 24 circular sample plots covering 1885 m2 were installed. They were nested within three rectangular 1 ha permanent sample plots where individuals ≥ 10 cm d.b.h. were formerly inventoried. Average inundation and radiation [relative photosynthetically active radiation (rPAR)] at the forest floor was recorded in all inventoried plots. The Mean spatial Distribution Center (MDC; Ebdon, 1998 ) for all sapling species was calculated. Sapling species were grouped into associations with respect to their light‐demand and their location along the flood‐level gradient. Results Average flood height and average rPAR at the forest floor was highest in the secondary stage of the low várzea and lowest in the high‐várzea forest. Overall average density and basal area of the saplings averaged 2250 individuals and 2.3 m2 ha?1 in the secondary stage, 2330 individuals and 2.6 m2 ha?1 in the late‐successional stage of the low várzea and 5000 individuals and 4.8 m2 ha?1 in the high várzea. In all forest types, species richness of saplings was lower than species richness of trees ≥ 10 cm d.b.h., and amounted to 25 species in the secondary stage, to 35 species in the late‐successional stage of the low várzea and to 88 species in the high‐várzea forest. The amount of ‘immigrants’ ( Bazzaz, 1991 ) at the sapling level increased with proceeding forest succession and amounted to 24 and 29% in the low várzea and to 31% in the high várzea. Sapling species distribution, species richness and individual density was linked to both, the gradient of flooding and the gradient of irradiation. Species richness and individual density was highest in the high várzea and decreased with increasing influence of flooding. The high várzea was predominated by pronounced shade‐tolerant sapling species, whereas in the low várzea occured both, light demanding and shade‐tolerant species groups. Main conclusions Influence of flooding seems to be the main factor triggering species composition and structure of sapling communities in várzea forests. Proceeding forest succession reduces the impact of flooding because of the biogenical induced silting up of the forested sites. However, forest succession also alters forest architecture of the overstory and such the light conditions at the sapling level. Therefore, radiation is an important factor influencing species composition of sapling communities in várzea forests.  相似文献   

11.
The consequences of tropical forest fragmentation on herbivory are poorly understood. The limited evidence suggests that forest fragmentation can have positive, negative or neutral effects on herbivory. Inconsistencies may be partly explained by plant interspecific variation and differential responses related to plant life history. In this study we examined the effects of forest fragmentation and plant regeneration mode (shade‐tolerant and light‐demanding species) on sapling herbivory using a large sample of the community (97 species, representing 25% of the woody flora of the study site), and a subset of species shared by forest fragments and continuous forest. For the latter, we also analyzed the effects of species identity on variation in herbivory. Also, for the shared species we used two techniques to measure herbivory: standing herbivory (i.e. instantaneous, actual damage) and cumulative herbivory (i.e. damage, accumulated over time, on initially intact leaves). Insect herbivory was the predominant type of damage in the two forest types, and standing herbivory at both the community and the shared species level was significantly higher in continuous forest than in fragments. Considering shared species, both standing and cumulative herbivory were significantly higher in light‐demanding than in shade‐tolerant species. Cumulative herbivory also showed a significant interaction between forest fragmentation and plant regeneration mode, whereby a significant decline in herbivory in fragments was driven by reduced herbivory in shade‐tolerant species, whereas for light‐demanding species herbivory did not change significantly, due to contrasting species‐specific responses. We conclude that tropical forest fragmentation reduces insect herbivory, but this depends on plant regeneration mode and species identity. These changes could have effects on plant regeneration and diversity in forest fragments via long‐term demographic consequences.  相似文献   

12.
Anticipating species movement under climate change is a major focus in conservation. Bioclimate models are one of the few predictive tools for adaptation planning, but are limited in accounting for (i) climatic tolerances in preadult life stages that are potentially more vulnerable to warming; and (ii) local‐scale movement and use of climatic refugia as an alternative or complement to large‐scale changes in distribution. To assess whether these shortfalls can be addressed with field demographic data, we used California valley oak (Quercus lobata Nee), a long‐lived species with juvenile life stages known to be sensitive to climate. We hypothesized that the valley oak bioclimate model, based on adults, would overpredict the species' ability to remain in the projected persisting area, due to higher climate vulnerability of young life stages; and underpredict the potential for the species to remain in the projected contracting area in local‐scale refugia. We assessed the bioclimate model projections against actual demographic patterns in natural populations. We found that saplings were more constricted around surface water than adults in the projected contracting area. We also found that the climate envelope for saplings is narrower than that for adults. Saplings disappeared at a summer maximum temperature 3 °C below that associated with adults. Our findings indicate that rather than a complete shift northward and upward, as predicted by the species bioclimate model, valley oaks are more likely to experience constriction around water bodies, and eventual disappearance from areas exceeding a threshold of maximum temperature. Ours is the first study we know of to examine the importance of discrete life stage climate sensitivities in determining bioclimate modeling inputs, and to identify current climate change‐related constriction of a species around microrefugia. Our findings illustrate that targeted biological fieldwork can be central to understanding climate change‐related movement for long‐lived, sessile species.  相似文献   

13.
Question: Are species‐specific regeneration strategies and competition the dominant processes facilitating species coexistence in a Quercus liaotungensis dominated temperate deciduous forest? Location: Dongling Mountains, North China, 1300 m a.s.l. Methods: Ripley's K‐function was used to characterize the spatial patterns and spatial associations of two dominant tree species, Quercus liaotungensis and Betula dahurica, and a common subcanopy species, Acer mono, at different growth stages (adult, sapling, seedling). Results: Seedlings, saplings and adults of all three species exhibited clumped distributions at most spatial scales. Quercus seedlings and saplings were positively associated with conspecific adult trees and spatially independent of dead trees suggesting that seed dispersal and vegetative regeneration influenced the spatial patterning of Quercus trees. Betula seedlings and saplings were positively associated with both live and dead trees of conspecific adults at small scales (<5 m) but negatively associated with live and dead trees of other species indicating sprouting as an important mechanism of reproduction. Saplings of Acer had a strong spatial dependence on the distribution of conspecific adult trees indicating its limited seed dispersal range. Negative associations between adult trees of Betula and Quercus demonstrated interspecific competition at local scales (<5 m). Conclusions: Different regeneration strategies among the three species play an important role in regulating their spatial distribution patterns, while competition between individuals of Betula and Quercus at the adult stage also contributes to spatial patterning of these communities. The recruitment limitations of Betula and Quercus may affect the persistence of these species and the long‐term dynamics of the forest.  相似文献   

14.
Question: Do New Zealand tree ferns have recognizable shade tolerance niches? Location: Lowland temperate rain forest of New Zealand (41°20′S, 174°58′E). Methods: Growth, death and recruitment of five tree fern species were estimated from a 38‐year record of stem heights, collected within a 2.25‐ha block of forest, and electron transport rates (ETR) of photosystem II of fronds were measured. Results: Two species of Cyathea were comparatively common (603 and 351 stems in total) and two were comparatively rare (155 and 17 stems in total) on the site. The common species had lower rates of growth, recruitment and mortality than the rare species, had skewed age distributions typical of shade‐tolerant species and were probably recruited soon after a catastrophic earthquake in 1855. The two rare species were failing to recruit under closed forests; their age distributions indicated that all had regenerated long after the earthquake. ETR were higher for faster‐growing than for the shade‐tolerant species. A tree fern that regenerates vegetatively from aerial buds, Dicksonia squarrosa, was common on the site (361 stems in total). Its age distribution suggested it was relatively shade tolerant, but its mortality and recruitment rates were much higher than those of the two shade‐tolerating Cyathea species, suggesting that this multi‐stemmed species functions differently from the monopodial Cyathea species. Conclusions: New Zealand Cyathea tree ferns occupy distinct niches along a shade tolerance spectrum and their relative abundances are strongly influenced by disturbance history. The study provides evidence that tree fern species differ strongly in their responses to canopy disturbance and are not ecologically equivalent.  相似文献   

15.
Aim A major question with regard to the ecology of temperate rain forests in south‐central Chile is how pioneer and shade‐tolerant tree species coexist in old‐growth forests. We explored the correspondence between tree regeneration dynamics and life‐history traits to explain the coexistence of these two functional types in stands apparently representing a non‐equilibrium mixture. Location This study was conducted in northern Chiloé Island, Chile (41.6° S, 73.9° W) in a temperate coastal rain forest with no evidence of stand disruption by human impact. Methods We assessed stand structure by sampling all stems within two 50 × 20 m and four 5 × 100 m plots. A 600‐m long transect, with 20 uniformly spaced sampling points, was used to quantify seedling and sapling densities, obtain increment cores, and randomly select 10 tree‐fall gaps. We used tree‐ring analysis to assess establishment periods and to relate the influences of disturbances to the regeneration dynamics of the main canopy species. Results Canopy emergent tree species were the long‐lived pioneer Eucryphia cordifolia and the shade‐tolerant Aextoxicon punctatum. Shade‐tolerant species such as Laureliopsis philippiana and several species of Myrtaceae occupied the main canopy. The stem diameter distribution for E. cordifolia was distinctly unimodal, while for A. punctatum it was multi‐modal, with all age classes represented. Myrtaceae accounted for most of the small trees. Most tree seedlings and saplings occurred beneath canopy gaps. Based on tree‐ring counts, the largest individuals of A. punctatum and E. cordifolia had minimum ages estimated to be > 350 years and > 286 years, respectively. Shade‐tolerant Myrtaceae species and L. philippiana had shorter life spans (< 200 years). Most growth releases, regardless of tree species, were moderate and have occurred continuously since 1750. Main conclusions We suggest that this coastal forest has remained largely free of stand‐disrupting disturbances for at least 450 years, without substantial changes in canopy composition. Release patterns are consistent with this hypothesis and suggest that the disturbance regime is dominated by individual tree‐fall gaps, with sporadic multiple tree falls. Long life spans, maximum height and differences in shade tolerance provide a basis for understanding the long‐term coexistence of pioneer and shade‐tolerant tree species in this coastal, old‐growth rain forest, despite the rarity of major disturbances.  相似文献   

16.
Question: To what extent do small‐scale disturbances in the forest canopy, created by natural disturbance agents, affect stand development? Doubts exist as to whether small canopy openings have any real effect on the understory tree recruitment, especially in boreal forests. Location: Conifer and mixed stands in the Gaspesian region in eastern Québec. The main natural disturbance agents are recurring outbreaks of Choristoneura fumiferana (eastern spruce budworm) and winds. Methods: Linear transects in 27 sites were used to describe the gap (< 0.1 ha) regime parameters, including gap fraction, gap size and change in disturbance severity through time. Three stand types were distinguished, based on a gradient of abundance of tree host species for the eastern spruce budworm. The impact of gaps was evaluated on the basis of changes in the number, the period of recruitment, and the composition of tree saplings present within gap areas. Changes were measured along the gap size gradient, and according to the pattern of recent budworm epidemics. Results: The gap fraction is highly variable (18%‐64%) and is on average relatively high (42%). Gap sizes have a positively skewed distribution. In most cases the growth rate among gap filling saplings increased sufficiently to date disturbance events. The composition and the structure of understory trees were affected by gap formation. The number of shade‐intolerant tree species did increase during or following periods of particularly severe canopy disturbances. However, the establishment or survival of shade intolerant species was not restricted to larger gaps or more intensely disturbed periods. Conclusions: In sub‐boreal forests of Eastern Canada, small scale disturbances in the tree canopy influence stand regeneration dynamics, but not to the extent that parameters such as sapling composition and recruitment patterns depend on gap regime characteristics.  相似文献   

17.
Aim The rate of grassland invasion by trees depends on the ability of the species to invade, i.e. their invasiveness, and on the susceptibility of the environments to invasion, i.e. their invasibility. Knowledge of the invasiveness of native and introduced tree species and of the environmental factors that contribute to invasibility is necessary to understand landscape evolution and assess required management measures. Our main aim was to explore this by estimating the separate effects of propagule pressure and environmental factors on the spatio‐temporal patterns of sapling recruitment, a key stage in the tree life cycle. Location Causse Mejean calcareous plateau (southern France). Methods The effects of seed supply and environmental variables (grazing, geological substrate, and duration or intensity of drought) on the spatio‐temporal patterns of sapling recruitment were assessed for the native Scots pine (Pinus sylvestris L.) and the introduced black pine (Pinus nigra Arn. ssp. nigra). Estimates were derived by inverse modelling with data of locations and ages of 4‐ to 20‐year‐old saplings and seed‐bearing trees in 32 sites. Yearly indices of drought were derived from a soil–water content model. Results For both species, seed supply was as important as the whole set of environmental factors in explaining sapling recruitment rates. Grazing and the duration of drought from July to August decreased sapling recruitment rates, which were also lower on hard limestone than on dolomite. Dispersal distances and effective fecundities were higher for the introduced P. nigra, which was less susceptible to drought but more affected by grazing than the native P. sylvestris. In grazed grasslands, shrubs facilitated sapling establishment of both species. Main conclusions This study shows how seed supply and environmental factors shape spatio‐temporal patterns of sapling recruitment for trees invading grasslands. Implications for landscape evolution and management, of the difference in invasiveness of the two pine species and of the hierarchy of environmental factors in determining invasibility, are discussed.  相似文献   

18.
Currently biological invasions are considered one of the world's most serious conservation problems. Ligustrum lucidum is the most abundant exotic tree in secondary forest patches of montane forests of NW Argentina. We studied the determinants of success of the early stages of its life cycle in distinct habitat types, with the hope of identifying vulnerabilities that could be exploited to control the invasion. Seed arrival, germination, seedling recruitment and survival, and sapling growth were studied in edges, gaps and forest interior. Seed arrival was also assessed under perches and in open fields. Germination was studied in forest and grassland patches. L. lucidum seedling survival and sapling growth were compared with the most abundant native species survival and growth. Seed arrival was strongly seasonal with a peak in mid-August. Seed rain did not differ significantly among habitat types, however there was a tendency for edges to receive more seeds when only dispersed seeds were considered. Perches strongly enhanced seed arrival; more than 40 times the number of seeds were dispersed beneath citrus plants (i.e. perches) than found in paired open areas. In the forest, seeds in gaps and edges had higher germination rates, but there was no difference in seedling survival. Fruits under closed canopy exhibited the lowest germination. Germination and survival were low in open areas. Neither seedling recruitment nor sapling growth differed between gaps and forest interior. L. lucidum saplings grew significantly more than saplings of the most common native species, and also showed higher seedling survival. L. lucidum is a prolific fruit producer, is capable of germinating and surviving in a broad range of forest environments, it is relatively shade tolerant and has higher survival and faster growth rate in comparison to the most common native species. All these characteristics highlight its potency as a successful invader, and point to few vulnerabilities that could be targets of control measures.  相似文献   

19.
Aims In spite of the importance of African acacias in vegetation succession and provision of goods and services, little is known about life-history variations within and among species. Much of the work done on African acacias has focused on seed predation and germination and seedling establishment, especially of Acacia tortilis, Acacia nilotica and Acacia karroo. The primary aim of the present work is to investigate differences in the demography of Acacia polyacantha and Acacia sieberiana and the relationship between life-history characteristics and population size. A secondary objective is to assess how fire, an important ecological factor in savanna vegetation, might modify the growth and demographic dynamics of the two acacias.Methods The study was conducted at the Makeni savanna plot in central Zambia, southern Africa. Seedling emergence from both non-scarified and scarified seeds sown at different times in the wet season and the fate and growth of seedlings and saplings were monitored over a period of 4 years. Annual growth of permanently marked sample trees in annually burnt and fire-protected blocks was recorded over a 6-year period (2002–08) in order to assess inter-specific differences and how fire modifies tree growth patterns. Censuses of natural saplings and trees were conducted periodically in sample blocks to determine recruitment into these life-history stages.Important findings Seedling emergence and sapling survival rates were much higher in A. sieberiana than in A. polyacantha. However, both seedling and sapling growth rates were higher in A. polyacantha than in A. sieberiana but tree growth rates were similar in the two species. Under fire protection tree growth was significantly influenced by tree size and year while under annual burning only tree size significantly affected tree growth. The dominance of A. sieberiana over A. polyacantha at the study site was attributed to higher seedling emergence rate, higher sapling survival rate and a large sapling bank that forms a reliable source of tree recruitment. The life-history stage characteristics of A. polyacantha suggest that this is an early successional species.  相似文献   

20.
Questions: Are there interspecific differences in mortality and recruitment rates across life stages between two shade‐tolerant dominant trees in a sub‐alpine old‐growth forest? Do such differences in demography contribute to the coexistence and co‐dominance of the two species? Location: Sub‐alpine, old‐growth forest on Mt. Ontake, central Honshu, Japan. Methods: From 1980 to 2005, we recorded DBH and status (alive or dead) of all Abies mariesii and A. veitchii individuals (DBH ≥ 5 cm) in a 0.44‐ha plot. Based on this 25 year census, we quantified mortality and recruitment rates of the two species in three life stages (small tree, 5 cm ≤ DBH < 10 cm; subcanopy tree, 10 cm ≤ DBH < 20 cm; canopy tree, DBH ≥ 20 cm). Results: Significant interspecific differences in mortality and recruitment rates were observed in both the small tree and sub‐canopy tree stages. In this forest, saplings (< 5 cm DBH) are mostly buried by snow‐pack during winter. As a consequence, saplings of A. mariesii, which is snow and shade tolerant, show higher rates of recruitment into the small tree stage than do those of A. veitchii. Above the snow‐pack, trees must tolerate dry, cold temperatures. A. veitchii, which can more readily endure such climate conditions, showed lower mortality rate at the subcanopy stage and a higher recruitment rate into the canopy tree stage. This differential mortality and recruitment among life‐stages determines relative dominance of the two species in the canopy. Conclusion: Differential growth conditions along a vertical gradient in this old forest determine survival of the two species prior to reaching the canopy, and consequently allow co‐dominance at the canopy stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号