共查询到20条相似文献,搜索用时 15 毫秒
1.
Evidence for temperature adaptation in Daphnia magna was inferred from variation in the shape of temperature reaction norms for somatic growth rate, a fitness‐related trait. Ex‐ephippial clones from eight populations across Europe were grown under standardized conditions after preacclimation at five temperatures (17–29 °C). Significant variation for grand mean growth rates occurred both within populations (among clones) and between populations. Genetic variation for reaction norm shape was found within populations, with temperature‐dependent trade‐offs in clone relative fitness. However, the population average responses to temperature were similar, following approximately parallel reaction norms. The among‐population variation is not evidence for temperature adaptation. Lack of temperature adaptation at the population level may be a feature of intermittent populations where environmentally terminated diapause can entrain the planktonic stage of the life‐history within a similar range of temperatures. 相似文献
2.
Grace A. Wyngaard Ellen M. Rasch Nicole M. Manning Kathryn Gasser Rickie Domangue 《Hydrobiologia》2005,532(1-3):123-137
Freshwater cyclopoid copepods exhibit at least a fivefold range in somatic genome size and a mechanism, chromatin diminution, which could account for much of this interspecific variation. These attributes suggest that copepods are well suited to studies of genome size evolution. We tested the nucleotypic hypothesis of genome size evolution, which poses that variation in genome size is adaptive due to the bulk effects of both coding and noncoding DNA on cell size and division rates, and their correlates.
We found a significant inverse correlation between genome size and developmental (growth) rate in five freshwater cyclopoid species at three temperatures. That is, species with smaller genomes developed faster. Species with smaller genomes had significantly smaller bodies at 22 °C, but not at cooler and warmer temperatures. Species with smaller genomes developed faster at all three temperatures, but had smaller bodies only at 22 °C. We propose a model of life history evolution that adds genome size and cell cycle dynamics to the suite of characters on which selection may act to mold life histories and to influence the distribution of traits among different habitats. 相似文献
3.
4.
Reaction norms across seven constant and one fluctuating temperature of development were measured for thorax length and several wing size traits for up to 10 isofemale lines of each of the cactophilic Drosophila species, D. aldrichi and D. buzzatii, originating from the same locality. Maximum thorax length was reached at different low to intermediate temperatures for the two species, whereas wing length was highest at the lowest temperature in both species. Various ratio parameters showed pronounced species differences. The reaction norm for the wing loading index (wing length/thorax length) decreased monotonically with temperature in both species, but was much steeper and spanned a wider range in D. aldrichi than in D. buzzatii, suggesting either that wing loading is not a good characterization of flight capacity or, more likely, that flight optimization does not occur in the same manner in both species. The vein ratio (distal length/proximal length of the third vein) increased with temperature in D. buzzatii but decreased in D. aldrichi. Wing development in the two species thus is very different, with the proximal part of the wing in D. buzzatii more closely allied to the thorax than to the distal part. Among line variation was significant for all traits in both species, and most pronounced for thorax length and the ratio parameters. Coefficients of variation were significantly different between the species for all traits, with those in D. aldrichi higher than in D. buzzatii. Genetic variance in plasticity was significant for all traits in D. buzzatii, but only for seven out of 12 in D. aldrichi. Additive genetic variances for all traits in both species were significantly larger than zero. Genetic correlations between thorax length and several wing length parameters, and between these and wing area, were positive and generally significant in both species. The genetic correlation between the distal and the proximal length of the third vein was not significantly different from zero in D. aldrichi, but negative and significant in D. buzzatii. Heritabilites varied significantly among temperatures for almost all traits in both species. Phenotypic variances were generally higher in D. aldrichi than in D. buzzatii, and commonly highest at the extreme temperatures in the former species. At the high temperature the genetic variances also were usually highest in D. aldrichi. The data clearly suggest that the process of thermal adaptation is species specific and caution against generalizations based on the study of single species. 相似文献
5.
Geographical variation in Drosophila melanogaster body size is a long-standing problem of life-history evolution. Adaptation to a cold climate invariably produces large individuals, whereas evolution in tropical regions result in small individuals. The proximate mechanism was suggested to involve thermal evolution of resource processing by the developing larvae. In this study an attempt is made to merge proximate explanations, featuring temperature sensitivity of larval resource processing, and ultimate approaches focusing on adult and pre-adult life-history traits. To address the issue of temperature dependent resource allocation to adult size vs. larval survival, feeding was stopped at several stages during the larval development. Under these conditions of food deprivation, two temperate and two tropical populations reared at high and low temperatures produced different adult body sizes coinciding with different probabilities to reach the adult stage. In all cases a phenotypic trade-off between larval survival and adult size was observed. However, the underlying pattern of larval resource allocation differed between the geographical populations. In the temperate populations larval age but not weight predicted survival. Temperate larvae did not invest accumulated resources in survival, instead they preserved larval biomass to benefit adult weight. In other words, larvae from temperate populations failed to re-allocate accumulated resources to facilitate their survival. A low percentage of the larvae survived to adulthood but produced relatively large flies. Conversely, in tropical populations larval weight but not age determined the probability to reach adulthood. Tropical larvae did not invest in adult size, but facilitated their own survival. Most larvae succeeded in pupating but then produced small adults. The underlying physiological mechanism seemed to be an evolved difference in the accessibility of glycogen reserves as a result of thermal adaptation. At low rearing temperatures and in the temperate populations, glycogen levels tended to correlate positively with adult size but negatively with pupation probability. The data presented here offer an explanation of geographical variation in body size by showing that thermal evolution of resource allocation, specifically the ability to access glycogen storage, is the proximate mechanism responsible for the life-history trade-off between larval survival and adult size. 相似文献
6.
Ecology of body size in Drosophila buzzatii: untangling the effects of temperature and nutrition 总被引:1,自引:0,他引:1
RICHARD H. THOMAS 《Ecological Entomology》1993,18(1):84-90
Abstract.
- 1 A method of separating the effects of two important determinants of body size in natural populations, temperature of larval development and level of larval nutrition, by making measurements of thorax length and wing length of adult flies is investigated.
- 2 I show that at any given time variation in body size of Drosophila buzzatii from two sites in eastern Australia is determined primarily by variation in the quality of nutrition available to larvae.
- 3 Throughout the year adult flies are consistently at least 25% smaller in volume than predicted for optimal nutrition at their predicted temperature of larval development.
- 4 Nutritional stress is therefore a year-round problem for these flies.
- 5 Measurements of adult flies emerging from individual breeding substrates (rotting cactus cladodes) show that there is substantial variation among these substrates in the nutrition available to larvae.
- 6 This method will allow study of spatial and temporal variation in the temperature of larval substrates and in the nutritional resources available to flies in natural populations.
7.
整合昆虫发育生物学和果蝇遗传学来研究昆虫发育与变态 总被引:1,自引:0,他引:1
成熟动物(昆虫)个体大小主要由生长持续时间和生长速度2个因素所决定。蜕皮激素和保幼激素协同调控昆虫发育变态,并决定昆虫生长持续时间;胰岛素、营养和细胞接触抑制等生长死亡信号及其传导途径控制细胞分裂、长大、分化、死亡,并最终决定昆虫的生长速度。最近研究成果表明,蜕皮激素信号和胰岛素信号相互影响,对昆虫个体大小起决定性的作用;脂肪体和营养代谢把这2条信号传导途径整合起来。科学家将会整合昆虫发育生物学和果蝇遗传学,抓住生长持续时间和生长速率2个关键因素,并以营养代谢和脂肪体为切入点来研究昆虫的发育变态。 相似文献
8.
9.
Lengths, widths and volumes of eggs from 11 species of Drosophila whose genomes have been fully sequenced exhibit significant variation that is not explained by their phylogenetic relationships. Furthermore, egg size differences are unrelated to embryonic development time in these species. In addition, two of the species, Drosophila sechellia and, to a lesser degree, D. yakuba, both ecological specialists, exhibit ovoviviparity, suggesting that female control over oviposition in these species differs from what is observed in D. melanogaster. The interspecific differences in these reproductive characters, coupled with the availability of whole genome sequences for each, provide an unprecedented opportunity to examine their evolution. 相似文献
10.
Clinal variation has been described in many invertebrates including drosophilids but usually over broad geographical gradients. Here we describe clinal variation in the rainforest species Drosophila birchii from Queensland, Australia, and potential confounding effects of laboratory adaptation. Clinal variation was detected for starvation and development time, but not for size or resistance to temperature extremes. Starvation resistance was higher at southern locations. Wing shape components were not associated with latitude although they did differ among populations. Time in laboratory culture did not influence wing size or heat knockdown resistance, but increased starvation resistance and decreased recovery time following a cold shock. Laboratory culture also increased development time and altered wing shape. The results indicate that clinal patterns can be detected in Drosophila over a relatively narrow geographical area. Laboratory adaptation is unlikely to have confounded the detection of geographical patterns. 相似文献
11.
Andrew Clarke 《Invertebrate reproduction & development.》2013,57(2):71-82
The life-history tactics of many Antarctic marine invertebrates suggest that the commonly observed slow rates of growth are adaptations to the pattern of food availability, and not due to low temperature per se. This implies that marine invertebrates have been able, over the course of evolutionary time, to compensate their rates of embryonic development for the effect of temperature. Data from north Atlantic copepods indicate that this is so. It is therefore suggested that the slow rates of embryonic development in many Antarctic marine invertebrates are the result of large egg size, and not the low temperature. Large, slowly developing eggs are part of a suite of tactics, often called K-strategies, which characterise many marine invertebrates in Antarctica. 相似文献
12.
Wolf U. Blanckenhorn 《Evolutionary ecology》2000,14(7):627-643
Organisms and parts of an organism like eggs or individual cells developing in colder environments tend to grow bigger. A
unifying explanation for this Bergmann's rule extended to ectotherms has not been found, and whether this is an adaptive response
or a physiological constraint is debated. The dependence of egg and clutch size on the mother's temperature environment were
investigated in the yellow dung fly Scathophaga stercoraria. Smaller eggs were laid at warmer temperatures in the field and the laboratory, where possible confounding variables were
controlled for. As clutch size at the same time was unaffected by temperature, this effect was not due to a trade-off between
egg size and number. Temperature-dependent egg sizes even persisted within individuals: when females were transferred to a
cooler (warmer) environment, they laid third-clutch eggs that were larger (smaller) than their first-clutch eggs. The fitness
consequences of these temperature-mediated egg sizes were further investigated in two laboratory experiments. Neither egg
and pre-adult survivorship nor larval growth rate were maximized, nor was development time minimized, at the ambient temperature
corresponding to the mother's temperature environment. This does not support the beneficial acclimation hypothesis. Instead,
this study yielded some, but by no means conclusive indications of best performance by offspring from eggs laid at intermediate
temperatures, weakly supporting the optimal temperature hypothesis. In one experiment the smaller eggs laid at 24 °C had reduced
survivorship at all ambient temperatures tested. Smaller eggs thus generally performed poorly. The most parsimonious interpretation
of these results is that temperature-mediated variation in egg size is a maternal physiological response (perhaps even a constraint)
of unclear adaptive value.
This revised version was published online in November 2006 with corrections to the Cover Date. 相似文献
13.
温度对水螅种群增长和个体大小的影响 总被引:4,自引:0,他引:4
应用群体累积培养法,以枝角类为食物,在10℃、20℃和30℃三种温度下,研究了温度对水螅(Hydra sp.)种群密度、种群增长率和个体大小的影响。结果表明温度对水螅种群密度和个体体积由极显著影响。在培养初期,30℃下的水螅种群密度最大;而在培养后期,20℃下的水螅种群密度则显著大于30℃下的值;10℃下的值则始终最小。在同一温度下,种群增长率均与时间呈曲线相关,10℃、20℃、30℃的回归方程分别为:Y=0.000433X^2-0.00262X 0.00332、Y=-0.003367X^2 0.068335X-0.066489、Y=-0.018469X^2 0.188952X-0.030933。在研究范围内,30℃的水螅个体最小。 相似文献
14.
Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana 总被引:3,自引:0,他引:3
Latitude is an important determinant of local environmental conditions that affect plant growth. Forty ecotypes of Arabidopsis thaliana were selected from a wide range of latitudes (from 16°N to 63°N) to investigate genetic variation in plant size and relative
growth rate (RGR) along a latitudinal gradient. Plants were grown in a greenhouse for 31 days, during which period three consecutive
harvests were performed. Plants from high latitudes tended to have smaller plant size in terms of seed size, cotyledon width,
rosette size, number of rosette leaves, size (leaf area) of the largest leaves, total leaf area, and total dry weight per
plant than those from low latitudes. The mean (±SE) RGR across ecotypes was 0.229 (±0.0013) day−1. There was, however, significant ecotypic variation, with RGR being negatively correlated with latitude. The two main components
of RGR, leaf area ratio (LAR) and unit leaf rate (ULR), were also correlated with latitude: LAR increased with increasing
latitude while ULR decreased with increasing latitude. It was also found that RGR tended to be negatively correlated with
LAR, specific leaf area (SLA) and specific root length (SRL) but to be positively correlated with mean area per leaf (MAL)
and ULR. The variation in RGR among ecotypes was relatively small compared with that in the other traits. RGR may be a conservative
trait, whose variation is constrained by the trade-off between its physiological (i.e. ULR) and morphological (i.e. LAR) components.
Received: 2 November 1997 / Accepted: 28 February 1998 相似文献
15.
The relationship between female body size and survival rate of the malaria vector Anopheles arabiensis in Ethiopia 总被引:1,自引:0,他引:1
Abstract. The relationship between female mosquito body size and survival rate was studied in field populations of Anopheles arabiensis in the Awash valley, central Ethiopia. Body size was quantified by measuring the wing-length. Highly significant correlations were found between size, parousness and insemination. It was concluded that larger An.arabiensis females have a higher probability of survival, being inseminated and producing more egg batches than smaller adults. Implications for vectorial capacity and vector competence of mosquitoes are discussed. 相似文献
16.
Adult acanthocephalan body sizes vary interspecifically over more than two orders of magnitude; yet, despite its importance for our understanding of the coevolutionary links between hosts and parasites, this variation remains unexplained. Here, we used a comparative analysis to investigate how final adult sizes and relative increments in size following establishment in the definitive host are influenced by three potential determinants of acanthocephalan sizes: initial (cystacanth) size at infection, host body mass, and the thermal regime experienced during growth, i.e. whether the definitive host is an ectotherm or an endotherm. Relative growth from the cystacanth stage to the adult stage ranged from twofold to more than 10,000-fold across acanthocephalan species, averaging just over 100-fold. However, this relative increment in size did not correlate with host mass, and did not differ between acanthocephalan species using ectothermic hosts and those growing in endothermic hosts. In contrast, final acanthocephalan adult sizes correlated positively with host mass, and after correction for host mass, final adult sizes were higher in species parasitising endotherms than in those found in ectotherms. The relationship between host mass and acanthocephalan adult size practically disappears, however, once phylogenetic influences are taken into account. Positive relationships between adult acanthocephalan size, cystacanth size and egg size indicate that a given relative size is a feature of an acanthocephalan species at all stages of its life cycle. These relationships also suggest that adult size is to some extent determined by cystacanth size, and that the characteristics of the definitive host are not the sole determinants of parasite life history traits. 相似文献
17.
Robert A. Martin 《Historical Biology》2013,25(2):73-90
Generic species richness, the number of species per genus, is examined as a function of mean generic body mass for extant North American mammals. Species richness decreases as an inverse power function with increased mass, and the Spearman rank correlation coefficient of the logio transformed data is significant (rs= ‐0.37). When the data are partitioned by trophic level, the relationship is not statistically significant for carnivores but strengthens for herbivores (rs= ‐0.46). This interesting but incidental effect is due to the negligible number of diminutive and excessively large carnivores, which is in turn determined by foraging strategies. Alternate hypotheses for the “right‐skewed”; size distribution of modern North American mammals, such as disproportionate extinction of large species, differential species longevity, and a geographical scaling function, are rejected in favor of the proposition that elevated levels of speciation are restricted to animals of small body mass, as originally proposed by Gould and Eldredge (1977). This phenomenon is explained as a function of habitat restriction and particularly in herbivores, limited home range size. Aquatic mammals, regardless of body size, speciate rarely. Cope's Rule, the tendency of many animal groups to evolve towards large size, is understood as a probabilistic statement reflecting the phylogenetic tendencies of a disproportionately high number of small species alive at any given point in time. 相似文献
18.
Boniface O. Oindo 《African Journal of Ecology》2002,40(3):267-275
Species are by definition different from each other. This fact favours ranking rather than additive indices. However, ecologists have measured species diversity in terms of species richness, or by combining species richness with the relative abundance of species within an area. Both methods raise problems: species richness treats all species equally, while relative abundance is not a fixed property of species but varies widely temporally and spatially, and requires a massive sampling effort. The functional aspect of species diversity measurement may be strengthened by incorporating differences between species such as body size as a component of diversity. An index of diversity derived from a measure of variation in body size among species is proposed for large grazing mammals. The proposed diversity index related positively to species abundance, indicating that the use of body size as a surrogate for diversity is adequate. Because the proposed index is based on presence or absence data, the expensive and time consuming counting of individuals per species in each sampling unit is not necessary. 相似文献
19.
MATTY P. BERG E. TOBY KIERS GERARD DRIESSEN MARCEL
Van Der HEIJDEN BOB W. KOOI FRANS KUENEN MAARTJE LIEFTING HERMAN A. VERHOEF JACINTHA ELLERS 《Global Change Biology》2010,16(2):587-598
The majority of studies on environmental change focus on the response of single species and neglect fundamental biotic interactions, such as mutualism, competition, predation, and parasitism, which complicate patterns of species persistence. Under global warming, disruption of community interactions can arise when species differ in their sensitivity to rising temperature, leading to mismatched phenologies and/or dispersal patterns. To study species persistence under global climate change, it is critical to consider the ecology and evolution of multispecies interactions; however, the sheer number of potential interactions makes a full study of all interactions unfeasible. One mechanistic approach to solving the problem of complicated community context to global change is to (i) define strategy groups of species based on life‐history traits, trophic position, or location in the ecosystem, (ii) identify species involved in key interactions within these groups, and (iii) determine from the interactions of these key species which traits to study in order to understand the response to global warming. We review the importance of multispecies interactions looking at two trait categories: thermal sensitivity of metabolic rate and associated life‐history traits and dispersal traits of species. A survey of published literature shows pronounced and consistent differences among trophic groups in thermal sensitivity of life‐history traits and in dispersal distances. Our approach increases the feasibility of unraveling such a large and diverse set of community interactions, with the ultimate goal of improving our understanding of community responses to global warming. 相似文献
20.
Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny and ecology 总被引:10,自引:0,他引:10
1. The thermoregulatory capabilities of 18 species of Alaskan bees spanning nearly two orders of magnitude of body mass were measured. Thoracic temperature, measured across the temperature range at which each species forages, was regressed against operative (environmental) temperature to determine bees' abilities to maintain relatively constant thoracic temperatures across a range of operative temperatures (thermoregulatory performance).
2. Previous studies on insect thermoregulation have compared thoracic temperature with ambient air temperature. Operative temperature, which integrates air temperature, solar radiation and effects of wind, was estimated by measuring the temperature of a fresh, dead bee in the field environment. It is suggested that this is a more accurate measure of the thermal environment experienced by the insect and also allows direct comparisons of insects under different microclimate conditions, such as in sun and shade.
3. Simple regression analysis of species and family means, and analysis of phylogenetically based independent contrasts showed thermoregulatory capability, ability to elevate thoracic temperature, and minimum thoracic temperature necessary for initiating flight all increased with body size.
4. Bumble-bees were better thermoregulators than solitary bees primarily as a consequence of their larger body size. However, their thermoregulatory abilities were slightly, but significantly, better than predicted from body size alone, suggesting an added role of pelage and/or physiology. Large solitary bees were better thermoregulators than small solitary bees apparently as a result of body-size differences, with small bees acting as thermal conformers. 相似文献
2. Previous studies on insect thermoregulation have compared thoracic temperature with ambient air temperature. Operative temperature, which integrates air temperature, solar radiation and effects of wind, was estimated by measuring the temperature of a fresh, dead bee in the field environment. It is suggested that this is a more accurate measure of the thermal environment experienced by the insect and also allows direct comparisons of insects under different microclimate conditions, such as in sun and shade.
3. Simple regression analysis of species and family means, and analysis of phylogenetically based independent contrasts showed thermoregulatory capability, ability to elevate thoracic temperature, and minimum thoracic temperature necessary for initiating flight all increased with body size.
4. Bumble-bees were better thermoregulators than solitary bees primarily as a consequence of their larger body size. However, their thermoregulatory abilities were slightly, but significantly, better than predicted from body size alone, suggesting an added role of pelage and/or physiology. Large solitary bees were better thermoregulators than small solitary bees apparently as a result of body-size differences, with small bees acting as thermal conformers. 相似文献