首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
John N. Stallone 《Oecologia》1979,38(2):203-216
Summary Dusky-footed woodrats (Neotoma fuscipes) and desert woodrats (N. lepida) experience pronounced seasonal variations in the aridity of their habitats. The effects of seasonal aridity upon the water conserving abilities of these species were assessed through measurements of water conserving abilities and kidney structure of animals captured in summer and winter, and through measurements of animals' abilities to acclimate to differing water availabilities in the laboratory.Urine concentrating ability was the water conserving mechanism most responsive to changes in the availability of water. Summer and summeracclimated N. fuscipes (431.7 and 459.4 mEqCl-/1) demonstrated urine Cl- concentrating abilities substantially greater than those of winter and winter-acclimated N. fuscipes (245.7 and 337.4 mEqCl-/1). Summer, winter-acclimated, and winter N. lepida exhibited urine Cl- concentrations equivalent to those of winter N. fuscipes; summer-acclimated N. lepida exhibited markedly greater values (466.7 mEqCl-/l) equivalent to those of summer and summer-acclimated N. fuscipes.Measurements of relative thicknesses of renal cortex and medulla yielded no significant differences among the experimental groups of N. fuscipes and N. lepida, thus suggesting that both species possess equal abilities to concentrate urine. These data are confirmed by urine concentrations of summer-acclimated animals of both species.Water conserving abilities of both species correlate well with climatic and dietary plant water content data. Thus, during the dry, warm summer months (when plant moisture is reduced) N. fuscipes conserves water mainly through increased urine concentration. The laboratory acclimation data and differences between summer and winter animals strongly suggest that N. fuscipes undergoes an acclimatization to the seasonal aridity which increases gradually during spring and peaks in late summer, thus enabling this water-dependent species to exist on reduced water requirements. The uniformly low water conserving abilities of winter-acclimated, winter, and summer N. lepida physiologically verify the previous reports that this species satisfies its water requirements through utilization of succulent cactus, thereby avoiding the stress of summer aridity in its habitat.The fact that both species exhibit equal capacities to conserve water indicates that the much greater geographic distribution of N. lepida is not the result of differences in physiological water conserving abilities, but instead may be the result of specific physiological adaptation by N. lepida to utilization of cactus and other plants containing noxious or toxic compounds.  相似文献   

2.
Habitat fragmentation is believed to be a key threat to biodiversity as it decreases the probability of survival of populations, reduces gene flow among populations and increases the possibility of inbreeding and loss of genetic diversity within populations. Heathlands represent excellent systems to study fragmentation effects as the spatial and temporal course of fragmentation is well documented for these habitats. At the beginning of the nineteenth century, heathlands were widespread in northern Germany, but they became increasingly fragmented at the end of the nineteenth century until only few fragments had been left. As many insect species are strongly specialized on heathland habitats, they represent ideal study systems to test the genetic effects of such recent fragmentation processes. The solitary bee Andrena fuscipes is strongly specialized on heather (Calluna vulgaris) and, therefore, occurs exclusively in heathland habitats. The species is red-listed in Germany and other parts of Europe. Here, we present an analysis of the genetic structure of 12 populations of A. fuscipes using eight microsatellite loci. The populations showed little geographical structure and the degree of genetic differentiation was low. Compared to related bee species, inbreeding coefficients were relatively low and seem to be mainly affected by the bees’ solitary nesting behaviour.  相似文献   

3.
The diurnal activity patterns, trypanosome infection rates and movement of Glossinafuscipesfuscipes (Diptera: Glossinidae) were investigated in Buvuma Island, Lake Victoria, Uganda. Hourly trapping of tsetse flies was undertaken to determine their activity rhythm while a capture-mark-release-recapture method was conducted to assess the movement and dispersal of tsetse flies between lakeshore, hinterland and further inland sites along a transected area. Dissection of tsetse flies was also undertaken to determine the trypanosome infection rates in salivary glands, proboscis and mid-gut. Results indicated a bimodal diurnal activity profile for G. f fuscipes on the Island, both on the lakeshore and in the hinterland. Movement and dispersal of G. f fuscipes tsetse flies occurred between lakeshore, hinterland and further inland sites with a greater tendency of flies to move to the lakeshore. Trypanosome infection rates of 4.32% for Trypasoma vivax and 1.15% for 7. congolense were found in G. f. fuscipes.  相似文献   

4.
K. Green 《Austral ecology》2002,27(4):353-359
Abstract Since 1981 there has been debate over whether foxes (Vulpes vulpes Linnaeus) selectively prey on the broad‐toothed rat (Mastacomys fuscus Thomas) relative to the bush rat (Rattus fuscipes (Waterhouse)). In the present study, three areas of the argument are examined. (i) In a study of fox diet over 3 years at both alpine and subalpine altitudes, M. fuscus outnumbered R. fuscipes in faecal remains in all seasons, in all years, and at both altitudes. Overall, M. fuscus occurred in scats five times as frequently as did R. fuscipes in the alpine zone and twice as often in the subalpine zone. (ii) Data from population studies of M. fuscus and R. fuscipes showed no evidence that M. fuscus is trap shy; neither the pattern of captures of individuals caught once, twice and so on, nor the proportion of the estimated population of each species captured during trapping sessions was significantly different. (iii) The suitable habitat for M. fuscus within the potential home ranges of foxes contributing to the subalpine fox scat collection constituted approximately 50% of the total area. However, there was no significant difference between the numbers of fox trails encountered in habitat suitable or unsuitable for M. fuscus in 19 paired transects skied in winter, indicating no preferential foraging in either habitat. Selective feeding on M. fuscus was therefore established, but how that choice is exercised was not determined.  相似文献   

5.
Summary Neotoma fuscipes, a small mammalian herbivore with apparently generalized food habits, was laboratory tested to determine its degree of dietary specialization. Woodrats from both oak woodland and coastal sage communities preferred Quercus agrifolia leaves (containing 40% phenolics and about 16% condensed tannin) over foliage from other dominant species. Approximately one-third of the oak phenolics and less than 10% of the oak condensed tannin remained in the feces. Their performance on pure oak leaves was comparable to that on a mixed diet of Quercus, Salvia, Eriogonum, and Rhus, with respect to weight maintenance, digestive efficiency and total amount ingested. Digestive efficiency was low on the oak diet (55%) relative to Salvia (77%), and to achieve similar weight levels, approximately twice as much oak as Salvia was ingested. Woodrats retained more nitrogen as oak consumption increased. Intake of oak and other foods increased with each experimental day. A sympatric species, N. lepida, was unable to maintain weight on oak leaves, although its digestive and polyphenolic-degrading capabilities, and nitrogen retention efficiency were equivalent to those of N. fuscipes. On a weight-adjusted basis, N. lepida ate about half as much oak per day as N. fuscipes. Oak intake may have been reduced by an inability to rapidly degrade fiber, which constitutes about 30% of the oak diet. In natural populations, N. fuscipes selectively feeds on evergreen sclerophyll vegetation high in fiber, tannins and related polyphenolics. Individuals ingest 2–3 plant types at a time, with a single species (oak when available) constituting most of the material consumed. Neotoma lepida diets are also dominated by a single species. The diversity of plant types eaten by different populations of N. lepida suggests that local dietary specializations may be developmentally acquired.  相似文献   

6.
Abstract Habitat fragmentation and disturbance affect patterns of habitat use, animal movement and spatial behaviour and might have significant effects upon population dynamics and trends, and ultimately population persistence. Previous studies have suggested that the ability to disperse between remnants and a positive or neutral response to edges should be associated with species capable of persisting in remnant habitat. Using both radiotracking and trapping data, movement patterns, dispersal and response to habitat edges of Rattus fuscipes were examined within forests, corridors, remnants and pastures in south‐east Queensland, Australia. Rattus fuscipes has previously been shown to be robust to the effects of habitat fragmentation; however, contrary to expectations, R. fuscipes was found to be sensitive to edges, and no evidence of interremnant dispersal was detected, despite interremnant distances that were substantially smaller than the distances R. fuscipes was found to move in continuous habitat. Using only trapping data, the same factors were examined in relation to Melomys cervinipes, a species sensitive to fragmentation. Melomys cervinipes was found to utilize edge habitat, but no evidence of interremnant dispersal was detected, although the capacity to detect such movement was limited by low abundance in remnants where M. cervinipes was extant, and the species absence from many remnants. Movement patterns, interremnant dispersal capacity, and sensitivity to edges did not prove to be good predictors of these species responses to habitat fragmentation. Alternative explanations, such as population fluctuation and the capacity for rapid population growth in remnants for these two species, and the influence habitat quality has on these parameters should be investigated.  相似文献   

7.

Background

The tsetse fly Glossina fuscipes s.l. is responsible for the transmission of approximately 90% of cases of human African trypanosomiasis (HAT) or sleeping sickness. Three G. fuscipes subspecies have been described, primarily based upon subtle differences in the morphology of their genitalia. Here we describe a study conducted across the range of this important vector to determine whether molecular evidence generated from nuclear DNA (microsatellites and gene sequence information), mitochondrial DNA and symbiont DNA support the existence of these taxa as discrete taxonomic units.

Principal Findings

The nuclear ribosomal Internal transcribed spacer 1 (ITS1) provided support for the three subspecies. However nuclear and mitochondrial sequence data did not support the monophyly of the morphological subspecies G. f. fuscipes or G. f. quanzensis. Instead, the most strongly supported monophyletic group was comprised of flies sampled from Ethiopia. Maternally inherited loci (mtDNA and symbiont) also suggested monophyly of a group from Lake Victoria basin and Tanzania, but this group was not supported by nuclear loci, suggesting different histories of these markers. Microsatellite data confirmed strong structuring across the range of G. fuscipes s.l., and was useful for deriving the interrelationship of closely related populations.

Conclusion/Significance

We propose that the morphological classification alone is not used to classify populations of G. fuscipes for control purposes. The Ethiopian population, which is scheduled to be the target of a sterile insect release (SIT) programme, was notably discrete. From a programmatic perspective this may be both positive, given that it may reflect limited migration into the area or negative if the high levels of differentiation are also reflected in reproductive isolation between this population and the flies to be used in the release programme.  相似文献   

8.
The black rat, Rattus rattus, is an alien rodent in Australian ecosystems where niche overlap with native small mammals may lead to competition for resources and displacement of native species. In coastal habitats surrounding Jervis Bay in south‐eastern Australia, R. rattus co‐occurs with the native bush rat, Rattus fuscipes, and brown antechinus, Antechinus stuartii. Relative distributions and abundances, and fine‐scale space use suggest invasive and native rodents compete for use of space and habitat. Such competitive interactions were not evident between R. rattus and native A. stuartii, which was negatively influenced more by disturbance to habitat. Differences in rodent communities between spatially separate forests forming the northern and southern peninsulas of Jervis Bay potentially reflect symmetrical competition and differences in competitive outcomes. In southern forests, R. rattus was largely restricted to patches of disturbed forest associated with campgrounds. Competitive interference by native rodent populations inhabiting surrounding intact forests may have so far limited R. rattus colonization of these areas. In northern forests, R. rattus was the predominant rodent irrespective of disturbance, while populations of R. fuscipes were unusually low seemingly due to poor juvenile recruitment. Native individuals avoided areas frequented by adult R. rattus and given that species did not partition use of microhabitats, R. rattus most likely precluded R. fuscipes from suitable habitat and in doing so limited native populations. We discuss how natural disturbance of habitat and human activity have potentially facilitated successful invasion by R. rattus of the northern forests. Studies that manipulate rodent populations are required to support these interpretations of observed patterns.  相似文献   

9.
Abstract Three broad dietary categories—fungus, plant and arthropod—were identified from faecal samples of two species of small terrestrial mammal in forest vegetation in southwestern Victoria. Fungal material formed the major component of the diet of the long-nosed potoroo Potorous tridactylus throughout the year and of the bush rat Rattus fuscipes during autumn and winter. Fungal material was most abundant for both species during autumn and winter and significantly less common in spring and summer. These results confirm previous studies which found P. tridactylus to be highly mycophagous throughout the year and R. fuscipes to be strongly mycophagous seasonally. Particular consideration was given to the composition of fungi in the diet. Fungal spores in faecal material were assigned to spore classes, which represent one or more fungal species that have similar spore morphology. Twenty-four fungal spore classes were recorded, but for both animal species most of the fungi consumed were from seven major spore classes. The proportions of major spore classes in the diet of both animals were generally similar, even though the composition of spore classes differed markedly across seasons. Minor differences between species in the fungi consumed may be related to differences in selectivity, foraging, or microhabitat use. If fungal resources are limiting, competition for such resources may be important in this and other small mammal communities. The amount and diversity of hypogeal fungi consumed by the two animal species makes them both important spore dispersal agents in forest ecosystems. The capacity of R. fuscipes and other seasonally mycophagous mammals in this role may be more important than previously recognized, especially in habitats where species of the Potoroidae are absent.  相似文献   

10.
Background

Tsetse flies (Diptera: Glossinidae) are the vectors of African trypanosomosis, the causal agent of sleeping sickness in humans and nagana in animals. Glossina fuscipes fuscipes is one of the most important tsetse vectors of sleeping sickness, particularly in Central Africa. Due to the development of resistance of the trypanosomes to the commonly used trypanocidal drugs and the lack of effective vaccines, vector control approaches remain the most effective strategies for sustainable management of those diseases. The Sterile Insect Technique (SIT) is an effective, environment-friendly method for the management of tsetse flies in the context of area-wide integrated pest management programs (AW-IPM). This technique relies on the mass-production of the target insect, its sterilization with ionizing radiation and the release of sterile males in the target area where they will mate with wild females and induce sterility in the native population. It has been shown that Glossina pallidipes salivary gland hypertrophy virus (GpSGHV) infection causes a decrease in fecundity and fertility hampering the maintenance of colonies of the tsetse fly G. pallidipes. This virus has also been detected in different species of tsetse files. In this study, we evaluated the impact of GpSGHV on the performance of a colony of the heterologous host G. f. fuscipes, including the flies’ productivity, mortality, survival, flight propensity and mating ability and insemination rates.

Results

Even though GpSGHV infection did not induce SGH symptoms, it significantly reduced all examined parameters, except adult flight propensity and insemination rate.

Conclusion

These results emphasize the important role of GpSGHV management strategy in the maintenance of G. f. fuscipes colonies and the urgent need to implement measures to avoid virus infection, to ensure the optimal mass production of this tsetse species for use in AW-IPM programs with an SIT component.

  相似文献   

11.
The chiefly Holarctic Hydrobius species complex (Coleoptera, Hydrophilidae) currently consists of Hydrobius arcticus Kuwert, 1890, and three morphological variants of Hydrobius fuscipes (Linnaeus, 1758): var. fuscipes, var. rottenbergii and var. subrotundus in northern Europe. Here molecular and morphological data are used to test the species boundaries in this species complex. Three gene segments (COI, H3 and ITS2) were sequenced and analyzed with Bayesian methods to infer phylogenetic relationships. The Generalized Mixed Yule Coalescent (GMYC) model and two versions of the Bayesian species delimitation method BPP, with or without an a priori defined guide tree (v2.2 & v3.0), were used to evaluate species limits. External and male genital characters of primarily Fennoscandian specimens were measured and statistically analyzed to test for significant differences in quantitative morphological characters. The four morphotypes formed separate genetic clusters on gene trees and were delimited as separate species by GMYC and by both versions of BPP, despite specimens of Hydrobius fuscipes var. fuscipes and Hydrobius fuscipes var. subrotundus being sympatric. Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii could only be separated genetically with ITS2, and were delimited statistically with GMYC on ITS2 and with BPP on the combined data. In addition, six or seven potentially cryptic species of the Hydrobius fuscipes complex from regions outside northern Europe were delimited genetically. Although some overlap was found, the mean values of six male genital characters were significantly different between the morphotypes (p < 0.001). Morphological characters previously presumed to be diagnostic were less reliable to separate Hydrobius fuscipes var. fuscipes from Hydrobius fuscipes var. subrotundus, but characters in the literature for Hydrobius arcticus and Hydrobius fuscipes var. rottenbergii were diagnostic. Overall, morphological and molecular evidence strongly suggest that Hydrobius arcticus and the three morphological variants of Hydrobius fuscipes are separate species and Hydrobius rottenbergii Gerhardt, 1872, stat. n. and Hydrobius subrotundus Stephens, 1829, stat. n. are elevated to valid species. An identification key to northern European species of Hydrobius is provided.  相似文献   

12.
13.
This study examines the predictive accuracy of the population viability analysis package, ALEX (Analysis of the Likelihood of EXtinction). ALEX was used to predict the probability of patch occupancy for two species of small native Australian mammals (Antechinus agilis and Rattus fuscipes) among 13 patches of suitable habitat in a matrix of plantation pines (Pinus radiata). The study was retrospective, running each simulation from 1900 until 1997, and the model parameterised without knowledge of the 1997 observed field data of patch occupancy. Predictions were made over eight scenarios for each species, allowing for variation in the amount of dispersal between patches, level of environmental stochasticity, and size of habitat patches. Predicted occupancies were compared to the 1997 field data of patch occupancy using logistic regression, testing H random, that there was no relationship between observed and predicted occupancy, and H perfect, that there was a perfect, 1:1 relationship between observed and predicted occupancies. Rejection of H random and failure to reject H perfect was taken as a good match between observed and predicted occupancies. Such a match was found for one scenario with R. fuscipes, and no scenarios with A. agilis. In general, patch occupancy was underestimated, with field surveys finding that 9 of the 13 patches were occupied by R. fuscipes and 10 by A. agilis. Nonetheless, PVA predictions were in the right direction, whereby patches predicted to have a high probability of occupancy were generally occupied, and vice versa. A post hoc search over additional scenarios found few scenarios with a better match than the original eight. The results of this study support the notion that PVA is best thought of as a relative, rather than absolute predictor of the consequences of management actions in threatened populations.  相似文献   

14.
The movement of organisms between subdivided populations is considered a key influence on the persistence of species in modified landscapes. In particular, the ability to recolonize ‘empty’ fragments of habitat is directly relevant to conservation management, and to understanding the link between pattern and process in metapopulations. We studied the movement and recolonization ability of the bush rat, Rattus fuscipes, in a highly fragmented agricultural landscape in south‐western Victoria, Australia. Populations were monitored in seven small (<2.5 ha) and two large (>49 ha) forest fragments before removal of all residents from four of the small fragments. Subsequent monitoring (for up to 16 months) allowed the detection of colonizing individuals, and comparisons between ‘experimental’ and ‘control’ fragments. Rattus fuscipes readily moved between fragments and successfully recolonized (i.e. both males and females arrived) two of four fragments in which extinctions were simulated. A single male moved into a third experimental fragment. In one fragment, new animals were detected 1 month after the removal of residents, indicating that recolonization can occur rapidly. Dispersers were not a random sample of the population: although both males and females, and adults and sub‐adults were recorded dispersing, adult males in reproductive condition predominated. Functional connectivity appears to be high for R. fuscipes in the study landscape. Results from this manipulative experiment provide direct empirical evidence that a capacity for movement allows recolonization of fragments of suitable habitat and is a key process responsible for species persistence in fragmented landscapes, as predicted by theory.  相似文献   

15.
Dicrocoelium antechini n. sp. is described from the bile ducts of Antechinus swainsonii and A. stuartii (Marsupialia: Dasyuridae) from New South Wales. The species differs from all others in the genus in that the caecal bifurcation is well posterior to the ventral sucker and testes. Athesmioides aiolos n. g., n. sp. is described from Rattus fuscipes and R. lutreolus from New South Wales and from R. norvegicus, R. lutreolus and Pseudomys higginsi from Tasmania (all Rodentia: Muridae). The genus Athesmioides is characterised by the presence of unilateral vitelline follicles and an undivided caecum. Platynosomum burrman n. sp. is described from Isoodon macrourus (Marsupialia: Peramelidae) from the Northern Territory. It differs from other species in a combination of characters regarding the shape of the forebody, the arrangement of the gonads, the disposition of the uterus and the size of the eggs. The taxonomic status of Platynosomum australiense (Sandars, 1958), Brachylecithum insulare Angel & Pearson, 1977 and Brachylecithum hydromyos Angel & Pearson, 1977 are summarised. Records are presented of undescribed dicrocoeliids from the marsupials Petaurus breviceps, Planigale maculata and Dasyurus hallucatus and the murids Rattus fuscipes and Melomys sp.  相似文献   

16.
We discovered extremely small genomes (1C ~100 Mb) in the dipteran insects Coboldia fuscipes (Scatopsidae) and Psychoda cinerea (Psychodidae). The small genomes of these species cannot be explained by a fast developmental rate, which has been shown to correlate with small genome sizes in animals and plants but might accommodate the combined effects of other developmental traits, including small egg size, thin blastoderm layer, and long-germ development.  相似文献   

17.
Tsetse flies (genus Glossina) are the only vector for the parasitic trypanosomes responsible for sleeping sickness and nagana across sub‐Saharan Africa. In Uganda, the tsetse fly Glossina fuscipes fuscipes is responsible for transmission of the parasite in 90% of sleeping sickness cases, and co‐occurrence of both forms of human‐infective trypanosomes makes vector control a priority. We use population genetic data from 38 samples from northern Uganda in a novel methodological pipeline that integrates genetic data, remotely sensed environmental data, and hundreds of field‐survey observations. This methodological pipeline identifies isolated habitat by first identifying environmental parameters correlated with genetic differentiation, second, predicting spatial connectivity using field‐survey observations and the most predictive environmental parameter(s), and third, overlaying the connectivity surface onto a habitat suitability map. Results from this pipeline indicated that net photosynthesis was the strongest predictor of genetic differentiation in G. f. fuscipes in northern Uganda. The resulting connectivity surface identified a large area of well‐connected habitat in northwestern Uganda, and twenty‐four isolated patches on the northeastern margin of the G. f. fuscipes distribution. We tested this novel methodological pipeline by completing an ad hoc sample and genetic screen of G. f. fuscipes samples from a model‐predicted isolated patch, and evaluated whether the ad hoc sample was in fact as genetically isolated as predicted. Results indicated that genetic isolation of the ad hoc sample was as genetically isolated as predicted, with differentiation well above estimates made in samples from within well‐connected habitat separated by similar geographic distances. This work has important practical implications for the control of tsetse and other disease vectors, because it provides a way to identify isolated populations where it will be safer and easier to implement vector control and that should be prioritized as study sites during the development and improvement of vector control methods.  相似文献   

18.
Abstract

Pederin, a toxic substance isolated from the insect Paederus fuscipes, inhibits growth of Saccharomyces cerevisiae and EUE cells but not of Bacillus subtilis. Protein synthesis in vitro appears to be inhibited by the drug in preparations obtained from organisms containing 80 S ribosomes (yeast, EUE cells and rat liver) but not in those from organisms endowed with 70 S ribosomes (E. coli and B. subtilis). Pederin inhibits protein synthesis at a stage subsequent to the formation of the ternary complex between ribosomes, aminoacyl-tRNA and messenger RNA. Resistance or susceptibility to the drug appears to be a characteristic of ribosomes.  相似文献   

19.
Fragmentation theory predicts that population persistence should be positively correlated with the size of habitat fragments. The patterns of occurrence of many species are consistent with this prediction, but the demographic processes that determine how species respond to fragmentation are poorly understood. In addition, habitat quality may interact with fragment size as an influence on demographic performance. We investigated these predictions for the native bush rat Rattus fuscipes by testing the following hypotheses: 1) population performance (i.e. viability as determined by various demographic parameters) is positively correlated with fragment size; and 2) population performance is positively correlated with habitat quality. Populations of R. fuscipes were censused in two large (>49 ha) and eight small (<2.5 ha) forest fragments in an agricultural region of southeastern Australia. Fragments with high and low quality habitat were included in each size category. Fragment size influenced multiple aspects of population demography; populations in large fragments had higher densities, older age structures, received more potential immigrants, and were more likely to recruit adults than those in small fragments. Reproductive patterns were more predictable in large fragments. Habitat quality per se had less marked effects; adult females were heavier and subadults more prevalent in fragments with high quality habitat. However, high quality habitat enhanced population performance in small fragments more so than in large ones. Despite being widespread in the study area, R. fuscipes populations are profoundly impacted by habitat fragmentation, with population performance declining with fragment size. Studies based on patterns of species occurrence should be interpreted with caution as they may mask critical processes occurring at the population level. For a thorough understanding of the effects of habitat fragmentation, population‐level studies are required.  相似文献   

20.
Alternative environmentally friendly methods for pest control are in high demand because of the environmental impacts of pesticides. Notably, predator-released kairomone is a natural compound released by natural enemies, which mediates non-consumptive effects between natural enemies and prey. However, this novel pest control agent is underutilized relative to pesticides and natural enemies. Additionally, the effects of spraying predator kairomone on the number and diversity of arthropods in fields and whether this method is environmental-friendly are poorly understood. In the present study, a predator kairomone, rove beetle (Paederus fuscipes Curtis) abdominal gland secretion (AGS), was sprayed in rice fields to investigate whether AGS can suppress pest populations or will affect the fields’ arthropod communities. After AGS spraying, the abundance of arthropods decreased throughout the first 12-d period, including arthropod pests such as hemipterans (small brown planthopper, Laodelphax striatellus (Fallén), brown planthopper, Nilaparvata lugens (Stål), white-backed planthopper, Sogatella furcifera (Horváth), and leafhoppers), and lepidopterans (rice leaf folder, Cnaphalocrocis medinalis Guenée). The abundance of arthropod predators was not affected, except for predatory spiders, which decreased, and rove beetles (P. fuscipes), which increased. In the terms of arthropod diversity, neither pests nor their natural enemies were changed by AGS application. This work highlights that predator kairomone can temporarily suppress pest populations in fields but has no adverse effects on arthropod diversity; thus, this approach is environmentally friendly and can be used in real-world applications. Broadly, present studies suggest that the application of predator kairomone may have synergistic or cumulative effects on pest suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号