首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We examine the hypothesis that sexual reproduction by parasites is an adaptation to counter the somatic evolution of vertebrate immune responses. This is analogous to the idea that antagonistic coevolution between hosts and their parasites maintains sexual reproduction in host populations. Strongyloides ratti is a parasitic nematode of rats. It can have a direct life cycle, with clonal larvae of the wholly parthenogenetic parasites becoming infective, or an indirect life cycle, with clonal larvae developing into free-living dioecious adults. These free-living adults produce infective larvae by conventional meiosis and syngamy. The occurrence of the sexual cycle is determined by both environmental and genetic factors. By experimentally manipulating host immune status using hypothymic mutants, corticosteroids, whole-body γ-irradiation and previous exposure to S. ratti, we show that larvae from hosts that have acquired immune protection are more likely to develop into sexual adults. This effect is independent of the method of manipulation, larval density, and the number of days postinfection. This immune-determined sexuality is consistent with the idea that sexual reproduction by parasites is adaptive in the face of specific immunity, an idea which, if true, has clinical and epidemiological consequences.  相似文献   

3.
The goal of this study is to determine whether a parasitic nematode may regulate, or destabilise by inducing demographic cycles, its host populations. We explore three host–parasite systems through population dynamic models. The hosts considered are the fossorial water vole, Arvicola terrestris, the common vole Microtus arvalis and the bank vole Myodes (Clethrionomys) glareolus and the parasitic nematode is Trichuris arvicolae. Three differential equation-based mathematical models are developed including host immunity and the existence of trade-off between immunity and host survival. Using parameters estimated from field data and laboratory observations, all these models show that T. arvicolae can induce host population regulation but not demographic cycles. The regulation effect of the nematode is un-ambiguous for the water vole (reduction of 50.2% of the host population size), but less obvious for the common vole (5.9%) and even less for the bank vole (1.4%). Important biological parameters to be taken into account in such models are discussed. Experimental confirmation of the regulatory potential of the nematode and of the costs of mounting an immune response against this nematode are now required. Communicated by W. Lutz  相似文献   

4.
Analysis of the early stages of a challenge infection with Strongyloides ratti has shown that protection is expressed against the developing third-stage larval worms (L3) and prevents the maturation to adulthood of most larvae. Challenge after an immunizing infection that was restricted to the parenteral L3 migratory phase showed that some 10–40% of overall protection could be ascribed to systemic antilarval immunity. Some larvae were trapped in the skin at the site of injection whereas others failed to migrate to the head and lung of immune rats. Larvae arriving in the intestine at Days 3, 4, and 5 did not persist beyond Day 7 and 8. Studies using [75Se]methionine-labeled L3 showed a significant increase in fecal label in rats immunized by a complete infection. This loss did not occur to the same extent in rats immunized only with parenteral larvae. Significant rejection of worms transplanted to the intestine also indicated intestinal protection. The possible existence of large numbers of worms in a state of “arrested development” was excluded by their failure to appear after cortisone treatment and the absence of worm accumulation in radiolabeling studies. It is concluded that at least two responses operate against larval S. ratti, one is systemic and the other operates in the intestine against larvae in a manner that resembles the “rapid expulsion” rejection of Trichinella spiralis in immune rats.  相似文献   

5.
In spite of recent advances with experiments on animal models, strongyloidiasis, an infection caused by the nematode parasite Strongyloides stercoralis, has still been an elusive disease. Though endemic in some developing countries, strongyloidiasis still poses a threat to the developed world. Due to the peculiar but characteristic features of autoinfection, hyperinfection syndrome involving only pulmonary and gastrointestinal systems, and disseminated infection with involvement of other organs, strongyloidiasis needs special attention by the physician, especially one serving patients in areas endemic for strongyloidiasis. Strongyloidiasis can occur without any symptoms, or as a potentially fatal hyperinfection or disseminated infection. Th2 cell-mediated immunity, humoral immunity and mucosal immunity have been shown to have protective effects against this parasitic infection especially in animal models. Any factors that suppress these mechanisms (such as intercurrent immune suppression or glucocorticoid therapy) could potentially trigger hyperinfection or disseminated infection which could be fatal. Even with the recent advances in laboratory tests, strongyloidiasis is still difficult to diagnose. But once diagnosed, the disease can be treated effectively with antihelminthic drugs like Ivermectin. This review article summarizes a case of strongyloidiasis and various aspects of strongyloidiasis, with emphasis on epidemiology, life cycle of Strongyloides stercoralis, clinical manifestations of the disease, corticosteroids and strongyloidiasis, diagnostic aspects of the disease, various host defense pathways against strongyloidiasis, and available treatment options.  相似文献   

6.
Ovomermis sinensis (Nematoda: Mermithidae) is an entomophilic nematode and a potential biocontrol agent of lepidopteran pests, including Helicoverpa armigera. The sex ratio of a species can be used to regulate the size of the reproductive population. Parasitic load, parasitic period, host instar, and body size were examined to identify factors affecting the O. sinensis sex ratio. We tested the hypothesis that the O. sinensis sex ratio is correlated with host nutrient supply and the nutrients absorbed by the nematodes. The results show that the proportion of male O. sinensis increased with parasitic load but decreased with host instars and body size. Moreover, the parasitic period of males was significantly shorter than that of females. However, all the factors (host and nematodes) affecting the sex ratio were significantly modified by restricting the host diet, which increased the proportion of males. In turn, juveniles that absorbed fewer nutrients tended to develop into males. Taken together, our findings suggest that factors impacting the O. sinensis sex ratio are related to host nutrient status and provide parameters for mass rearing and a release strategy for this natural enemy.  相似文献   

7.
The last two decades witnessed significant advances in the efforts of immunoparasitologists to elucidate the nature and role of the host mucosal defence mechanisms against intestinal nematode parasites. Aided by recent advances in basic immunology and biotechnology with the concomitant development of well defined laboratory models of infection, immunoparasitologists have more precisely analyzed and defined the different immune effector mechanisms during the infection; resulting in great improvement in our current knowledge and understanding of protective immunity against gastrointestinal (GI) nematode parasites. Much of this current understanding comes from experimental studies in laboratory rodents, which have been used as models of livestock and human GI nematode infections. These rodent studies, which have concentrated on Heligmosomoides polygyrus, Nippostrongylus brasiliensis, Strongyloides ratti/S. venezuelensis, Trichinella spiralis and Trichuris muris infections in mice and rats, have helped in defining the types of T cell responses that regulate effector mechanisms and the effector mechanisms responsible for worm expulsion. In addition, these studies bear indications that traditionally accepted mechanisms of resistance such as eosinophilia and IgE responses may not play as important roles in protection as were previously conceived. In this review, we shall, from these rodent studies, attempt an overview of the mucosal and other effector responses against intestinal nematode parasites beginning with the indices of immune protection as a model of the protective immune responses that may occur in animals and man.  相似文献   

8.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

9.
Skin-penetrating parasitic nematodes infect approximately one billion people worldwide and are responsible for some of the most common neglected tropical diseases. The infective larvae of skin-penetrating nematodes are thought to search for hosts using sensory cues, yet their host-seeking behavior is poorly understood. We conducted an in-depth analysis of host seeking in the skin-penetrating human parasite Strongyloides stercoralis, and compared its behavior to that of other parasitic nematodes. We found that Str. stercoralis is highly mobile relative to other parasitic nematodes and uses a cruising strategy for finding hosts. Str. stercoralis shows robust attraction to a diverse array of human skin and sweat odorants, most of which are known mosquito attractants. Olfactory preferences of Str. stercoralis vary across life stages, suggesting a mechanism by which host seeking is limited to infective larvae. A comparison of odor-driven behavior in Str. stercoralis and six other nematode species revealed that parasite olfactory preferences reflect host specificity rather than phylogeny, suggesting an important role for olfaction in host selection. Our results may enable the development of new strategies for combating harmful nematode infections.  相似文献   

10.
Accumulating evidence suggests that IL-9-mediated immunity plays a fundamental role in control of intestinal nematode infection. Here we report a different impact of Foxp3+ regulatory T cells (Treg) in nematode-induced evasion of IL-9-mediated immunity in BALB/c and C57BL/6 mice. Infection with Strongyloides ratti induced Treg expansion with similar kinetics and phenotype in both strains. Strikingly, Treg depletion reduced parasite burden selectively in BALB/c but not in C57BL/6 mice. Treg function was apparent in both strains as Treg depletion increased nematode-specific humoral and cellular Th2 response in BALB/c and C57BL/6 mice to the same extent. Improved resistance in Treg-depleted BALB/c mice was accompanied by increased production of IL-9 and accelerated degranulation of mast cells. In contrast, IL-9 production was not significantly elevated and kinetics of mast cell degranulation were unaffected by Treg depletion in C57BL/6 mice. By in vivo neutralization, we demonstrate that increased IL-9 production during the first days of infection caused accelerated mast cell degranulation and rapid expulsion of S. ratti adults from the small intestine of Treg-depleted BALB/c mice. In genetically mast cell-deficient (Cpa3-Cre) BALB/c mice, Treg depletion still resulted in increased IL-9 production but resistance to S. ratti infection was lost, suggesting that IL-9-driven mast cell activation mediated accelerated expulsion of S. ratti in Treg-depleted BALB/c mice. This IL-9-driven mast cell degranulation is a central mechanism of S. ratti expulsion in both, BALB/c and C57BL/6 mice, because IL-9 injection reduced and IL-9 neutralization increased parasite burden in the presence of Treg in both strains. Therefore our results suggest that Foxp3+ Treg suppress sufficient IL-9 production for subsequent mast cell degranulation during S. ratti infection in a non-redundant manner in BALB/c mice, whereas additional regulatory pathways are functional in Treg-depleted C57BL/6 mice.  相似文献   

11.
The consequences of prior and concurrent infection with two species of nematodes were studied in rats. Primary infection with Strongyloides ratti adversely affected the development of a secondary Trichinella spiralis infection. Both immediate and delayed challenge with T. spiralis, following the expulsion of the previous S. ratti infection, reduced the percentage of worm recovery of the former as well as their fecundities and lengths. It is suggested that nonspecific inflammation produced by one species, during the peak period of worm expulsion, was not responsible for the accelerated rate of expulsion of the other; instead a direct, specific cross-immunity was probably operative affecting the survival of the challenge species. The response elicited by previous experience of the intestinal phase was reciprocal, but there was evidence of an enhancing effect by the muscle larval stages of T. spiralis on S. ratti. Rats concurrently infected with both species expelled S. ratti more rapidly than T. spiralis. Possible mechanisms underlying the interaction between the two species are suggested and discussed.  相似文献   

12.
Parasites are characteristically aggregated within hosts, but identifying the mechanisms underlying such aggregation can be difficult in wildlife populations. We examined the influence of host age and sex over an annual cycle on the eggs per gram of feces (EPG) of nematode parasites infecting wild Japanese macaques (Macaca fuscata yakui) on Yakushima Island. Five species of nematode were recorded from 434 fecal samples collected from an age-structured group of 50 individually recognizable macaques. All parasites exhibited aggregated EPG distributions. The age–infection profiles of all three directly transmitted species (Oesophagostomum aculeatum, Strongyloides fuelleborni, and Trichuris trichiura) exhibited convex curves, but concavity better characterized the age–infection curves of the two trophically transmitted species (Streptopharagus pigmentatus and Gongylonema pulchrum). There was a male bias in EPG and prevalence of infection with directly transmitted species, except in the prevalence of O. aculeatum, and no sex bias in the other parasites. Infection with O. aculeatum showed a female bias in prevalence among young adults, and additional interactions with sex and seasonality show higher EPG values in males during the mating season (fall) but in females during the birth season (spring). These patterns suggest that an immunosuppressive role by reproductive hormones may be regulating direct, but not indirect, life-cycle parasites. Exposure at an early age may trigger an immune response that affects all nematodes, but trophically transmitted species appear to accumulate thereafter. Although it is difficult to discern clear mechanistic explanations for parasite distributions in wildlife populations, it is critical to begin examining these patterns in host species that are increasingly endangered by anthropogenic threats.  相似文献   

13.
The parasitic nematode Strongyloides ratti has a complex life cycle. The progeny of the parasitic females can develop into three distinct morphs, namely directly developing infective third-stage larvae (iL3s), free-living adult males and free-living adult females. We have analysed of the effect of host immune status (an intra-host factor), environmental temperature (an extra-host factor) and their interaction on the proportion of larvae that develop into these three morphs. The results are consistent with the developmental decision of larvae being controlled by at least two discrete developmental switches. One is a sex-determination event that is affected by host immune status and the other is a switch between alternative female morphs that is affected by both host immune status and environmental temperature. These findings clarify the basis of the life cycle of S. ratti and demonstrate how such complex life cycles can result from a combination of simple developmental switches.  相似文献   

14.
Genetic transformation is a potential tool for analyzing gene function and thereby identifying new drug and vaccine targets in parasitic nematodes, which adversely affect more than one billion people. We have previously developed a robust system for transgenesis in Strongyloides spp. using gonadal microinjection for gene transfer. In this system, transgenes are expressed in promoter-regulated fashion in the F1 but are silenced in subsequent generations, presumably because of their location in repetitive episomal arrays. To counteract this silencing, we explored transposon-mediated chromosomal integration of transgenes in S. ratti. To this end, we constructed a donor vector encoding green fluorescent protein (GFP) under the control of the Ss-act-2 promoter with flanking inverted tandem repeats specific for the piggyBac transposon. In three experiments, free-living Strongyloides ratti females were transformed with this donor vector and a helper plasmid encoding the piggyBac transposase. A mean of 7.9% of F1 larvae were GFP-positive. We inoculated rats with GFP-positive F1 infective larvae, and 0.5% of 6014 F2 individuals resulting from this host passage were GFP-positive. We cultured GFP-positive F2 individuals to produce GFP-positive F3 L3i for additional rounds of host and culture passage. Mean GFP expression frequencies in subsequent generations were 15.6% in the F3, 99.0% in the F4, 82.4% in the F5 and 98.7% in the F6. The resulting transgenic lines now have virtually uniform GFP expression among all progeny after at least 10 generations of passage. Chromosomal integration of the reporter transgenes was confirmed by Southern blotting and splinkerette PCR, which revealed the transgene flanked by S. ratti genomic sequences corresponding to five discrete integration sites. BLAST searches of flanking sequences against the S. ratti genome revealed integrations in five contigs. This result provides the basis for two powerful functional genomic tools in S. ratti: heritable transgenesis and insertional mutagenesis.  相似文献   

15.
Verschoor  B.C.  de Goede  R.G.M.  Brussaard  L. 《Plant and Soil》2002,243(1):81-90
We have examined the interaction between plant parasitic nematodes and plant species from different stages of grassland succession. In these grasslands, fertiliser application was stopped in order to restore the former nutrient-poor ecosystems. This management resulted in a reversed succession of high- to low-productivity. Nematodes isolated from a high-productive early-successional field and a low-productive late-successional field were inoculated to sterilised soil planted with seedlings of either Lolium perenne (a fast-growing early-successional species) or Festuca rubra (a slow-growing late-successional species). The experiment was performed at low and high supply rates of nutrients. We hypothesised that at a low nutrient supply rate the growth of L. perenne will be more reduced by nematode herbivory than the growth of F. rubra. Furthermore, we hypothesised that higher numbers of plant parasitic nematodes will develop under L. perenne. We found no support for our first hypothesis, because nematodes did not affect plant growth. Our results suggest that changes in the nutrient availability rather than plant parasitic nematodes affect plant succession in impoverished grasslands. On the other hand, plant species and nutrient supply rate significantly affected the density and composition of the plant parasitic nematode community. In line with our second hypothesis, plant parasitic nematodes reproduced better on the fast-growing L. perenne than on the slow-growing F. rubra. Our results, therefore, suggest that the succession of the plant parasitic nematode community is probably more affected by changes in the plant community than the other way round.  相似文献   

16.
Despite causing considerable damage to host tissue during the onset of parasitism, nematodes establish remarkably persistent infections in both animals and plants. It is thought that an elaborate repertoire of effector proteins in nematode secretions suppresses damage-triggered immune responses of the host. However, the nature and mode of action of most immunomodulatory compounds in nematode secretions are not well understood. Here, we show that venom allergen-like proteins of plant-parasitic nematodes selectively suppress host immunity mediated by surface-localized immune receptors. Venom allergen-like proteins are uniquely conserved in secretions of all animal- and plant-parasitic nematodes studied to date, but their role during the onset of parasitism has thus far remained elusive. Knocking-down the expression of the venom allergen-like protein Gr-VAP1 severely hampered the infectivity of the potato cyst nematode Globodera rostochiensis. By contrast, heterologous expression of Gr-VAP1 and two other venom allergen-like proteins from the beet cyst nematode Heterodera schachtii in plants resulted in the loss of basal immunity to multiple unrelated pathogens. The modulation of basal immunity by ectopic venom allergen-like proteins in Arabidopsis thaliana involved extracellular protease-based host defenses and non-photochemical quenching in chloroplasts. Non-photochemical quenching regulates the initiation of the defense-related programmed cell death, the onset of which was commonly suppressed by venom allergen-like proteins from G. rostochiensis, H. schachtii, and the root-knot nematode Meloidogyne incognita. Surprisingly, these venom allergen-like proteins only affected the programmed cell death mediated by surface-localized immune receptors. Furthermore, the delivery of venom allergen-like proteins into host tissue coincides with the enzymatic breakdown of plant cell walls by migratory nematodes. We, therefore, conclude that parasitic nematodes most likely utilize venom allergen-like proteins to suppress the activation of defenses by immunogenic breakdown products in damaged host tissue.  相似文献   

17.
Parasitic nematode infections of humans and livestock continue to impose a significant public health and economic burden worldwide. Murine models of intestinal nematode infection have proved to be relevant and tractable systems to define the cellular and molecular basis of how the host immune system regulates resistance and susceptibility to infection. While susceptibility to chronic infection is propagated by T helper cell type 1 cytokine responses (characterised by production of IL-12, IL-18 and interferon-gamma), immunity to intestinal-dwelling adult nematode worms is critically dependent on a type 2 cytokine response (controlled by CD4+T helper type 2 cells that secrete the cytokines IL-4, IL-5, IL-9 and IL-13). However, the immune effector mechanisms elicited by type 2 cytokines in the gut microenvironment that precipitate worm expulsion have remained elusive. This review focuses on new studies that implicate host intestinal epithelial cells as one of the dominant immune effector cells against this group of pathogens. Specifically, three recently identified type 2 cytokine-dependent pathways that could offer insights into the mechanisms of expulsion of parasitic nematodes will be discussed: (i) the intelectins, a new family of galactose-binding lectins implicated in innate immunity, (ii) the resistin-like molecules, a family of small cysteine-rich proteins expressed by multiple cell types, and (iii) cytokine regulation of intestinal epithelial cell turnover. Identifying how the mammalian immune response fights gastrointestinal nematode infections is providing new insights into host protective immunity. Harnessing these discoveries, coupled with identifying what the targets of these responses are within parasitic nematodes, offers promise in the design of a new generation of anti-parasitic drugs and vaccines.  相似文献   

18.
Strongyloides spearei n. sp. is described from the small intestine of the common wombatVombatus ursinus from Healesville, Victoria. The new species is distinguished from all known congeners by: the triangular shape of the stoma and the length of the parasitic female; the blunt spicules in the free-living male; and the presence of eggs in the faeces of the host.S. spearei andS. thylacis Mackerras, 1959 form a separate group withinStrongyloides based on both species infecting marsupials, having directly recurrent ovaries in the parasitic female and having blunt spicules in the free-living male. The histological localisation ofS. spearei is predominantly within the crypts of the small intestine.  相似文献   

19.
The soybean cyst nematode (SCN), Heterodera glycines, is one of the most destructive pathogens of soybeans. SCN is an obligate and sedentary parasite that transforms host plant root cells into an elaborate permanent feeding site, a syncytium. Formation and maintenance of a viable syncytium is an absolute requirement for nematode growth and reproduction. In turn, sensing pathogen attack, plants activate defence responses and may trigger programmed cell death at the sites of infection. For successful parasitism, H. glycines must suppress these host defence responses to establish and maintain viable syncytia. Similar to other pathogens, H. glycines engages in these molecular interactions with its host via effector proteins. The goal of this study was to conduct a comprehensive screen to identify H. glycines effectors that interfere with plant immune responses. We used Nicotiana benthamiana plants infected by Pseudomonas syringae and Pseudomonas fluorescens strains. Using these pathosystems, we screened 51 H. glycines effectors to identify candidates that could inhibit effector-triggered immunity (ETI) and/or pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We identified three effectors as ETI suppressors and seven effectors as PTI suppressors. We also assessed expression modulation of plant immune marker genes as a function of these suppressors.  相似文献   

20.
When and how populations are regulated by bottom up vs. top down processes, and how those processes are affected by co‐occurring species, are poorly characterised across much of ecology. We are especially interested in the community ecology of parasites that must share a host. Here, we quantify how resources and immunity affect parasite propagation in experiments in near‐replicate ‘mesocosms’’ – i.e. mice infected with malaria (Plasmodium chabaudi) and nematodes (Nippostrongylus brasiliensis). Nematodes suppressed immune responses against malaria, and yet malaria populations were smaller in co‐infected hosts. Further analyses of within‐host epidemiology revealed that nematode co‐infection altered malaria propagation by suppressing target cell availability. This is the first demonstration that bottom‐up resource regulation may have earlier and stronger effects than top‐down immune mechanisms on within‐host community dynamics. Our findings demonstrate the potential power of experimental ecology to disentangle mechanisms of population regulation in complex communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号