首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied regeneration patterns of three tree species Picea ajanensis, Betula platyphylla and Populus tremula from 1998 to 2000 in the Central Depression of the Kamchatka Peninsula. We paid special attention to the contribution of sprouting to their regeneration. P. ajanensis was the only species that regenerated by seedling. In a 40 × 40 m study plot, the density of P. ajanensis saplings < 2.0 cm in diameter at basal area (DBH) was 1132, and this was the highest among the three species studied. The number of saplings 2 cm in DBH declined sharply with size class. The spatial distribution of P. ajanensis saplings (< 2 cm in DBH) showed a significant positive correlation with that of adult trees and a negative correlation with that of gaps. These trends were not changed after re-measurement in 2000, although nearly half of the juveniles had died or been injured during the two years. These results suggest that small Picea saplings prefer habitats under the canopy of adult trees rather than in gaps for establishment. Most small individuals of B. platyphylla were produced from sprouts. The number of saplings in the smallest size class (< 2 cm in DBH) was much less than that of P. ajanensis, although the number of larger individuals did not decrease remarkably. The spatial distribution of B. platyphylla saplings showed a positive correlation with that of adult trunks and a negative correlation with that of canopy trees of P. ajanensis. These results suggest an effective contribution of sprouts to the regeneration of B. platyphylla. P. tremula was the only species that could invade big gaps and produce many root suckers efficiently. There were 181 suckers of P. tremula in the smallest size class (< 2 cm in DBH) in the study plot, although the number of saplings 2 cm in DBH declined abruptly. The spatial distribution of saplings of this species showed a slight positive correlation with that of gaps, and negative correlation with that of adult trees of B. platyphylla, P. ajanensis, and P. tremula. The root suckering strategy of P. tremula might be adaptive under severe conditions in high-latitude regions. Our data suggest, however, that it does not necessarily contribute to regeneration in mature forests. The three component species in this forest did not seem to utilize canopy gaps for regeneration; we suggest that gap dynamics do not work in this forest. The sparse canopy, which is a typical character of forests in high-latitude regions, might be a consequence of high mortalities of seedlings and root suckers inside gaps.  相似文献   

2.
We investigated patterns of disturbance and recovery in Fiby urskog, a primeval spruce (Picea abies) forest, situated south of the border between the Boreo-nemoral and Boreal regions in East-central Sweden. The main types of disturbances are storm damage, fungal infection and insect attacks. The response of the different tree species varied and the mode of tree-fall depended on the different combinations of disturbance agents. The DBH distributions of gap creators and gap-border trees were almost the same. There was a high age diversity (100–240 yr) among the fallen trees. We concluded that all canopy trees (DBH > 20 cm) had the same probability of being felled by storms, irrespective of their age and DBH. According to an estimate along transect lines, gaps made up 31% of the spruce forest area. Individual gap sizes ranged from 9 m2 to 360 m2, but 83% of the gaps were < 150 m2. The varied age structure of logs in individual gaps indicated that gap enlargements were common. 96 tree-falls were observed on four days with an hourly mean wind speed > 12.0 m/s; all trees fell in the direction of the wind. However, when we consult the 30-yrrecord(l 959–1989)ofthemeanhourly wind speed >12.0 m/s, it is clear that the pattern of storm-directions does not match the pattern of orientation of fallen logs. The present disturbance regime and the predominance of small gaps were more favourable for the regeneration oí Picea abies than of light-demanding tree species. In one large, 2900 m2 gap, not crossed by the transects, all the major tree species had established within 7 yr, suggesting that classical succession in the sense of complete species replacement or ‘relay floristics’ didnot occur. Our observations seem rather to fit the ‘initial floristic’ model. Estimates of turnover time ranged from 170 to 228 yr, depending on the method used.  相似文献   

3.
Abstract. The characteristics of microhabitats of established Pinus sylvestris and Betula seedlings were studied in a small windthrow gap in a mature P. sylvestris-dominated forest in the Petkeljärvi National Park in eastern Finland. Seedlings were strongly clustered in disturbed microhabitats, particularly uprooting pits and mounds, formed by tree falls. They covered 3% of the 0.3.ha study area consisting of the gap and some of the forest edge. Although Betula occurred only as scattered individuals in the dominant canopy layer of the forest, it accounted for 30% of the seedlings found in the study area. Betula regeneration was almost completely restricted to pits and mounds, where 91% of the seedlings were found. Uprooting spots were also the most important regeneration microhabitats for Pinus, where 60% of the seedlings grew, even though the seedlings were found in other substrates as well, particularly on sufficiently decomposed coarse wood. Undisturbed field- and bottom-layer vegetation had effectively hindered tree seedling establishment, which emphasises the role of soil disturbance for regeneration. While the establishment of seedlings was found to be clearly determined by the availability of favourable regeneration microhabitats, the early growth of seedlings was affected by a complex interaction of environmental variables, including the type of microhabitat, radiation environment and interferences caused by competing seedlings and adjacent trees. In the most important regeneration microhabitats, i.e. in uprooting pits and on mounds, the distributions of the local elevations of Pinus and Betula seedlings were different. Pinus seedlings occurred closer to ground level, i.e. on the fringes of pits and lower on mounds, while Betula seedlings grew deeper in pits and higher on mounds. The position of the Betula seedlings indicate that they may have a competitive advantage over Pinus seedlings in the dense seedling groups occurring in uprooting spots. We suggest that this initial difference in Pinus and Betula establishment may affect the subsequent within-gap tree species succession and can, in part, explain the general occurrence of Betula in conifer-dominated boreal forests.  相似文献   

4.
长白山自然保护区阔叶红松林林隙更新的研究   总被引:40,自引:6,他引:40  
通过对林隙及非林隙林分组成树种数量特征的对比分析,研究了长白山自然保护区阔叶红松林中主要树种对林隙的更新反应特点,阐述了林隙在阔叶红松林结构与多样性维持中的作用.随着林隙与非林隙的交替变化,红松和阔叶树以及主林层和中下层树种的相对优势(或重要性)亦呈现出交替变化的规律.林隙提高了阔叶红松林的物种丰富度,增加了其多样性,为不同特性物种的共存提供了可能,从而保持了阔叶红松林的整体稳定性.  相似文献   

5.
Abstract. The concentrations and contents of organic matter and nutrients in organic deposits on the forest floor were estimated along a 231-yr chronosequence following fire at the southern limit of the boreal forest in eastern Canada. The sampling design was stratified to take into account the variability related to the presence of the principal tree species as well as to the presence of large gaps created by a recent spruce budworm (Choristoneura fumiferana) outbreak. The forest floor showed a steady accumulation of organic matter and total nutrients with time-since-fire and a 50 % decrease in the concentrations of available P and K, but not N (as determined by aerobic incubation). The increase in forest-floor weight was accompanied by an increased storage of available N, Ca and Mg. The availability of N and Ca was more strongly affected by tree species and gaps than by time-since-fire. A high N-availability was observed under Betula papyrifera and in gaps, while high a Ca-availability was found near Populus tremuloides and Thuja occidentalis. In old sites, the forest floor of gaps, created by a recent spruce budworm outbreak, had a necromass similar to that of a young forest, but the low concentrations of available P and K of an old forest.  相似文献   

6.
Abstract. The occurrence of macrofossil charcoal (long axis > 0.5 mm) and Picea abies (Norway spruce) pollen in peat stratigraphies, in combination with size and age data from 2976 P. abies trees were used to analyse ecosystem continuity and stand-structure in ten old-growth swamp-forests in northern Sweden. All stands were dominated by P. abies, a species whose abundance increased westwards in Sweden between 3000 and 2000 yr B.P. In three stands no macrofossil charcoal was found and the maximum age of the peat, determined by 14C dating, varied from 1800 to 3600 yr B.P. In the other seven stands the number of levels containing charcoal varied from 1 to 23, but only between 1 and 7 levels were found after the appearance of spruce. Here the maximum age of the peat varied from 400 to 7900 yr B.P. The ten stands had an all-sized stand structure and a stand continuity of ca. 300 yr. The shape of the age structure was similar to an inverse J-curve. This indicates a continuous recruitment over time in a self-perpetuating ecosystem. In a short-term perspective (< 300 yr), the swamp-forests are characterized by individual trees continually emerging while others are dying. it is suggested that internal dynamics of continuous small-scale disturbances in combination with local site-specific factors determine the structure of these forests. in a long-term perspective, some of the present spruce swamp-forests within the northern boreal zone have functioned as true fire-free refugia since the establishment of P. abies populations while others have been affected by recurring fires, although not as frequently as forests on surrounding drier sites. The hypothesis that Scandinavian spruce swamp-forests in general have functioned as true longterm fire-free refugia is thus modified by the present results.  相似文献   

7.
Abstract. Understorey vegetation changes in a South Norwegian old-growth coniferous forest were studied between 1988 and 1993 in 200 1-m2 vegetation plots. Our aims were to quantify the amount of between-year compositional change, and to elaborate the environmental basis for long-term vegetation change, including the previously identified gradient structure with a major gradient related to topography (and soil nutrient status and soil depth) and a minor gradient reflecting paludification and canopy coverage. Species richness (yearly mean and cumulative species number) and change in species richness differed between vascular plants and cryptogams, and between forest types. The number of vascular plant species decreased in pine forest in dry years; bryophyte species number increased in spruce forest. Statistically significant vegetation change, as tested by constrained ordination (CCA) with time as the constraining variable, is demonstrated for most one-year periods and for the five-year period in most forest types. Vegetation change along identified gradients, measured as plot displacement along DCA ordination axes, also occurred. The magnitude of year-to-year vegetation change was related neither to forest type nor to one-year period; different responses to climatic and environmental change were observed in each forest type. The largest average displacement observed, from medium-rich spruce forest towards poor spruce forest, was interpreted as a long-term trend. Humus-layer pH decreased by ca. 0.25 units from 1988 to 1993, most strongly in medium-rich spruce forest where exchangeable Ca decreased and Al and Mn increased strongly. Our study supports the hypothesis that vascular plants show a long-term and broad-scale response to soil acidification. Change in bryophyte composition is linked to some very long growing-seasons. Detailed analysis of short-term vegetation dynamics enhances the interpretation of long-term changes and stresses the complementarity of univariate and multivariate methods in the analysis of vegetation change.  相似文献   

8.
Abstract. From 1980–1989, fires burned 32 440 km2 of boreal forest, 200 km south of the forest-tundra border in northern Québec, Canada. An assessment of the impact of fire on tree population densities was carried out by comparing the number of Pinus banksiana and Picea mariana in 83 sites before and after the sites burned in 1981, 1983, 1988 or 1989. Age structure analysis of post-fire populations burned in 1972, 1976 and 1983, along with the rapid exhaustion of the seed bank from burned trees, suggest that the majority of seedlings were established within 3 to 10 yr after fire. Consequently, given the absence of nearby living seed bearers, little (if any) further recruitment can be expected in the even-aged, regenerating populations. According to the tree density comparison (pre-fire vs post-fire), a shift from Picea- to Pinus-dominated communities occurred in most of the sites burned in 1981 or 1983, and in some of the sites burned in 1988 or 1989. The 1988 fire reduced the tree population density by 95% in 10 of the 15 sites; total tree density decreased by at least 75% in 28 out of 40 sites burned in 1989. This suggests that the areas burned in 1988 and 1989 will mainly regenerate as very open forests or lichen-heath communities that are more commonly found in the forest-tundra zone, north of the study area. Fire intensity, short fire interval, and unfavorable climate during and after fires are three plausible mechanisms associated with these post-fire vegetation changes.  相似文献   

9.
To address the central question of how climate change influences tree growth within the context of global warming, we used dendroclimatological analysis to understand the reactions of four major boreal tree species –Populus tremuloides, Betula papyrifera, Picea mariana, and Pinus banksiana– to climatic variations along a broad latitudinal gradient from 46 to 54°N in the eastern Canadian boreal forest. Tree‐ring chronologies from 34 forested stands distributed at a 1° interval were built, transformed into principal components (PCs), and analyzed through bootstrapped correlation analysis over the period 1950–2003 to identify climate factors limiting the radial growth and the detailed radial growth–climate association along the gradient. All species taken together, previous summer temperature (negative influences), and current January and March–April temperatures (positive influences) showed the most consistent relationships with radial growth across the gradient. Combined with the identified species/site‐specific climate factors, our study suggested that moisture conditions during the year before radial growth played a dominant role in positively regulating P. tremuloides growth, whereas January temperature and growing season moisture conditions positively impacted growth of B. papyrifera. Both P. mariana and P. banksiana were positively affected by the current‐year winter and spring or whole growing season temperatures over the entire range of our corridor. Owing to the impacts of different climate factors on growth, these boreal species showed inconsistent responsiveness to recent warming at the transition zone, where B. papyrifera, P. mariana, and P. banksiana would be the most responsive species, whereas P. tremuloides might be the least. Under continued warming, B. papyrifera stands located north of 49°N, P. tremuloides at northern latitudes, and P. mariana and P. banksiana stands located north of 47°N might benefit from warming winter and spring temperatures to enhance their radial growth in the coming decades, whereas other southern stands might be decreasing in radial growth.  相似文献   

10.
Stand structure and regeneration pattern were examined inAbies sachalinensis coastal forest in northern Hokkaido. In the forest a similar phenomenon to the wave regeneration in subalpine forests has been found. Wave regeneration has been reported for montaneAbies forests in central Japan and North America. Differences and similarities between wave-type stands in this coastal forest and wave-regenerated montane forests were clarified. The shift of dead tree zone, stand structure and regeneration pattern in wave-type stands are the same as in subalpine wave-regenerated forests. High density of individuals is considered to be an internal factor which causes stand-level dieback and also enables the stands to persist in the severe environment in both forests. A difference between wave-regenerated forests andA. sachalinensis wave-type stands is the number of dead tree zones, which is only one in wave-type stands. Changes of regeneration patterns ofAbies sachalinensis with environmental gradient from seaward to inland were related to this difference.  相似文献   

11.
川西亚高山白桦林穿透雨和茎流特征观测研究   总被引:19,自引:0,他引:19  
观测了川西亚高山白桦次生林一个生长季节内的穿透雨和茎流的特征。结果表明 ,幂函数方程能较好地拟合林冠截留量、茎流量与总降雨量之间的关系 ,而线性方程能较好地拟合穿透雨量和总降雨量之间的关系 ;平均林冠截留量占总降雨量的 1 8 9% ,穿透雨量占总降雨量的 80 9% ,茎流量占总降雨量的 0 3%。  相似文献   

12.
以河南省白云山自然保护区温带落叶阔叶林5 hm2样地群落为研究对象,分析该样地木本植物的特征,同时利用点分布格局对样地内萌生能力较强的个体进行空间格局分析.结果显示:该样地内共有木本植物91种17369株;发生萌生现象的有62种2082株,萌生物种占总物种数的68.13%,萌生个体占总个体数的11.99%.样地内所有发...  相似文献   

13.
Abstract. Analysis of pollen, charcoal and loss-on-ignition in peat cores from a Picea aèies-dominated swamp forest in central Sweden show the vegetation changes and disturbance patterns over 9500 yr. Six major sequences of local vegetation development are identified: (A) Pinus period, ca. 9500–7000 cal. BP; (B) Open mire period (ca. 7000–4500 cal. BP; (C) Betula period, ca. 4500–2300 cal. BP; (D) Picea period (ca. 2300–1000 cal. BP; (E) Human impact period (ca. 1000–100 cal. BP); and (F) Period of human abandonment during the last ca. 100 yr. The swamp forest has been highly dynamic in response to various natural and anthropogenic disturbance agencies. Several fires have heavily influenced the vegetation development. During the last ca. 900 yr human influence has been important, initially from grazing and trampling by domesticated animals (ca. 1000–500 cal. BP), and subsequently small-scale cereal growing (ca. 400–100 BP). Cutting, burning and animal browsing influenced the structure and dynamics of the swamp forest by creating a more open stand and suppressing tree regeneration. Recent cessation of human impact has led to increased tree regeneration and a denser swamp forest stand. The present high biodiversity, and subsequent conservation interest does not result from long-term stability or absence of fire and human impact. However, in spite of repeated disturbances, a continuity of old and senescent trees produced a forest type with abundant dead wood. With the relatively minor importance of fire over long periods of time, the swamp forest developed a structure maintaining a high biological diversity. An important issue for maintaining long-term biodiversity in the boreal landscape must be to create a mosaic where different forest types are present, with a variety of structures, substrates and processes, to provide a certain degree of freedom for species to move around in the landscape.  相似文献   

14.
长白山红松阔叶混交林森林天然更新条件的研究   总被引:35,自引:0,他引:35  
研究长白山红松阔叶混交林森林天然更新的变化规律及其条件,红松阔叶混交林是长白山主要的森林类型,保存不多,对于研究以前森林经营有重要意义。研究的目的在于揭示红松天然更新规律及其与森林组成结构的关系。研究结果表明,红松阔叶混交林天然更新与森林群落类型,海拔,森林植物条件及人类活动等干扰极大关系,一般在陡坡或山脊上胡枝子作树红松林中,那里林冠郁闭度达到80%-90%或更大,林分中红松组成也更大,红松天然更新良好。每公顷有红松幼苗和小幼树万株以上,但是在郁闭的红松林冠下,很少能长大。在大部分的阔叶红松混次林中,除了林冠比较郁闭的地方外,针叶树包括红松在内的天然更新通常稀少,每公顷仅有幼苗幼树数千株,其中大部是阔叶树,随着海拔上升到一定范围,在更新中云冷杉的成分增加,老择伐迹地由于林下植被密,常常缺乏更新。74.2%耐荫树种的幼苗幼树是在林冠下观查到,它们70%以上分布于离立木2.5 m以内,这正好等于林木平均冠幅的半径,所以,红松和耐荫树种幼苗的更新最好是在郁闭的林分下。  相似文献   

15.
The regeneration process in a mixed forest was investigated in Nopporo National Forest, Hokkaido. The analysis of age structure in an 80 m×80 m plot revealed that almost all of the species regenerated intermittently. In eleven gaps observed in the plot, the regeneration of a boreal conifer (Abies sachalinensis) was seldom observed. Temperate hardwoods, even climax species (Acer mono, Quercus mongolica var. grosseserrata, Tilia japonica), regenerated vigorously in the gaps. The age structure in ten additional plots scattered all over the forest showed that Abies tended to regenerate synchronously. From previous records, regeneration of Abies could be ascribed to catastrophic storms causing serious windfalls. On the other hand, regeneration of the temperate hardwoods was not synchronous but independent in different places within the forest. They could regenerate not only after those catastrophic storms but also after less severe disturbances which caused the death and fall of one or several trees. It is concluded that the coexistence of boreal coniferous species and temperate deciduous broad-leaved species in mixed forests may be maintained not only by the difference in habitat but also by the balance between the less frequent large disturbances, and the more frequent smaller ones.  相似文献   

16.
Questions: Does natural revegetation from indigenous soil improve the restoration success of roadside areas? What are the effects of topsoil, subsoil and fertilization on natural revegetation? Location: Akershus county, SE Norway (10°25′ E, 59° 44′ N). Methods: We used a recently constructed road through a boreal coniferous forest for a three year (2000–2002), fully replicated revegetation experiment (six replications). Treatments were soil type (two levels; one topsoil and one subsoil type) and fertilization (two levels; NPK and unfertilized control). Ordination methods, constrained ordination methods as well as univariate statistical methods, such as Wilcoxon's signed‐rank test and correlation analysis, were used to assess the relative importance and significance of treatments on the plant species composition. Results: There was no fertilization effect on species composition. The species composition on both soil types was stabilised by the second year. The species dominating the topsoil were more in accordance with the indigenous vegetation than was the case on the subsoil. The significant difference in species composition among blocks, persisting for the entire study period, indicated that local factors are important determinants of the outcome of revegetation. Conclusions: Unfertilized topsoil provides a revegetation result in better accordance with the indigenous vegetation than does subsoil.  相似文献   

17.
Forest age structure is one of the main indicators of biodiversity in temperate and boreal forests worldwide. This indicator was mainly chosen for the conservation of a subset of rare or sensitive species related to the oldest age classes, not to capture variability across the entire biodiversity spectrum, but is often considered as such. In this study, we analysed alpha and beta diversity in temporary plots of western Quebec, Canada, to consider biodiversity indicators complementary to existing forest age structure targets. Our analysis revealed that considered individually, stand characteristics such as cover type and height are better predictors of changes in site-level contribution to tree beta diversity than age. We also show that plots belonging to different age classes can be similar in terms of tree alpha diversity. Height class was found to have a more significant impact on tree alpha diversity than expected: height was more important than age in coniferous forests, and in deciduous and mixedwood stands it frequently complemented age in explaining the observed diversity patterns. Our results suggest that forest age structure target levels should not be used as the sole indicator of ecosystem sustainability, and that some mature secondary stands can provide significant contributions to biodiversity. We propose that more efficient trade-offs between forest exploitation, ecosystem functioning and environmental conservation can be attained if: (i) forest age structure targets are complemented by cover type and stand height; or (ii) complementary biodiversity indicators of ecosystem sustainability are implemented.  相似文献   

18.
Stand development and regeneration were studied during a 33-year period (1965-1998) in a 1-ha plot in a seral Picea glehnii forest in northern Japan. P. glehnii was mono-dominant in the upper canopy layer, but its understory trees were rarely found in 1965. Other species were scarcely observed in 1965. Many recruited saplings of Abies sachalinensis which had grown to > 5 cm diameter at breast height (DBH) by 1998 had become dominant in the understory layer. Mortality of P. glehnii canopy trees was low. Therefore, the stand basal area increased during the census period due to the growth of surviving canopy trees. Stand development brought about intense competition among trees by increasing local crowding for each tree, and promoted dominance of larger trees and suppression of smaller trees. Although growth rates of understory trees of the two conifers decreased with the increase in local crowding, the growth rate of A. sachalinensis was consistently higher than that of P. glehnii at all extents of local crowding. The recruitment rate (growing to 5 cm DBH) of the two conifers was less affected by local crowding. However, the number of recruits of P. glehnii was only about a quarter of that of A. sachalinensis during the census period because the regeneration of P. glehnii was largely restricted to fallen logs and within 1 m of the base of any live tree > 20 cm DBH. Therefore, our long-term study suggests that A. sachalinensis will dominate over P. glehnii in the seral forest because of higher recruitment and growth rates of the former than the latter in the understory.An erratum to this article can be found at  相似文献   

19.
Abstract. Vegetation data from permanent plots were collected in 1931, 1961 and 1991 in a south boreal forest 20 km north of Oslo in southern Norway. Major changes were found in the vegetation composition during those 60 years. The main changes were a reduction in the frequency of species and the frequency of joint occurrences of vascular species such as Andromeda polifolia, Calluna vulgaris, Cornus suecica, Eriophorum vaginatum, Maianthemum bifolium, Melampyrum pratense, Trientalis europaea, Vaccinium uliginosum and V. oxycoccus, and mosses, e.g. Dicranum fuscescens, Hylocomium splendens, Pleurozium schreberi, Ptilidium ciliare and Ptilium crista-castrensis. The observed changes were interpreted as being induced by internal processes e.g. notably a long-term change from paludified forest to mesic forest. In particular the growth of Picea abies seems to be a main driving force. The dominance of Picea abies and Vaccinium myrtillus appears to have rendered the conditions more unfavourable for other species. A doubling of the living stem biomass of P. abies during the last 67 yr shows that this old-growth forest has not yet reached a steady state. It was demonstrated that species such as Deschampsia flexuosa and Molinia caerulea did not increase in frequency in response to nitrogen deposition, as has occurred elsewhere in northern Europe. pH in the humus layer increased with 0.2 unit from 1961 to 1991. The results of this study indicate that protection from logging has initiated the reduction of species in the field layer and bottom layer. This study questions if monitoring of forest vegetation should be restricted to protected forests as is the practice in Scandinavia today. We recommend that also areas with some kind of selective cutting will be used for monitoring of forest vegetation.  相似文献   

20.
Abstract. Data from three forest stands for the past 2000 yr show how the shade-intolerant species Pinus sylvestris and Betula pubescens maintain significant populations in the Swedish boreal landscape. Age structure data from a northern stand close to the range limits of Picea abies and Pinus complement a local pollen diagram, and reveal cyclic population fluctuations which can be related to periods of climatic stress and fire. Pollen data from two southern stands show that high fire frequencies in the past prevented the expansion of Picea populations. Reduction of the fire frequency during the last 200 yr has favoured Picea. A long time perspective reveals the population dynamics of long-lived species and indicates the controlling factors. Such knowledge permits assessment of the current status and likely future of forest stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号