共查询到20条相似文献,搜索用时 0 毫秒
1.
Sokolovskaia LI Makogonenko EM Grinenko TV Cederholm-Williams SA 《Ukrainski? biokhimicheski? zhurnal》2003,75(2):25-32
The function of lysine-binding sites in kringle domains K1-4 and K5 of plasminogen (Pg) during its activation by streptokinase (SK) was studied. Activation rates of Glu- and Lys-Pg exceed activation rate of mini- and micro-Pg 26 and 40 times, respectively. 6-Animohexanoic acid (6-AHA) in concentrations from 10(-5) to 10(-2) M inhibits activation of Glu-, Lys- and mini-Pg and does not impact the activation of micro-Pg. Complete inhibition of Lys-Pg activation occurs with presence of 10(-3) M 6-AHA while 90% inhibition of mini-Pg activation and 70% inhibition of Glu-Pg activation occur with 10(-2) M 6-AHA. Isolated kringles K1-3 and K4 of Pg inhibit activation of Glu-Pg by SK and concentrations [I]50 are 4.0 and 8.1 x 10(-6) M, respectively. Catalytic activity of Glu-Pg-SK, Lys-Pg-SK and Pm-SK complexes with respect to S 2251 is not inhibited by 6-AHA in concentrations from 10(-5) to 10(-2) M. Activation of substrate Pg by Pm-SK complex is also inhibited by 6-AHA in concentrations from 10(-5) to 10(-2) M; however, this effect of inhibition is significantly weaker than that with activation by SK. Cleavage of C-terminal Lys or chemical modification of NH2-groups of amino acid residues in SK molecule also results in the decrease of the Glu-Pg activation rate. Lysin-binding sites in K1-4 and K5 of Pg molecule are important at different steps of Pg activation process which includes formation of equimolar complex; structural reorganizations resulted in formation of active center in Pg; and binding of substrate Pg with Pg-SK complex. Lysin-binding sites in K1-4 of Pg are necessary for maintenance of high rate of Pg activation by SK. 相似文献
2.
3.
4.
Streptokinase (SK) activates plasminogen (Pg) by specific binding and nonproteolytic expression of the Pg catalytic site, initiating Pg proteolysis to form the fibrinolytic proteinase, plasmin (Pm). The SK-induced conformational activation mechanism was investigated in quantitative kinetic and equilibrium binding studies. Progress curves of Pg activation by SK monitored by chromogenic substrate hydrolysis were parabolic, with initial rates (v(1)) that indicated no transient species and subsequent rate increases (v(2)). The v(1) dependence on SK concentration for [Glu]Pg and [Lys]Pg was hyperbolic with dissociation constants corresponding to those determined in fluorescence-based binding studies for the native Pg species, identifying v(1) as rapid SK binding and conformational activation. Comparison of [Glu]Pg and [Lys]Pg activation showed an approximately 12-fold higher affinity of SK for [Lys]Pg that was lysine-binding site dependent and no such dependence for [Glu]Pg. Stopped-flow kinetics of SK binding to fluorescently labeled Pg demonstrated at least two fast steps in the conformational activation pathway. Characterization of the specificity of the conformationally activated SK.[Lys]Pg* complex for tripeptide-p-nitroanilide substrates demonstrated 5-18- and 10-130-fold reduced specificity (k(cat)/K(m)) compared with SK.Pm and Pm, respectively, with differences in K(m) and k(cat) dependent on the P1 residue. The results support a kinetic mechanism in which SK binding and reversible conformational activation occur in a rapid equilibrium, multistep process. 相似文献
5.
The mechanism of activation of human plasminogen by streptokinase 总被引:16,自引:0,他引:16
6.
7.
D P Kosow 《Biochemistry》1975,14(20):4459-4465
A method of determining the initial rate of plasminogen activation has been developed. The method has been used to investigate the mechanism of activation of human plasminogen by streptokinase. Plasmin formation follows saturation kinetics. Inhibition of plasmin formation by epsilon-aminocaproic acid is uncompetitive with a Ki of 0.6 mM. A model consistent with the data is that streptokinase induces a conformational change in the plasminogen molecule, producing an active center which cleaves an internal peptide bond to produce plasmin. Thus, streptokinase functions as a catalytic allosteric effector. 相似文献
8.
Suman Yadav Girish Sahni 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(9):1730-1737
The bacterial protein streptokinase (SK) contains three independently folded domains (α, β and γ), interconnected by two flexible linkers with noticeable sequence homology. To investigate their primary structure requirements, the linkers were swapped amongst themselves i.e. linker 1 (between α and β domains) was swapped with linker 2 (between β and γ domains) and vice versa. The resultant construct exhibited very low activity essentially due to an enhanced proteolytic susceptibility. However, a SK mutant with two linker 1 sequences, which was proteolytically as stable as WT-rSK retained about 10% of the plasminogen activator activity of rSK When the native sequence of each linker was substituted with 9 consecutive glycine sequences, in case of the linker 1 substitution mutant substantial activity was seen to survive, whereas the linker 2 mutant lost nearly all its activity. The optimal length of linkers was then studied through deletion mutagenesis experiments, which showed that deletion beyond three residues in either of the linkers resulted in virtually complete loss of activator activity. The effect of length of the linkers was then also examined by insertion of extraneous pentapeptide sequences having a propensity for adopting either an extended conformation or a relatively rigid conformation. The insertion of poly-Pro sequences into native linker 2 sequence caused up to 10-fold reduction in activity, whereas its effect in linker 1 was relatively minor. Interestingly, most of the linker mutants could form stable 1:1 complexes with human plasminogen. Taken together, these observations suggest that (i) the functioning of the inter-domain linkers of SK requires a critical minimal length, (ii) linker 1 is relatively more tolerant to insertions and sequence alterations, and appears to function primarily as a covalent connector between the α and β domains, and (iii) the native linker 2 sequence is virtually indispensable for the activity of SK probably because of structural and/or flexibility requirements in SK action during catalysis. 相似文献
9.
The role of the streptokinase (SK) alpha-domain in plasminogen (Pg) and plasmin (Pm) interactions was investigated in quantitative binding studies employing active site fluorescein-labeled [Glu]Pg, [Lys]Pg, and [Lys]Pm, and the SK truncation mutants, SK-(55-414), SK-(70-414), and SK-(152-414). Lysine binding site (LBS)-dependent and -independent binding were resolved from the effects of the lysine analog, 6-aminohexanoic acid. The mutants bound indistinguishably, consistent with unfolding of the alpha-domain on deletion of SK-(1-54). The affinity of SK for [Glu]Pg was LBS-independent, and although [Lys]Pg affinity was enhanced 13-fold by LBS interactions, the LBS-independent free energy contributions were indistinguishable. alpha-Domain truncation reduced the affinity of SK for [Glu]Pg 2-7-fold and [Lys]Pg =2-fold, but surprisingly, rendered both interactions near totally LBS-dependent. The LBS-independent affinity of SK for [Lys]Pm, 3000-fold higher compared with [Lys]Pg, was reduced dramatically by alpha-domain truncation. Thermodynamic analysis demonstrates that the SK alpha-domain contributes substantially to affinity for all Pg/Pm species solely through LBS-independent interactions, and that the higher affinity of SK for [Lys]Pm compared with [Lys]Pg involves all three SK domains. The residual affinity of the SK betagamma-fragment for all Pg/Pm species was increased by an enhanced contribution to complex stability from LBS-dependent interactions or free energy coupling between LBS-dependent and -independent interactions. Redistribution of the free energy contributions accompanying alpha-domain truncation demonstrates the interdependence of SK domains in stabilizing the SK-Pg/Pm complexes. The flexible segments connecting the SK alpha, beta, and gamma domains allow their rearrangement into a distinctly different bound conformation accompanying loss of the constraint imposed by interactions of the alpha-domain. 相似文献
10.
Streptokinase (SK) is a thrombolytic agent widely used for the clinical treatment of clotting disorders such as heart attack. The treatment is based on the ability of SK to bind plasminogen (Pg) or plasmin (Pm), forming complexes that proteolytically activate other Pg molecules to Pm, which carries out fibrinolysis. SK contains three major domains. The N-terminal domain, SKalpha, provides the complex with substrate recognition towards Pg. SKalpha contains a unique mobile loop, residues 45-70, absent in the corresponding domains of other bacterial Pg activators. To study the roles of this loop, we deleted 12 residues in this loop in both full-length SK and the SKalpha fragment. Kinetic data indicate that this loop participates in the recognition of substrate Pg, but does not function in the active site formation in the activator complex. Two crystal structures of the deletion mutant of SKalpha (SKalpha(delta)) complexed with the protease domain of Pg were determined. While the structure of SKalpha(delta) is essentially the same as this domain in full-length SK, the mode of SK-Pg interaction was however different from a previously observed structure. Even though mutagenesis studies indicated that the current complex represents a minor interacting form in solution, the binding to SKalpha(delta) triggered similar conformational changes in the Pg active site in both crystal forms. 相似文献
11.
Binding of streptokinase (SK) to plasminogen (Pg) induces conformational activation of the zymogen and initiates its proteolytic conversion to plasmin (Pm). The mechanism of coupling between conformational activation and Pm formation was investigated in kinetic studies. Parabolic time courses of Pg activation by SK monitored by chromogenic substrate hydrolysis had initial rates (v(1)) representing conformational activation and subsequent rates of activity increase (v(2)) corresponding to the rate of Pm generation determined by a specific discontinuous assay. The v(2) dependence on SK concentration for [Lys]Pg showed a maximum rate at a Pg to SK ratio of approximately 2:1, with inhibition at high SK concentrations. [Glu]Pg and [Lys]Pg activation showed similar kinetic behavior but much slower activation of [Glu]Pg, due to an approximately 12-fold lower affinity for SK and an approximately 20-fold lower k(cat)/K(m). Blocking lysine-binding sites on Pg inhibited SK.Pg* cleavage of [Lys]Pg to a rate comparable with that of [Glu]Pg, whereas [Glu]Pg activation was not significantly affected. The results support a kinetic mechanism in which SK activates Pg conformationally by rapid equilibrium formation of the SK.Pg* complex, followed by intermolecular cleavage of Pg to Pm by SK.Pg* and subsequent cleavage of Pg by SK.Pm. A unified model of SK-induced Pg activation suggests that generation of initial Pm by SK.Pg* acts as a self-limiting triggering mechanism to initiate production of one SK equivalent of SK.Pm, which then converts the remaining free Pg to Pm. 相似文献
12.
13.
14.
Role of the amino-terminal region of streptokinase in the generation of a fully functional plasminogen activator complex probed with synthetic peptides. 总被引:1,自引:2,他引:1 下载免费PDF全文
D. Nihalani R. Kumar K. Rajagopal G. Sahni 《Protein science : a publication of the Protein Society》1998,7(3):637-648
The mechanism whereby fragments of streptokinase (SK) derived from its N terminus (e.g., SK1-59 or SK1-63) enhance the low plasminogen (PG)-activating ability of other fragments, namely SK64-386, SK60-414, SK60-387, and SK60-333 (reported previously), has been investigated using a synthetic peptide approach. The addition of either natural SK1-59, or chemically synthesized SK16-59, at saturation (about 500-fold molar excess) generated amidolytic and PG activation capabilities in equimolar mixtures of human plasminogen (HPG) and its complementary fragment (either SK60-414 or SK56-414, prepared by expression of truncated SK gene fragments in Escherichia coli) that were approximately 1.2- and 2.5-fold, respectively, of that generated by equimolar mixtures of native SK and HPG. Although in the absence of SK1-59 equimolar mixtures of SK56-414 and HPG could generate almost 80% of amidolytic activity, albeit slowly, less than 2% level of PG activation could be observed under the same conditions, indicating that the contribution of the N-terminal region lay mainly in imparting in SK56-414 an enhanced ability for PG activation. The ability of various synthetic peptides derived from the amino-terminal region (SK16-51, SK16-45, SK37-59, SK1-36, SK16-36, and SK37-51) to (1) complement equimolar mixtures of SK56-414 and HPG for the generation of amidolytic and PG activation functions, (2) inhibit the potentiation of SK56-414 and HPG by SK16-59, and (3) directly inhibit PG activation by the 1:1 SK-HPG activator complex was tested. Apart from SK16-59, SK16-51, and 16-45, the ability to rapidly generate amidolytic potential in HPG in the presence of SK56-414 survived even in the smaller SK-peptides, viz., SK37-59 and SK37-51. However, this ability was abolished upon specifically mutating the sequence -LTSRP-, present at position 42-46 in native SK. Although SK16-51 retained virtually complete ability for potentiation of PG activation in comparison to SK16-59 or SK1-59, this ability was reduced by approximately fourfold in the case of SK16-45, and completely abolished upon further truncation of the C-terminal residues to SK16-36 or SK1-36. Remarkably, however, these peptides not only displayed ability to bind PG, but also showed strong inhibition of PG activation by the native activator complex in the micromolar range of concentration; the observed inhibition, however, could be competitively relieved by increasing the concentration of substrate PG in the reaction, suggesting that this region in SK contains a site directed specifically toward interaction with substrate PG. This conclusion was substantiated by the observation that the potentiation of PG activating ability was found to be considerably reduced in a peptide (SK25-59) in which the sequence corresponding to this putative locus (residues 16-36) was truncated at the middle. On the other hand, fragments SK37-51 and SK37-59 did not show any inhibition of the PG activation by native activator complex. Taken together, these findings strongly support a model of SK action wherein the HPG binding site resident in the region 37-51 helps in anchoring the N-terminal domain to the strong intermolecular complex formed between HPG and the region 60-414. In contrast, the site located between residues 16 and 36 is qualitatively more similar to the previously reported PG interacting site (SK254-273) present in the core region of SK, in being involved in the relatively low-affinity enzyme-substrate interactions of the activator complex with PG during the catalytic cycle. 相似文献
15.
Dong Min Kim Sang Jun Lee Suk Kwon Yoon Si Myung Byun 《Biochemical and biophysical research communications》2002,290(1):585-588
Several pathogenic bacteria secrete plasminogen activator proteins. Streptokinase (SKe) produced by Streptococcus equisimilis and staphylokinase secreted from Staphylococcus aureus are human plasminogen activators and streptokinase (SKu), produced by Streptococcus uberis, is a bovine plasminogen activator. Thus, the fusion proteins among these activators can explain the function of each domain of SKe. Replacement of the SKalpha domain with staphylokinase donated the staphylokinase-like activation activity to SKe, and the SKbetagamma domain played a role of nonproteolytic activation of plasminogen. Recombinant SKu also activated human plasminogen by staphylokinase-like activation mode. Because SKu has homology with SKe, the bovine plasminogen activation activities of SKe fragments were checked. SKebetagamma among them had activation activity with bovine plasminogen. This means that the C-terminal domain (gamma-domain) of streptokinase determines plasminogen species necessary for activation and converses the ability of substrate recognition to human species. 相似文献
16.
Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis 下载免费PDF全文
Chaudhary A Vasudha S Rajagopal K Komath SS Garg N Yadav M Mande SC Sahni G 《Protein science : a publication of the Protein Society》1999,8(12):2791-2805
The possible role of the central beta-domain (residues 151-287) of streptokinase (SK) was probed by site-specifically altering two charged residues at a time to alanines in a region (residues 230-290) previously identified by Peptide Walking to play a key role in plasminogen (PG) activation. These mutants were then screened for altered ability to activate equimolar "partner" human PG, or altered interaction with substrate PG resulting in an overall compromised capability for substrate PG processing. Of the eight initial alanine-linker mutants of SK, one mutant, viz. SK(KK256.257AA) (SK-D1), showed a roughly 20-fold reduction in PG activator activity in comparison to wild-type SK expressed in Escherichia coli (nSK). Five other mutants were as active as nSK, with two [SK(RE248.249AA) and SK(EK281.282AA), referred to as SK(C) and SK(H), respectively] showing specific activities approximately one-half and two-thirds, respectively, that of nSK. Unlike SK(C) and SK(H), however, SK(D1) showed an extended initial delay in the kinetics of PG activation. These features were drastically accentuated when the charges on the two Lys residues at positions 256 and 257 of nSK were reversed, to obtain SK(KK256.257EE) [SK(D2)]. This mutant showed a PG activator activity approximately 10-fold less than that of SK(D1). Remarkably, inclusion of small amounts of human plasmin (PN) in the PG activation reactions of SK(D2) resulted in a dramatic, PN dose-dependent rejuvenation of its PG activation capability, indicating that it required pre-existing PN to form a functional activator since it could not effect active site exposure in partner PG on its own, a conclusion further confirmed by its inability to show a "burst" of p-nitrophenol release in the presence of equimolar human PG and p-nitrophenyl guanidino benzoate. The steady-state kinetic parameters for HPG activation of its 1:1 complex with human PN revealed that although it could form a highly functional activator once "supplied" with a mature active site, the Km for PG was increased nearly eightfold in comparison to that of nSK-PN. SK mutants carrying simultaneous two- and three-site charge-cluster alterations, viz., SK(RE24249AA:EK281.282AA) [SK(CH)], SK(EK272.273AA;EK281.282AA) [SK(FH)], and SK(RE248.249AA;EK272.273AA:EK281.282AA+ ++) [SK(CFH)], showed additive/synergistic influence of multiple charge-cluster mutations on HPG activation when compared to the respective "single-site" mutants, with the "triple-site" mutant [SK(CFH)] showing absolutely no detectable HPG activation ability. Nevertheless, like the other constructs, the double- and triple-charge cluster mutants retained a native like affinity for complexation with partner PG. Their overall structure also, as judged by far-ultraviolet circular dichroism, was closely similar to that of nSK. These results provide the first experimental evidence for a direct assistance by the SK beta-domain in the docking and processing of substrate PG by the activator complex, a facet not readily evident probably because of the flexibility of this domain in the recent X-ray crystal structure of the SK-plasmin light chain complex. 相似文献
17.
The plasminogen activator (PA)/plasminogen/plasmin proteolytic system has begun to be taken into account in the fertilization process. In this study, we demonstrated the presence of plasminogen in the extracellular matrix (ECM) of hamster oocytes by indirect immunofluorescence and immunoperoxidase assays using human anti-plasminogen. Plasminogen appeared first on the zona pellucida (ZP) of ovarian oocytes and later on the plasma membrane (PM) of oviducal eggs. This would suggest that oviducal oocytes modulate the expression of plasminogen binding sites on the PM. Human plasminogen as well as that of other species, known to be activated by streptokinase (SK), is rapidly converted to a plasmin-SK complex. We demonstrated the rapid formation of a SK-plasminogen complex that yields plasmin in the blood plasma of hamsters. Both the in vivo and in vitro SK treatment of eggs from superovulated female hamsters caused a decreased in the ZP dissolution time (ZPdt), probably either due to the proteolytic effect of plasmin or due to the SK-Plasminogen. Extracellular proteolysis assays carried out on agar-casein plates confirmed the proteolytic activity of SK-incubated eggs; the controls, on the contrary, failed to display a halo. These studies show that (1) superovulated hamster eggs contain plasminogen in their ECM, (2) oviducal eggs exhibit plasminogen on their PMs, indicating the presence of their corresponding binding sites, (3) in hamsters, SK, a non-enzymatic exogenous protein would be capable of activating ECM plasminogen to plasmin, and (4) the complex SK-plasminogen and/or the plasmin are capable of changing the ZPdt with alpha-chymotrypsin. 相似文献
18.
Presence of isolated beta or betagamma domains of streptokinase (SK) increased the catalytic activity of staphylokinase (SAK)-plasmin (Pm) complex up to 60%. In contrast, fusion of SK beta or betagamma domains with the C-terminal end of SAK drastically reduced the catalytic activity of the activator complex. The enhancement effect mediated by beta or betagamma domain on Pg activator activity of SAK-Pm complex was reduced greatly (45%) in the presence of isolated kringles of Pg, whereas, kringles did not change cofactor activity of SAK fusion proteins (carrying beta or betagamma domains) significantly. When catalytic activity of SAK-microPm (catalytic domain of Pm lacking kringle domains) complex was examined in the presence of isolated beta and betagamma domains, no enhancement effect on Pg activation was observed, whereas, enzyme complex formed between microplasmin and SAK fusion proteins (SAKbeta and SAKbetagamma) displayed 50-70% reduction in their catalytic activity. The present study, thus, suggests that the exogenously present beta and betagamma interact with Pg/Pm via kringle domains and elevate catalytic activity of SAK-Pm activator complex resulting in enhanced substrate Pg activation. Fusion of beta or betagamma domains with SAK might alter these intermolecular interactions resulting in attenuated functional activity of SAK. 相似文献
19.
The specificity for 11-deoxycortisol (11-DOC) of a monoclonal antibody (mAb), designated SCET, was changed to specificity for cortisol (CS) by site-specific mutagenesis followed by random mutagenesis. The Fab form of SCET was expressed on the surface of a phage. During the first step, mutations were introduced at 14 amino acid positions in three complementarity-determining regions (CDRs) of the VH domain that seemed likely to form the steroid-binding pocket. A clone, DcC16, was isolated from the resultant library with multiple mutations and this clone was shown to have CS-binding activity but also to retain high 11-DOC-binding activity. During the second step, mutations were introduced randomly into the entire VH-coding region of the DcC16 clone by an error-prone polymerase chain reaction, and CS-specific mutant antibodies were selected in the presence of 11-DOC as a competitor. Three representative clones were analyzed with the BIAcore instrument, and each revealed a large increase in the binding constant for CS and a decrease in that for 11-DOC. Structural models, constructed by computer simulation, indicated the probable molecular basis for these changes in specificity. 相似文献
20.
Role of the histidine 176 residue in glyceraldehyde-3-phosphate dehydrogenase as probed by site-directed mutagenesis 总被引:4,自引:0,他引:4
The catalytically essential amino acid, histidine 176, in the active site of Escherichia coli glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been replaced with an asparagine residue by site-directed mutagenesis. The role of histidine 176 as a chemical activator, enhancing the reactivity of the thiol group of cysteine 149, has been demonstrated, with iodoacetamide as a probe. The esterolytic properties of GAPDH, illustrated by the hydrolysis of p-nitrophenyl acetate, have been also studied. The kinetic results favor a role for histidine 176 not only as a chemical activator of cysteine 149 but also as a hydrogen donor facilitating the formation of tetrahedral intermediates. These results support the hypothesis that histidine 176 plays a similar role during the oxidative phosphorylation of glyceraldehyde 3-phosphate. 相似文献