首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endothelial isoform of nitric-oxide synthase (eNOS) is regulated by a complex pattern of post-translational modifications. In these studies, we show that eNOS is dynamically regulated by S-nitrosylation, the covalent adduction of nitric oxide (NO)-derived nitrosyl groups to the cysteine thiols of proteins. We report that eNOS is tonically S-nitrosylated in resting bovine aortic endothelial cells and that the enzyme undergoes rapid transient denitrosylation after addition of the eNOS agonist, vascular endothelial growth factor. eNOS is thereafter progressively renitrosylated to basal levels. The receptor-mediated decrease in eNOS S-nitrosylation is inversely related to enzyme phosphorylation at Ser(1179), a site associated with eNOS activation. We also document that targeting of eNOS to the cell membrane is required for eNOS S-nitrosylation. Acylation-deficient mutant eNOS, which is targeted to the cytosol, does not undergo S-nitrosylation. Using purified eNOS, we show that eNOS S-nitrosylation by exogenous NO donors inhibits enzyme activity and that eNOS inhibition is reversed by denitrosylation. We determine that the cysteines of the zinc-tetrathiolate that comprise the eNOS dimer interface are the targets of S-nitrosylation. Mutation of the zinc-tetrathiolate cysteines eliminates eNOS S-nitrosylation but does not eliminate NO synthase activity, arguing strongly that disruption of the zinc-tetrathiolate does not necessarily lead to eNOS monomerization in vivo. Taken together, these studies suggest that eNOS S-nitrosylation may represent an important mechanism for regulation of NO signaling pathways in the vascular wall.  相似文献   

2.
The endothelial isoform of nitric-oxide synthase (eNOS) undergoes a complex pattern of covalent modifications, including acylation with the fatty acids myristate and palmitate as well as phosphorylation on multiple sites. eNOS acylation is a key determinant for the reversible subcellular targeting of the enzyme to plasmalemmal caveolae. We transfected a series of hemagglutinin epitope-tagged eNOS mutant cDNAs deficient in palmitoylation (palm(-)) and/or myristoylation (myr(-)) into bovine aortic endothelial cells; after treatment with the eNOS agonists sphingosine 1-phosphate or vascular endothelial growth factor, the recombinant eNOS was immunoprecipitated using an antibody directed against the epitope tag, and patterns of eNOS phosphorylation were analyzed in immunoblots probed with phosphorylation state-specific eNOS antibodies. The wild-type eNOS underwent agonist-induced phosphorylation at serine 1179 (a putative site for phosphorylation by kinase Akt), but phosphorylation of the myr(-) eNOS at this residue was nearly abrogated; the palm(-) eNOS exhibited an intermediate phenotype. The addition of the CD8 transmembrane domain to the amino terminus of eNOS acylation-deficient mutants rescued the wild-type phenotype of robust agonist-induced serine 1179 phosphorylation. Thus, membrane targeting, but not necessarily acylation, is the critical determinant for agonist-promoted eNOS phosphorylation at serine 1179. In striking contrast to serine 1179, phosphorylation of eNOS at serine 116 was enhanced in the myr(-) eNOS mutant and was markedly attenuated in the CD8-eNOS membrane-targeted fusion protein. We conclude that eNOS targeting differentially affects eNOS phosphorylation at distinct sites in the protein and suggest that the inter-relationships of eNOS acylation and phosphorylation may modulate eNOS localization and activity and thereby influence NO signaling pathways in the vessel wall.  相似文献   

3.

Background

Endothelial nitric oxide synthase (eNOS) is primarily localized on the Golgi apparatus and plasma membrane caveolae in endothelial cells. Previously, we demonstrated that protein S-nitrosylation occurs preferentially where eNOS is localized. Thus, in endothelial cells, Golgi proteins are likely to be targets for S-nitrosylation. The aim of this study was to identify S-nitrosylated Golgi proteins and attribute their S-nitrosylation to eNOS-derived nitric oxide in endothelial cells.

Methods

Golgi membranes were isolated from rat livers. S-nitrosylated Golgi proteins were determined by a modified biotin-switch assay coupled with mass spectrometry that allows the identification of the S-nitrosylated cysteine residue. The biotin switch assay followed by Western blot or immunoprecipitation using an S-nitrosocysteine antibody was also employed to validate S-nitrosylated proteins in endothelial cell lysates.

Results

Seventy-eight potential S-nitrosylated proteins and their target cysteine residues for S-nitrosylation were identified; 9 of them were Golgi-resident or Golgi/endoplasmic reticulum (ER)-associated proteins. Among these 9 proteins, S-nitrosylation of EMMPRIN and Golgi phosphoprotein 3 (GOLPH3) was verified in endothelial cells. Furthermore, S-nitrosylation of these proteins was found at the basal levels and increased in response to eNOS stimulation by the calcium ionophore A23187. Immunofluorescence microscopy and immunoprecipitation showed that EMMPRIN and GOLPH3 are co-localized with eNOS at the Golgi apparatus in endothelial cells. S-nitrosylation of EMMPRIN was notably increased in the aorta of cirrhotic rats.

Conclusion

Our data suggest that the selective S-nitrosylation of EMMPRIN and GOLPH3 at the Golgi apparatus in endothelial cells results from the physical proximity to eNOS-derived nitric oxide.  相似文献   

4.
5.
The endothelial nitric-oxide synthase (eNOS), a key signaling protein, undergoes a series of covalent modifications, including co-translational N-myristoylation at Gly(2), as well as post-translational thiopalmitoylation at Cys(15) and Cys(26). Myristoylation of eNOS is required for the subsequent palmitoylation of the enzyme, and both acylations are required for the efficient subcellular targeting of eNOS to plasmalemmal caveolae. We constructed chimeric cDNAs encoding proteins comprised of various acylation-deficient eNOS mutants fused at their N termini to the hydrophobic transmembrane domain of the glycoprotein CD8 and characterized these constructs in transient transfection experiments in COS-7 cells. One construct (termed CD8-myr(-)eNOS) encodes a fusion protein comprised of the eNOS myristoylation-deficient mutant coupled to the CD8 transmembrane domain. In biosynthetic labeling experiments using [(3)H]palmitic acid, we found that the CD8-myr(-)eNOS chimera undergoes palmitoylation. Subcellular fractionation showed that the CD8-myr(-)eNOS chimera is targeted to caveolae. We also constructed and characterized a cDNA encoding the CD8 transmembrane domain fused to the palmitoylation-deficient mutant eNOS (in which Cys(15) and Cys(26) are changed to serine). This chimera (termed CD8-myr(-).palm(-)eNOS) did not undergo palmitoylation, indicating that the palmitoylation seen with the CD8. myr(-)eNOS fusion protein occurs on the same residues as in the wild-type enzyme. Importantly, the CD8-myr(-).palm(-)eNOS fusion protein remained efficiently targeted to caveolae, in contrast to the palm(-)eNOS mutant lacking the CD8 transmembrane domain, which has nominal caveolar localization. A construct encoding the CD8 transmembrane domain alone was insufficient for selective targeting to caveolae. These results indicate that membrane targeting per se, but not necessarily myristoylation, is sufficient for eNOS palmitoylation and localization to plasmalemmal caveolae, and suggest further that sequences within eNOS itself, in addition to its palmitoylation sites, facilitate the selective localization of the enzyme within caveolae.  相似文献   

6.
Signal transduction through G protein-coupled receptors (GPCRs) is regulated by receptor desensitization and internalization that follow agonist stimulation. Nitric oxide (NO) can influence these processes, but the cellular source of NO bioactivity and the effects of NO on GPCR-mediated signal transduction are incompletely understood. Here, we show in cells and mice that beta-arrestin 2, a central element in GPCR trafficking, interacts with and is S-nitrosylated at a single cysteine by endothelial NO synthase (eNOS), and that S-nitrosylation of beta-arrestin 2 is promoted by endogenous S-nitrosogluthathione. S-nitrosylation after agonist stimulation of the beta-adrenergic receptor, a prototypical GPCR, dissociates eNOS from beta-arrestin 2 and promotes binding of beta-arrestin 2 to clathrin heavy chain/beta-adaptin, thereby accelerating receptor internalization. The agonist- and NO-dependent shift in the affiliations of beta-arrestin 2 is followed by denitrosylation. Thus, beta-arrestin subserves the functional coupling of eNOS and GPCRs, and dynamic S-nitrosylation/denitrosylation of beta-arrestin 2 regulates stimulus-induced GPCR trafficking.  相似文献   

7.
Endothelial NOS (eNOS)-derived NO is a key factor in regulating microvascular permeability. We demonstrated previously that eNOS translocation from the plasma membrane to the cytosol is required for hyperpermeability. Herein, we tested the hypothesis that eNOS activation in the cytosol is necessary for agonist-induced hyperpermeability. To study the fundamental properties of endothelial cell monolayer permeability, we generated ECV-304 cells that stably express cDNA constructs targeting eNOS to the cytosol or plasma membrane. eNOS-transfected ECV-304 cells recapitulate the eNOS translocation and permeability properties of postcapillary venular endothelial cells (Sánchez, F. A., Rana, R., Kim, D. D., Iwahashi, T., Zheng, R., Lal, B. K., Gordon, D. M., Meininger, C. J., and Durán, W. N. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 6849-6853). We used platelet-activating factor (PAF) as a proinflammatory agonist. PAF activated eNOS by increasing phosphorylation of Ser-1177 and inducing dephosphorylation of Thr-495, increasing NO production, and elevating permeability to FITC-dextran 70 in monolayers of cells expressing wild-type and cytosolic eNOS. PAF failed to increase permeability to FITC-dextran 70 in monolayers of cells transfected with eNOS targeted to the plasma membrane. Interestingly, this occurred despite eNOS Ser-1177 phosphorylation and production of comparable amounts of NO. Our results demonstrate that the presence of eNOS in the cytosol is necessary for PAF-induced hyperpermeability. Our data provide new insights into the dynamics of eNOS and eNOS-derived NO in the process of inflammation.  相似文献   

8.
S-nitrosylation, or the replacement of the hydrogen atom in the thiol group of cysteine residues by a -NO moiety, is a physiologically important posttranslational modification. In our previous work we have shown that S-nitrosylation is involved in the disruption of the endothelial nitric oxide synthase (eNOS) dimer and that this involves the disruption of the zinc (Zn) tetrathiolate cluster due to the S-nitrosylation of Cysteine 98. However, human eNOS contains 28 other cysteine residues whose potential to undergo S-nitrosylation has not been determined. Thus, the goal of this study was to identify the cysteine residues within eNOS that are susceptible to S-nitrosylation in vitro. To accomplish this, we utilized a modified biotin switch assay. Our modification included the tryptic digestion of the S-nitrosylated eNOS protein to allow the isolation of S-nitrosylated peptides for further identification by mass spectrometry. Our data indicate that multiple cysteine residues are capable of undergoing S-nitrosylation in the presence of an excess of a nitrosylating agent. All these cysteine residues identified were found to be located on the surface of the protein according to the available X-ray structure of the oxygenase domain of eNOS. Among those identified were Cys 93 and 98, the residues involved in the formation of the eNOS dimer through a Zn tetrathiolate cluster. In addition, cysteine residues within the reductase domain were identified as undergoing S-nitrosylation. We identified cysteines 660, 801, and 1113 as capable of undergoing S-nitrosylation. These cysteines are located within regions known to bind flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and nicotinamide adenine dinucleotide (NADPH) although from our studies their functional significance is unclear. Finally we identified cysteines 852, 975/990, and 1047/1049 as being susceptible to S-nitrosylation. These cysteines are located in regions of eNOS that have not been implicated in any known biochemical functions and the significance of their S-nitrosylation is not clear from this study. Thus, our data indicate that the eNOS protein can be S-nitrosylated at multiple sites other than within the Zn tetrathiolate cluster, suggesting that S-nitrosylation may regulate eNOS function in ways other than simply by inducing dimer collapse.  相似文献   

9.
Protein palmitoylation represents an important mechanism governing the dynamic subcellular localization of many signaling proteins. Palmitoylation of endothelial nitric-oxide synthase (eNOS) promotes its targeting to plasmalemmal caveolae; agonist-promoted depalmitoylation leads to eNOS translocation. Depalmitoylation and translocation of eNOS modulate the agonist response, but the pathways that regulate eNOS palmitoylation and depalmitoylation are poorly understood. We now show that the newly characterized acyl-protein thioesterase 1 (APT1) regulates eNOS depalmitoylation. Immunoblot analyses indicate that APT1 is expressed in bovine aortic endothelial cells, which express eNOS. APT1 overexpression appears to accelerate the depalmitoylation of eNOS in COS-7 cells cotransfected with eNOS and APT1 cDNAs. Additionally, purified recombinant APT1 depalmitoylates eNOS assayed in biological membranes isolated from endothelial cells biosynthetically labeled with [(3)H]palmitate or COS-7 cells transfected with eNOS cDNA. More important, the APT1-catalyzed depalmitoylation of palmitoyl-eNOS is potentiated by Ca(2+)-calmodulin (CaM), a key allosteric activator of eNOS. In contrast, APT1-catalyzed depalmitoylation of the G protein Galpha(s) is unaffected by Ca(2+)-CaM. Furthermore, caveolin, a palmitoylated membrane protein, does not appear to be a substrate for APT1. Taken together, these results support a role for APT1 in the regulation of eNOS depalmitoylation and suggest that Ca(2+)-CaM activation of eNOS renders the enzyme more susceptible to APT1-catalyzed depalmitoylation.  相似文献   

10.
The biological effects of nitric oxide (NO) are in significant part mediated through S-nitrosylation of cysteine thiol. Work on model thiol substrates has raised the idea that molecular oxygen (O(2)) is required for S-nitrosylation by NO; however, the relevance of this mechanism at the low physiological pO(2) of tissues is unclear. Here we have used a proteomic approach to study S-nitrosylation reactions in situ. We identify endogenously S-nitrosylated proteins in subcellular organelles, including dihydrolipoamide dehydrogenase and catalase, and show that these, as well as hydroxymethylglutaryl-CoA synthase and sarcosine dehydrogenase (SarDH), are S-nitrosylated by NO under strictly anaerobic conditions. S-Nitrosylation of SarDH by NO is best rationalized by a novel mechanism involving the covalently bound flavin of the enzyme. We also identify a set of mitochondrial proteins that can be S-nitrosylated through multiple reaction channels, including anaerobic/oxidative, NO/O(2), and GSNO-mediated transnitrosation. Finally, we demonstrate that steady state levels of S-nitrosylation are higher in mitochondrial extracts than the intact organelles, suggesting the importance of denitrosylation reactions. Collectively, our results provide new insight into the determinants of S-nitrosothiol levels in subcellular compartments.  相似文献   

11.
The formation of S-nitrosylated proteins is a nitric oxide-dependent post-translational modification important in signal transduction, yet the in situ detection of S-nitrosylated proteins remains problematic. In this study, we adapted a recently developed biotin derivatization approach to visualize S-nitrosylated proteins in intact cells. This strategy circumvents the use of antibodies directed against S-nitrosocysteine, which may have problematic specificity, due to epitope instability. Endogenous protein S-nitrosylation could be observed in intact cells and in mouse lung sections using fluorophore-conjugated streptavidin and confocal microscopy, and was enhanced by S-nitrosothiols and reduced following treatment with the nitric oxide synthase inhibitor, L-N-monomethyl arginine. Intriguingly, protein S-nitrosylation was detected mainly in the nuclear compartment of cells under baseline conditions and was enhanced when nuclear export was blocked with leptomycin B. We also determined that the small GTPase Ran, a key regulator of nucleocytoplasmic transport, is a target for S-nitrosylation. These findings demonstrate that biotin derivatization is a useful approach to detect S-nitrosylated proteins in situ in cellular compartments or tissues, and will be useful in the assessment of altered S-nitrosylation in pathological conditions.  相似文献   

12.
Thioredoxin 1 (Trx) is a known redox regulator that is implicated in the redox control of cell growth and apoptosis inhibition. Here we show that Trx is essential for maintaining the content of S-nitrosylated molecules in endothelial cells. Trx itself is S-nitrosylated at cysteine 69 under basal conditions, and this S-nitrosylation is required for scavenging reactive oxygen species and for preserving the redox regulatory activity of Trx. S-nitrosylation of Trx also contributes to the anti-apoptotic function of Trx. Thus, Trx can exert its complete redox regulatory and anti-apoptotic functions in endothelial cells only when cysteine 69 is S-nitrosylated.  相似文献   

13.
The neuronal and endothelial isoforms of nitric oxide (NO) synthase (nNOS and eNOS, respectively) both catalyze the production of NO but are regulated differently. Stably transfected HEK 293 cell lines containing nNOS, eNOS, and a soluble mutant of eNOS were therefore established to compare their activity in a common cellular environment. NOS activity was determined by measuring L-[3H]citrulline production in homogenates and intact cells, the conversion of oxyhemoglobin to methemoglobin, and the production of cGMP. The results indicate that nNOS is more active than eNOS, both in unstimulated as well as calcium-stimulated cells. Under basal conditions, the soluble mutant of eNOS appeared to be slightly more active than wild-type eNOS in terms of NO and cGMP formation, suggesting that membrane association may be crucial for inhibition of basal NO release but is not required for stimulation by Ca2+-mobilizing agents. The maximal activity of soluble guanylate cyclase was significantly reduced by transfection with wild-type eNOS due to downregulation of mRNA expression. These results demonstrate that nNOS and eNOS behave differently even in an identical cellular environment.  相似文献   

14.
Saito S  Ando Y  Nakamura M  Ueda M  Kim J  Ishima Y  Akaike T  Otagiri M 《Biochemistry》2005,44(33):11122-11129
Although oxidative stress is said to play an important role in the amyloid formation mechanism in several types of amyloidosis, few details about this role have been described. Amyloid is commonly deposited around the vessels that are the primary site of action of nitric oxide generated from endothelial cells and smooth muscle cells, so nitric oxide may be also implicated in amyloid formation. For this study, we examined the in vitro effect of S-nitrosylation on amyloid formation induced by wild-type transthyretin, a precursor protein of senile systemic amyloidosis, and amyloidogenic transthyretin V30M, a precursor protein of amyloid deposition in familial amyloidotic polyneuropathy. S-Nitrosylation of amyloidogenic transthyretin V30M via the cysteine at position 10 was 2 times more extensive than that of wild-type transthyretin in a nitric oxide-generating solution. Both wild-type transthyretin and amyloidogenic transthyretin V30M formed amyloid fibrils under acidic conditions, and S-nitrosylated transthyretins exhibited higher amyloidogenicity than did unmodified transthyretins. Moreover, S-nitrosylated amyloidogenic transthyretin V30M formed more fibrils than did S-nitrosylated wild-type transthyretin. Structural studies revealed that S-nitrosylation of amyloidogenic transthyretin V30M induced a change in its conformation, as well as instability of the tetramer conformation. These results suggest that the nitric oxide-mediated modification of transthyretin, especially variant transthyretin, may play an important role in amyloid formation in senile systemic amyloidosis and familial amyloidotic polyneuropathy.  相似文献   

15.
目的研究CD151及其突变体CD151-ARSA245-248对人脐静脉内皮细胞(HUVEC)增殖及eNOS表达的影响,探讨CD151促血管生成的机制。方法构建pAAV-CD151及其突变体CD151-ARSA245-248(囊泡运输缺陷突变体),并转染HU-VEC。CCK-8法测定HUVEC增殖的能力,Western Blot检测CD151及eNOS蛋白的表达。结果 pAAV-CD151组及pAAV-CD151-ARSA245-248组CD151蛋白表达均增加,显著高于正常对照组和pAAV-GFP组(P<0.05),但pAAV-CD151组及pAAV-CD151-ARSA245-248组之间CD151蛋白表达没有统计学意义(P>0.05)。CCK-8法测定HUVEC增殖能力亦无统计学意义(P>0.05)。正常对照组,pAAV-GFP组,pAAV-CD151组及pAAV-CD151-ARSA245-248突变体组的OD值分别为1.393?.685、1.498?.746、2.346?.52和1.71?.863,pAAV-CD151组较pAAV-GFP组和正常对照组细胞增殖能力明显增强(P<0.01),pAAV-CD151-ARSA245-248组较pAAV-CD151组细胞增殖能力减弱(P<0.05)。此外,pAAV-CD151组eNOS蛋白表达较pAAV-GFP组和正常对照组明显增加(P<0.01),pAAV-CD151-ARSA245-248组较pAAV-CD151组eNOS蛋白表达降低(P<0.05)。结论 CD151是促细胞增殖的重要蛋白质,CD151影响eNOS信号通路的激活。上述机制可能为CD151促血管生成的重要机制之一。  相似文献   

16.
S-Nitrosylation of mitochondrial caspases   总被引:9,自引:0,他引:9       下载免费PDF全文
Caspase-3 is a cysteine protease located in both the cytoplasm and mitochondrial intermembrane space that is a central effector of many apoptotic pathways. In resting cells, a subset of caspase-3 zymogens is S-nitrosylated at the active site cysteine, inhibiting enzyme activity. During Fas-induced apoptosis, caspases are denitrosylated, allowing the catalytic site to function. In the current studies, we sought to identify the subpopulation of caspases that is regulated by S-nitrosylation. We report that the majority of mitochondrial, but not cytoplasmic, caspase-3 zymogens contain this inhibitory modification. In addition, the majority of mitochondrial caspase-9 is S-nitrosylated. These studies suggest that S-nitrosylation plays an important role in regulating mitochondrial caspase function and that the S-nitrosylation state of a given protein depends on its subcellular localization.  相似文献   

17.
Plasmalemmal caveolae are membrane microdomains that are specifically enriched in sphingolipids and contain a wide array of signaling proteins, including the endothelial isoform of nitric-oxide synthase (eNOS). EDG-1 is a G protein-coupled receptor for sphingosine 1-phosphate (S1P) that is expressed in endothelial cells and has been implicated in diverse vascular signal transduction pathways. We analyzed the subcellular distribution of EDG-1 in COS-7 cells transiently transfected with cDNA constructs encoding epitope-tagged EDG-1. Subcellular fractionation of cell lysates resolved by ultracentrifugation in discontinuous sucrose gradients revealed that approximately 55% of the EDG-1 protein was recovered in fractions enriched in caveolin-1, a resident protein of caveolae. Co-immunoprecipitation experiments showed that EDG-1 could be specifically precipitated by antibodies directed against caveolin-1 and vice versa. The targeting of EDG-1 to caveolae-enriched fractions was markedly increased (from 51 +/- 11% to 93 +/- 14%) by treatment of transfected cells with S1P (5 microm, 60 min). In co-transfection experiments expressing EDG-1 and eNOS cDNAs in COS-7 cells, we found that S1P treatment significantly and specifically increased nitric-oxide synthase activity, with an EC(50) of 30 nm S1P. Overexpression of transfected caveolin-1 cDNA together with EDG-1 and eNOS markedly diminished S1P-mediated eNOS activation; caveolin overexpression also attenuated agonist-induced phosphorylation of EDG-1 receptor by >90%. These results suggest that the interaction of the EDG-1 receptor with caveolin may serve to inhibit signaling through the S1P pathway, even as the targeting of EDG-1 to caveolae facilitates the interactions of this receptor with ligands and effectors that are also targeted to caveolae. The agonist-modulated targeting of EDG-1 to caveolae and its dynamic inhibitory interactions with caveolin identify new points for regulation of sphingolipid-dependent signaling in the vascular wall.  相似文献   

18.
19.
Nitric oxide (NO) plays an important role in the regulation of the functional integrity of the endothelium. The intracellular reaction of NO with reactive cysteine groups leads to the formation of S-nitrosothiols. To investigate the regulation of S-nitrosothiols in endothelial cells, we first analyzed the composition of the S-nitrosylated molecules in endothelial cells. Gel filtration revealed that more than 95% of the detected S-nitrosothiols had a molecular mass of more than 5000 Da. Moreover, inhibition of de novo synthesis of glutathione using N-butyl-sulfoximine did not diminish the overall cellular S-NO content suggesting that S-nitrosylated glutathione quantitatively plays only a minor role in endothelial cells. Having demonstrated that most of the S-nitrosothiols are proteins, we determined the regulation of the S-nitrosylation by pro-inflammatory and pro-atherogenic factors, such as TNFalpha and mildly oxidized low density lipoprotein (oxLDL). TNFalpha and oxLDL induced denitrosylation of various proteins as assessed by Saville-Griess assay, by immunostaining with an anti-S-nitrosocysteine antibody, and by a Western blot approach. Furthermore, the caspase-3 p17 subunit, which has previously been shown to be S-nitrosylated and thereby inhibited, was denitrosylated by TNFalpha treatment suggesting that S-nitrosylation and denitrosylation are important regulatory mechanisms in endothelial cells contributing to the integrity of the endothelial cell monolayer.  相似文献   

20.
The subcellular localization of endothelial nitric-oxide synthase (eNOS) is critical for optimal coupling of extracellular stimulation to nitric oxide production. Because eNOS is activated by Akt-dependent phosphorylation to produce nitric oxide (NO), we determined the subcellular distribution of eNOS phosphorylated on serine 1179 using a variety of methodologies. Based on sucrose gradient fractionation, phosphorylated-eNOS (P-eNOS) was found in both caveolin-1-enriched membranes and intracellular domains. Co-transfection of eNOS with Akt and stimulation of endothelial cells with vascular endothelial growth factor (VEGF) increased the ratio of P-eNOS to total eNOS but did not change the relative intracellular distribution between these domains. The proper localization of eNOS to intracellular membranes was required for agonist-dependent phosphorylation on serine 1179, since VEGF did not increase eNOS phosphorylation in cells transfected with a non-acylated, mistargeted form of eNOS. Confocal imaging of P-eNOS and total eNOS pools demonstrated co-localization in the Golgi region and plasmalemma of transfected cells and native endothelial cells. Finally, VEGF stimulated a large increase in NO localized in both the perinuclear region and the plasma membrane of endothelial cells. Thus, activated, phosphorylated eNOS resides in two cellular compartments and both pools are VEGF-regulated to produce NO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号