首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The brain relies on the salvage of preformed purine and pyrimidine rings, mainly in the form of nucleosides, to maintain its nucleotide pool in the proper qualitative and quantitative balance. The transport of nucleosides from blood into neurons and glia is considered to be an essential prerequisite to enter their metabolic utilization in the brain. Recent lines of evidence have also suggested that local extracellular nucleoside triphosphate (NTP) degradation may contribute to brain nucleosides. Plasma membrane-located ectonucleotidases, with their active sites oriented toward the extracellular space, catalyze the successive hydrolysis of NTPs to their respective nucleosides. Apart from the well-established modulation of ATP, ADP, adenosine (the purinergic agonists), UTP, and UDP (the pyrimidinergic agonists) availability at their respective receptors, ectonucleotidases may also serve the local reutilization of nucleosides in the brain. After their production in the extracellular space by the ectonucleotidase system, nucleosides are transported into neurons and glia and converted back to NTPs via a set of purine and pyrimidine salvage enzymes. Finally, nucleotides are transported into brain cell vescicles or granules and released back into the extracellular space. The key teaching concepts to be included in a two-to three-lecture block on the molecular mechanisms of the local nucleoside recycling process, based on a cross talk between the brain extracellular space and cytosol, are discussed in this article.  相似文献   

2.
A sensitive and highly selective method for the simultaneous determination of purine bases and their nucleosides is proposed. An amperometric flow-injection system with the two immobilized enzyme reactors (guanase immobilized reactor and purine nucleoside phosphorylase/xanthine oxidase co-immobilized reactor) is used as the specific post-column detection system of HPLC, to convert compounds separated by a reversed-phase. HPLC column to electroactive species (hydrogen peroxide and uric acid) which can be detected at a flow-through platinum electrode. The proposed detection system is specific for a group of purine bases and purine nucleosides and does not respond for purine nucleotides and pyrimidine bases. The linear determination ranges are from 10 pmol to 5 nmol for four purine bases (hypoxanthine, xanthine, guanine, and adenine) and four purine nucleosides (inosine, xanthosine, guanosine, and adenosine). The detection limits are 1.2-5.5 pmol.  相似文献   

3.
Whole cells and isolated membranes of the marine bacterium MB22 converted nucleotides present in the external medium rapidly into nucleosides and then into bases. Nucleosides and purine bases formed were taken up by distinct transport systems. We found a high-affinity common transport system for adenine, guanine, and hypoxanthine, with a Km of 40 nM. This system was inhibited noncompetitively by purine nucleosides. In addition, two transport systems for nucleosides were present: one for guanosine with a Km of 0.8 microM and another one for inosine and adenosine with a Km of 1.4 microM. The nucleoside transport systems exhibited both mixed and noncompetitive inhibition by different nucleosides other than those translocated; purine and pyrimidine bases had no effect. The transport of nucleosides and purine bases was inhibited by dinitrophenol or azide, thus suggesting that transport is energy dependent. Inside the cell all of the substrates were converted mainly into guanosine, xanthine, and uric acid, but also anabolic products, such as nucleotides and nucleic acids, could be found.  相似文献   

4.
5.
Deficiency of the enzyme purine nucleoside phosphorylase is associated with a specific depletion of T cells which is presumably mediated by its substrate, 2'-deoxyguanosine. Inhibitors of this enzyme are therefore being developed as potential immunosuppressive agents. We have compared the effects of 8-aminoguanosine, a competitive inhibitor of purine nucleoside phosphorylase, on the metabolism of 2'-deoxyguanosine by human T lymphoblasts, B lymphoblasts, and mature T-cell lines. 8-Aminoguanosine markedly potentiates the accumulation of dGTP in T lymphoblasts, but results in increased GTP levels in B lymphoblasts and mature T cells. GTP accumulation is associated with ATP depletion of a magnitude similar to that seen with an inhibitor of de novo purine biosynthesis, but does not result in inhibition of either DNA or RNA synthesis. In contrast, direct inhibition of de novo purine biosynthesis sharply decreased the incorporation of [3H]uridine into both DNA and RNA. We conclude that the mechanism of cell damage resulting from prolonged accumulation of GTP appears to involve more than inhibition of de novo purine biosynthesis and consequent ATP depletion. Perturbations in guanine nucleotide pools resulting from partial inhibition of purine nucleoside phosphorylase activity in vivo could result in cellular toxicity not limited to the target T cell population.  相似文献   

6.
The aim of the present study was to test if the transport of all nucleosides in rat renal brush border membranes occurs via a common carrier or if specific carriers exist for various groups of nucleosides. We measured the inward transport of radiolabeled nucleosides into brush border vesicles. The effect of unlabeled nucleosides present inside of the vesicles (trans-stimulation) or outside of the vesicles (cis-inhibition) was studied. Uphill influx of a nucleoside into the vesicles could be driven by the efflux of another nucleoside (trans-stimulation) if they were both purines or both pyrimidines but not if one nucleoside was a purine and the other one a pyrimidine. Thus, there exist a carrier that transports various purine nucleosides, and a carrier that transports various pyrimidine nucleosides, but the tested purine nucleosides and the tested pyrimidine nucleosides do not appear to be transported by the same carrier. Uridine and thymidine were similarly potent for the inhibition of cytidine transport whereas uridine was much more potent than thymidine for the inhibition of adenosine transport. This suggests that cytidine and adenosine can use different carriers. Preincubation of the vesicles with N-ethylmaleimide resulted in a marked decrease of the rate of transport of purine nucleosides but it had little effect on the transport of pyrimidine nucleosides. These data are best explained by the presence in the renal brush border membrane of two carriers, one for purine nucleosides, the other one for pyrimidine nucleosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
1. Purine compounds were examined for pharmacological activity in the rectum and oesophagus of the garden snail Helix aspersa.2. In the rectum, adenosine, AMP, ADP and ATP (above 10μM) and acetylcholine (above 1 nM) consistently caused concentration-dependent contractions. The slope of the dose-response curve for ADP in the rectum was significantly steeper than for the other purine compounds. The contractile responses to the nucleotides and acetylcholine, but not adenosine, were selectively potentiated by physostigmine (1μM). Atropine (1 μM) and tubocurarine (30 μM) failed to block the responses to the purines or acetylcholine.3. In the oesophagus, adenosine, AMP, ADP and ATP (above 10 μM) and acetylcholine (above 1 nM) caused concentration-dependent contractions that were antagonised by atropine (l μM). Tubocurarine (30 μM) failed to block the responses to the purine compounds or acetylcholine. Physostigmine (1 μM) potentiated the responses to ADP and acetylcholine but not ATP, AMP or adenosine.4. In both the rectum and the oesophagus, the synthetic analogues of purine compounds inclucling 2-chloroadenosine, α, β -methylene ATP and 2-methylthio ATP were inactive up to a concentration of 100 μM.5. Electrical field stimulation of the rectum and oesophagus produced consistent contractions which were unaffected by atropine (1 μM), tubocurarine (30 μM) or physostigmine (1 μM). These responses were not modulated by any of the purine compounds or their stable analogues.6. The responses obtained appear novel even within known invertebrate purinergic systems, suggesting a differentiation of purinoceptor subtypes in this species. There is evidence in the rectum for AMP, ADP and ATP causing the release of acetylcholine; physostigmine potentiated responses to AMP, ADP and ATP, but not to adenosine. This indicates that activity may be mediated via different types of purinoceptors, perhaps equivalent to the P1- and P2-purinoceptors identified in vertebrates.  相似文献   

8.
Sh M Kocharian  Iu V Smirnov 《Genetika》1977,13(8):1425-1433
Strains of Escherichia coli K-12 defective in purine nucleoside phosphorylase (pup gene) formed on the medium with inosine as the source of carbon and energy phenotypical reversions for the ability of utilizing inosine as source of carbon or purines. The phenotypical suppression of the purine nucleoside phosphorylase deficiency is the result of the mutations (called pnd), which are mapped on the chromosome of E. coli beyond the region of the structural pup-gene location and have phenotypic manifestation distinct from that of pup+ allele: a) pnd mutants divide into some groups for the ability of utilizing several purine nucleosides, including xantosine that cannot be metabolized by pnd+ strains of E. coli; b) pnd mutations do not restore the ability of purine auxotrophs (pur) defective in purine nucleoside phosphorylase (pup) and adenine phosphoribosyltransferase (apt) to grow on the medium with adenine as the sole source of purines. Cell-free extracts of pnd mutants fail to degrade the guanine nucleosides in the absence of phosphate or arsenate ions. These data (and also the ability of pnd mutants to utilize both purine ribonucleosides and deoxyribonucleosides) seem to indicate that the activities induced by pnd mutations are phosphorylase activities.  相似文献   

9.
RNA binding properties of the coat protein from bacteriophage GA.   总被引:2,自引:0,他引:2       下载免费PDF全文
The coat protein of bacteriophage GA, a group II RNA phage, binds to a small RNA hairpin corresponding to its replicase operator. Binding is specific, with a Ka of 71 microM -1. This interaction differs kinetically from the analogous coat protein-RNA hairpin interactions of other RNA phage and also deviates somewhat in its pH and salt dependence. Despite 46 of 129 amino acid differences between the GA and group I phage R17 coat proteins, the binding sites are fairly similar. The essential features of the GA coat protein binding site are a based-paired stem with an unpaired purine and a four nucleotide loop having an A at position -4 and a purine at -7. Unlike the group I phage proteins, the GA coat protein does not distinguish between two alternate positions for the unpaired purine and does not show high specificity for a pyrimidine at position -5 of the loop.  相似文献   

10.
Synthetic oligoribonucleotides having single uracil residues replaced by dU, dT, 2'-O-methylU or 5-bromodU have been prepared and used in the study of the interaction of HIV-1 tat protein with an RNA stem-loop. The preparation of phosphoramidites of 5-bromouridine and purine riboside suitable for use in solid-phase oligoribonucleotide synthesis is also described. The effect of adenine replacement by purine in a hammerhead ribozyme has also been determined.  相似文献   

11.
12.
The diversity of p53 functions involves its interaction with sequence-specific, non-sequence-specific and various damaged sites in DNA. The preferential excision of misincorporated over correct nucleotides by the 3′→5′ exonuclease activity of p53 provides a molecular basis for p53 involvement in the correction of the DNA replication errors. However, p53 exhibits variations in its comparative efficiency to excise different 3'-terminal mismatched nucleotides. To determine the importance of the binding capacity of the protein to various 3'-terminal damaged sites, we have examined the interaction of p53 with linear dsDNAs containing various 3'-terminal mismatches, employing a gel retardation assay. The data demonstrate the intrinsic 3'-terminal mismatched DNA binding capacity of p53. Since p53 binds directly to various 3'-terminal purine:pyrimidine and purine:purine mispairs to an equal extent, p53 can be considered as a general 3'-mismatched DNA binding protein. Apparently, 3'-terminal mismatched bases are structural element to which p53 can bind, that extends the spectrum of damage sites to which p53 may respond. The formation of the p53-mismatched DNA complex is independent of the sequence context. Thus, the dissimilarities in mispair excision efficiency are probably due to an inherent property of the p53 in excision of 3'-mismatched nucleotides by a bound protein. The results establish a framework for understanding the mechanism of cooperative interaction between p53 and exonuclease-deficient DNA polymerase (e.g. HIV-1 RT). Within the context of error-correction events, p53 by recognition and excision of 3'-mismatched nucleotides from DNA, may be involved in DNA repair, thus increasing the accuracy of DNA synthesis by DNA polymerases.  相似文献   

13.
Steric-block ON analogues are efficient inhibitors of RNA-protein interaction and therefore have potential to probe RNA sequences for putative protein binding sites and to investigate mechanisms of protein binding. The packaging process of HIV-1 is highly specific involving an interaction between the Gag protein and a conserved sequence that is only present on genomic viral RNA. Using oligonucleotide probes we have confirmed that the terminal purine loop is the major Gag binding site on SL3 and that a secondary Gag binding site exists at an internal purine bulge. We also demonstrate direct binding of oligonucleotide to their binding sites and confirm this interaction does not alter global RNA conformation, making them highly specific, nondisruptive probes of RNA protein interactions.  相似文献   

14.
Steric-block ON analogues are efficient inhibitors of RNA-protein interaction and therefore have potential to probe RNA sequences for putative protein binding sites and to investigate mechanisms of protein binding. The packaging process of HIV-1 is highly specific involving an interaction between the Gag protein and a conserved sequence that is only present on genomic viral RNA. Using oligonucleotide probes we have confirmed that the terminal purine loop is the major Gag binding site on SL3 and that a secondary Gag binding site exists at an internal purine bulge. We also demonstrate direct binding of oligonucleotide to their binding sites and confirm this interaction does not alter global RNA conformation, making them highly specific, nondisruptive probes of RNA protein interactions.  相似文献   

15.
In this paper we show that phosphoribomutase is induced in Bacillus cereus by the same metabolizable purine and pyrimidine ribonucleosides previously shown to induce the purine nucleoside phosphorylase (Tozzi, M.G., Sgarrella, F. and Ipata, P.L. (1981) Biochim. Biophys. Acta 678, 460–466). The mutase allows ribose 1-phosphate formed from nucleosides to be utilized by the cell through the pentose cycle, upon transformation to ribose 5-phosphate. The equilibrium constant of the mutase reaction is towards ribose-5-phosphate formation. The coordinate induction of the two enzymes completes the picture of the molecular events leading to the utilization of the sugar moiety of purine nucleosides and nucleosides as an energy source (Mura, U., Sgarrella, F. and Ipata, P.L. (1978) J. Biol. Chem. 253, 7905–7909).  相似文献   

16.
A comparison was made of the uptake mechanisms of selected purine bases and nucleosides by axenically grown Entamoeba histolytica. Adenine, adenosine, and guanosine were taken up, in part, by a “carrier”-mediated system. Guanine, hypoxanthine, and inosine entered amoebas via diffusion. Inhibitor studies support the presence of individual transport sites for adenine-adenosine and adenosine-guanosine. Additional sites for transport of adenine, adenosine, and guanosine are implied by “non-productive binding” involving guanine, hypoxanthine, and inosine. Uptake of adenine, adenosine, and guanosine was reduced by iodoacetate and N-ethylmaleimide. Ribose failed to inhibit uptake of purine nucleosides.  相似文献   

17.
A study has been made of the growth responses to purine and pyrimidine metabolites shown by sixteen ultraviolet-induced adenine requiring mutants ofCandida albicans blocked at early stages in purine biosynthesis. The salient findings establish that, inC. albicans, (1) the pathway for the conversion of adenine to guanine is not reversible, (2) exogenous nucleotides are not utilized, and the purine and pyrimidine components of exogenous nucleosides must be converted to the free base form before utilization and (3) cytosine and guanine competitively inhibit different steps in the utilization of exogenous adenine.  相似文献   

18.
The brain depends on both glycolysis and mitochondrial oxidative phosphorylation for maintenance of ATP pools. Astrocytes play an integral role in brain functions providing trophic supports and energy substrates for neurons. In this paper, we report that human astrocytoma cells (ADF) undergoing ischemic conditions may use both purine and pyrimidine nucleosides as energy source to slow down cellular damage. The cells are subjected to metabolic stress conditions by exclusion of glucose and incubation with oligomycin (an inhibitor of oxidative phosphorylation). This treatment brings about a depletion of the ATP pool, with a concomitant increase in the AMP levels, which results in a significant decrease of the adenylate energy charge. The presence of purine nucleosides in the culture medium preserves the adenylate energy charge, and improves cell viability. Besides purine nucleosides, also pyrimidine nucleosides, such as uridine and, to a lesser extent, cytidine, are able to preserve the ATP pool. The determination of lactate in the incubation medium indicates that nucleosides can preserve the ATP pool through anaerobic glycolysis, thus pointing to a relevant role of the phosphorolytic cleavage of the N-glycosidic bond of nucleosides which generates, without energy expense, the phosphorylated pentose, which through the pentose phosphate pathway and glycolysis can be converted to energetic intermediates also in the absence of oxygen. In fact, ADF cells possess both purine nucleoside phosphorylase and uridine phosphorylase activities.  相似文献   

19.
We developed a stoichiometric model of Bacillus subtilis metabolism for quantitative analysis of theoretical growth and biochemicals production capacity. This work concentrated on biochemicals that are derived from the purine biosynthesis pathway; inosine, guanosine, riboflavin, and folic acid. These are examples of commercially relevant biochemicals for which Bacillus species are commonly used production hosts. Two previously unrecognized, but highly desirable properties of good producers of purine pathway-related biochemicals have been identified for optimally engineered product biosynthesis; high capacity for reoxidation of NADPH and high bioenergetic efficiency. Reoxidation of NADPH, through the transhydrogenase or otherwise, appears to be particularly important for growth on glucose, as deduced from the corresponding optimal carbon flux distribution. The importance of cellular energetics on optimal performance was quantitatively assessed by including a bioenergetic efficiency parameter as an unrestricted, ATP dissipating flux in the simulations. An estimate for the bioenergetic efficiency was generated by fitting the model to experimentally determined growth yields. The results show that the maximum theoretical yields of all products studied are limited by pathway stoichiometry at high bioenergetic efficiencies. Simulations with the estimated bioenergetic efficiency of B. subtilis, growing under glucose-limiting conditions, indicate that the yield of these biochemicals is primarily limited by energy and thus is very sensitive to the process conditions. The maximum yields that can reasonably be expected with B. subtilis on glucose were estimated to be 0.343, 0.160, and 0.161 (mol product/mol glucose) for purine nucleosides, riboflavin, and folic acid, respectively. Potential strategies for improving these maximum yields are discussed.  相似文献   

20.
Mammalian neurons require a constant supply of oxygen to maintain adequate cellular functions and survival. Following sustained hypoxia during ischemic events in brain, the energy status of neurons and glia is compromised, which may subsequently lead to cell death by apoptosis and necrosis. Concomitant with energy depletion is the formation of the purine nucleoside adenosine, a powerful endogenous neuroprotectant. In this paper the effect of chemical hypoxia on cell survival and neurite outgrowth of primary cerebellar granule cells was investigated. Rotenone, a mitochondrial complex I inhibitor, induced a 30.4 +/- 3.6% loss of viable cells and a 35.0 +/- 4.4% loss of neurite formation of cerebellar granule cells, which was partially restored by the addition of purine nucleosides adenosine, inosine and guanosine. Inosine had the most striking effect of 37.7 +/- 2.9% rescue of viability and 71.2 +/- 18.4% rescue of neurite outgrowth. Data confirm the suggested role of purine nucleosides for the neuronal regeneration of primary brain cells following hypoxic insult.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号