首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Onion thrips, Thrips tabaci Lindeman, are an economic pest of alliums worldwide. In Ontario onion-growing regions, seasonal abundance and population trends of onion thrips are not well known. The objectives of this research were to investigate onion thrips population dynamics by using both white sticky traps and plant counts, to gain insight into flight height, and to determine the genus and sex of thrips fauna present in monitored fields. Adult thrips were captured on white sticky traps placed in two commercial onion fields in the Thedford-Grand Bend Marsh region as early as mid-May in 2001, 2002, and 2003. Thrips were not recorded on onion plants in these fields until late June and early July. A comparison of sticky trap captures to plant counts revealed a strong, positive correlation, indicating that sticky traps, which consistently detected thrips earlier than plant counts, could be used instead of plant counts early in the season to monitor onion thrips populations. Pole traps placed in onion and an adjacent soybean, Glycine max (L.) Merr., field revealed that regardless of crop type, most thrips were captured 0.7-0.95 m above the soil surface. During this study, 70% of 137,000 thrips captured on sticky traps and 89% of 1,482 thrips captured in pan traps were female onion thrips. No male onion thrips were identified in this study: most of the remaining thrips were Frankliniella spp.  相似文献   

2.
Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.  相似文献   

3.
Stemphylium leaf blight caused by Stemphylium vesicarium and onion thrips (Thrips tabaci) are two common causes of leaf damage in onion production. Onion thrips is known to interact synergistically with pathogens to exacerbate plant disease. However, the potential relationship between onion thrips and Stemphylium leaf blight is unknown. In a series of controlled laboratory and field trials, the relationship between thrips feeding and movement on the development and severity of Stemphylium leaf blight were examined. In laboratory assays, onions (“Avalon” and “Ailsa Craig”) with varying levels of thrips feeding damage were inoculated with S. vesicarium. Pathogen colonisation and leaf dieback were measured after 2 weeks. In pathogen transfer assays, thrips were exposed to S. vesicarium conidia, transferred to onion and leaf disease development was monitored. In field trials, insecticide use was examined as a potential indirect means to reduce Stemphylium leaf blight disease and pathogen colonisation by reducing thrips damage. Results from laboratory trials revealed that a reduction in thrips feeding decreased S. vesicarium colonisation of onion leaves by 2.3–2.9 times, and decreased leaf dieback by 40–50%. Additionally, onion thrips were capable of transferring S. vesicarium conidia to onion plants (albeit at a low frequency of 2–14% of plants inoculated). In field trials, the symptoms and colonisation of Stemphylium leaf blight were reduced by 27 and 17%, respectively with the use of insecticide to control thrips. These results suggest that onion thrips may play a significant role in the development of Stemphylium leaf blight, and thrips control may reduce disease in commercial onion fields.  相似文献   

4.
Onion thrips, Thrips tabaci Lindeman, is the primary pest of onion, which is grown in either large-scale, monoculture systems surrounded by other onion fields, or in small-scale systems surrounded by multiple vegetable crops. In 2011 and 2012, populations of insect predators and their prey, T. tabaci, were assessed weekly in onion fields in both cropping systems. Insect predator taxa (eight species representing five families) were similar in onions grown in both systems and the most commonly occurring predators were from the family Aeolothripidae. Seasonal population dynamics of predators and T. tabaci followed similar trends within both cropping systems and tended to peak in late July and early August. Predator abundance was low in both systems, but predator abundance was nearly 2.5 to 13 times greater in onion fields in the small-scale system. T. tabaci abundance often positively predicted predator abundance in both cropping systems.  相似文献   

5.
In New York, onion [ Allium cepa L. (Alliaceae)] fields often border woods or other vegetable fields. Because onion maggot adults, Delia antiqua (Meigen) (Diptera: Anthomyiidae), spend a significant portion of their time outside of onion fields, surrounding habitat may affect patterns of fly activity and oviposition within onion fields. To better understand these patterns throughout the onion-growing season, first-, second-, and third-flights maggot adult (male and female) activity was monitored using yellow sticky cards. Half of the monitored fields bordered woods, whereas the other half bordered other onion or vegetable fields. Within all fields, yellow sticky cards were placed at five distances along a transect beginning at the onion field edge extending into the field center. First-flight male and female adult activity was greatest along onion field edges and was especially high along edges bordering woods. This pattern diminished during the second flight and was absent during the third. To determine if spatial patterns of onion maggot oviposition by first-flight onion maggots were similar to first-flight adult activity patterns, potted onion plants were placed in onion fields that bordered or did not border woods in late May and early June 2003. The number of eggs laid in the soil at the base of each plant was recorded. Unlike spatial patterns of first-flight adult activity, oviposition patterns were not affected by bordering habitat or distance from the field edge. Based on the activity of onion maggot adults in onion fields, future and existing control strategies should consider targeting first-flight adults along field edges rather than across entire fields, especially in fields that border woods. In contrast, based on spatial patterns of oviposition within onion fields, controls targeting onion maggot larvae should be applied on a fieldwide basis.  相似文献   

6.
Onion thrips, Thrips tabaci Lindeman, colonization of onion fields may be influenced by bordering crop and non‐crop habitats. Identifying habitats adjacent to onion fields associated with high T. tabaci infestations would be valuable for improving scouting efforts and management decisions. A 3‐year study examined adult T. tabaci colonization patterns within onion fields early (June through early July) and late in the season (August) in three muck regions in New York (USA). We hypothesized that early‐season adult densities would be greater in onion fields bordering other crops (e.g. carrot, corn and potato) and non‐crops (e.g. woods) than those bordering other onion fields and that more adults would occur along onion field edges than field centres. Results indicated similar adult densities in onion fields regardless of bordering crop and non‐crop habitats in seven of nine muck region × year data sets; exceptions were more adults in onion fields bordering potato (Elba region only) and corn (Potter region only) than those bordering other onion fields. Adult densities decreased as distance into onion fields increased in only four of nine muck region × year data sets; in these cases only 38% more adults were found along field edges than field centres. Later in the season, we hypothesized that adult densities would be greater in non‐mature onion fields bordering mature onion fields, and densities would be greater along field edges than field centres. Results indicated that adult densities in non‐mature onion fields bordering mature onion fields were 54 times greater than those bordering other non‐mature onion fields, and four times more adults occurred along field edges than field centres; adult densities were similar along field edges and centres in non‐mature onion fields bordering other non‐mature onion fields. Implications for T. tabaci management in onion based on these colonization patterns are discussed.  相似文献   

7.
Onion (Allium cepa) plants were grown in pots in two types of irradiated soil, mineral and organic. Onion development was observed under two or three levels of P fertilization, and three methods of arbuscular mycorrhizal fungus inoculation with two fungus species. In mineral soil, preinoculated onion plants had a higher biomass than non-inoculated control plants or plants inoculated with either colonized root segments or spores. Fungus species had no differential effect on dry biomass or final bulb diameter. Preinoculated onion plants reached marketable size (>25 mm bulb diameter) 2-3 weeks earlier than those inoculated by either of the other two methods. Non-inoculated onion plants remained stunted. Bulbs of onions inoculated with Glomus versiforme were firmer than those inoculated with G. intraradices. Increasing P fertilizer rates had a significant positive linear effect on the P tissue concentration of plants inoculated with G. intraradices or G. versiforme, but no effect on bulb firmness. The P tissue concentration of inoculated plants was significantly higher than that of non-inoculated controls, and in inoculated plants, it differed among inoculation methods. The P tissue concentration was higher in onion plants inoculated with G. versiforme than in those inoculated with G. intraradices. In organic soil, the dry biomass of preinoculated plants was higher than that of plants inoculated by root segments. The highest root colonization levels were obtained under a low soil P level with G. intraradices, and with the root segment method of inoculation with G. versiforme.  相似文献   

8.
Onion maggot, Delia antiqua (Meigen) (Diptera: Anthomyiidae), is an important pest of onion, Allium cepa L., in northern temperate areas, especially in the Great Lakes region of North America Management of D. antiqua relies on insecticide use at planting, but insecticide resistance can cause control failures that threaten the long-term viability of this strategy. Delaying the time onions are planted was investigated as an alternative management approach for D. antiqua and the ecological and behavioral mechanisms underlying host age and insect relationships were examined in laboratory and field experiments. Delaying onion planting by two to four weeks reduced damage to onions by 35 and 90%, respectively. Onions planted later emerged later and this reduced the period overwintered flies had to oviposit on the plants. Moreover, flies tended to lay few to no eggs on these young, late-planted onions. As anticipated, D. antiqua laid 4-8 times more eggs on older onions than on young onions, and older onions were more resilient to injury caused by D. antiqua neonates compared with younger onions. However, the resiliency to maggot attack lessened as the density of D. antiqua increased from 2 to 10 eggs per plant, which probably explains why greater levels of maggot damage are typically observed in early onion plantings compared with later plantings. Delaying onion planting until mid-May reduced D. antiqua damage without jeopardizing the period required to produce marketable yield, but this cultural tactic must be combined with other management strategies to prevent economic loss.  相似文献   

9.
Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is a worldwide pest of onion, Allium cepa L. In field studies on onion resistance conducted in 2007 and 2008 using 49 cultivars, 11 showed low leaf damage by T. tabaci. In laboratory studies, the 11 cultivars, along with two susceptible checks and four additional cultivars, were evaluated to characterize resistance to T. tabaci and to determine if color and/or light reflectance were associated with resistance to T tabaci. No-choice tests were performed with adults and the numbers of eggs and larvae were counted on each cultivar after three and 10 d, respectively. In choice tests in which all cultivars were planted together in a circle in a single pot, 100 adults were released and the number of adults on each plant was evaluated 24 h later. The behavioral response of walking T. tabaci adults to plant odors was studied in a glass Y-tube olfactometer. The reflectance spectrum of leaves was measured using a UV-VIS spectrophotometer. Results indicate that resistant cultivars showed an intermediate-high antibiotic effect to T. tabaci and all of them showed a very strong antixenotic effect. There were no significant preferences in the response of walking T. tabaci adults to plant odors. The two susceptible cultivars had the highest values of leaf reflectance for the first (275-375 nm) and second (310-410 nm) theoretical photopigment-system of T. tabaci, and these values were significantly different from most resistant cultivars. These results suggest a strong response of T. tabaci to onion cultivars with higher reflectance in the ultraviolet range (270-400 nm). Overall, these results appear promising in helping to identify categories of resistance to T. tabaci in onions that can be used in breeding programs.  相似文献   

10.
Populations of onion thrips, Thrips tabaci Lindeman, from commercial onion fields in New York were evaluated for their susceptibility to the commonly used pyrethroid, lambda-cyhalothrin (Warrior T), using a novel system called the Thrips Insecticide Bioassay System (TIBS). To use TIBS, thrips are collected directly from the plant into an insecticide-treated 0.5-ml microcentrifuge tube that has a flexible plastic cap with a small well into which 0.08 ml of a 10% sugar-water solution with food colorant is deposited. The solution is sealed into the well with a small piece of stretched parafilm through which the thrips can feed on the solution. Thrips mortality is assessed after 24 h with the help of a dissecting stereoscope. In 2001, onion thrips populations were collected from 16 different sites and resistance ratios were >1,000 in five populations. Percent mortality at 100 ppm, a recommended field rate, varied from 9 to 100%, indicating high levels of variation in susceptibility. Particular instances of resistance appeared to be the result of practices within an individual field rather than a regional phenomenon. In 2002, we also observed large differences in onion thrips susceptibility, not only between individual fields but also between thrips collected in a single field at mid season and late season, again suggesting that insecticide-use practices within an individual field caused differences in susceptibility. Additional tests indicated no differences in susceptibility between adult and larval onion thrips populations and only relatively minor differences between populations collected from different parts of the same field. Using TIBS, several populations of onion thrips with different susceptibilities to lambda-cyhalothrin were identified and then subjected to lambda-cyhalothrin-treated onion plants. There was a highly significant positive relationship between percent mortality of thrips from TIBS and percent mortality from the treated onion plants, indicating that results from TIBS could be used to predict spray performance. These data suggest that use of TIBS for evaluating susceptibility to particular insecticides could be instrumental for developing a resistance management strategy for onion thrips.  相似文献   

11.
Eggs and first-fifth instars of omnivorous leafroller, Platynota stultana Walshingham, had a mean percentage survival to the adult stage of 60.7-95.2% for nonexposed immatures and 14.5-54.3% for immatures exposed to 1 wk at 0-1 degree C. Exposures of 2-5 wk resulted in 0-6.7% survival, and a 6-wk exposure resulted in < 1% survival of all stages tested. A significant reduction in survival of all larval stages occurred between exposures of 0 and 1 wk and between 1 wk and 2-6 wk. Survival of eggs after exposures of 0 and 1 wk was significantly different than survival after exposures of 2-6 wk. The second instar was the stage least susceptible to low-temperature storage. Adults that were exposed to low temperature for 1 wk in the third through fifth instars laid a mean of 120-289 eggs per female, and the mean percentage viability of the eggs ranged from 56.2 to 71.4%. Mean percentage survival of adults and nymphs of onion thrips, Thrips tabaci Lindeman, was inversely related to the duration of exposure from 1 through 3-6 wk at 0-1 and 5 degrees C and was lower at 0-1 (0.2-52.5%) than at 5 degrees C (17.6-66.6%). Exposure to 0-1 degree C for 4 wk attained 91.2% control, which increased to 99.8% after 6 wk. Low-temperature storage has potential to control omnivorous leafroller in table grapes, Vitis vinifera L., and onion thrips in onions, Allium cepa L.  相似文献   

12.
Onion thrips (Thrips tabaci) is the major pest of onions in the Sudan. In the Gezira Scheme onions are normally transplanted between October and January when the thrips population is very low. Later, thrips commence to breed. Early transplanted onions were well established before infestations became severe and, without the need for insecticidal control, produced significantly higher yields. Onions transplanted later, when thrips began to multiply, produced lower yields. Depending on the duration and intensity of infestation three to five sprays applied at fortnightly intervals were required to control thrips on the late transplanted crop. The effect of spray frequency on the development and yield of onions was investigated and the response found to be solely due to the extent of thrips control achieved. The toxicant itself had no effect on growth. Although the leaves were unaffected by the various treatments, spraying when most thrips were present increased fresh and dry leaf weights, bulb weight and, in the Hudeiba cultivar, the proportion of flowering plants. With the late-transplanted crop, light infestations led to yield losses of at least 39% whilst severe thrips attacks reduced the crop by 57%.  相似文献   

13.
《Journal of Asia》2021,24(3):529-535
Onion thrips is a major threat to onion crop throughout the world. It is a potential vector of Iris yellow spot virus and causes significant economic damage to bulb production. Phenotypic and biochemical traits of onion cultivars were assessed against Thrips tabaci. Onion Gawran LR-241 (OG) cultivar was tolerant against the infestation of T. tabaci whereas Onion White (OW) was susceptible. Number and size of stomata, cuticle thickness, cell wall thickness and surface wax of onion leaves were studied with the help of scanning electron microscope and quantitative and qualitative analysis was carried out to estimate epicuticular wax and other bio-chemical components through GC/MS. Onion Gawran has thick cell wall, sharp and dense wax crystals, wider central angle and small sized stomata compared to other cultivars. Epicuticular wax components of OG cultivar were heptacosane (5.2%), octacosanol-1 (9.2%), 2-methyl octacosane (4.2%), heptadecanol-1 (5.2%), hexacosanol-1 (4.2%), azulene, 1,4-dimethyl-7-(1-methylethyl) (36.9%), hexadecanoic acid (1.95%), heptadecane (4.2%), triacontanol-1 (5.8%) and hentriacontanone-16 (23.40%). Azulene, 1, 4-dimethy-l-7-(1-methy-l-ethyl) was only found 36.9% in OG but absent in other three cultivars. 2-methyl octacosane was absent in Poona Red Desi and OW cultivars. Hentriacontanone-16, 2-methyl octacosane, fatty alcohols (Octacosanol-1 and Triacontanol-1) and azulene, 1, 4-dimethy-l-7-(1-methy-l-ethyl) were effective in the formation of epicuticular wax in onion cultivars. It implies that phenotypic and biochemical characteristics of OG cultivar proved as resisting features to T. tabaci.  相似文献   

14.
Abstract:  The species composition of thrips and abundance of three pestiferous thrips species, Frankliniella occidentalis (Pergande), Thrips tabaci Lindeman and Frankliniella intonsa (Trybom) (Thysan., Thripidae) on weed species during winter and spring time were studied in vegetable production and polycultured areas in the eastern Mediterranean region of Turkey in years 2002 and 2003. Of a total of 61 543 thrips extracted from 8933 samples collected, 77% were adults. F. occidentalis was collected from all of 49 weed species sampled and F. intonsa was detected on 18 plant species between May and June. T. tabaci was collected from 42 of a total of 49 weed species. Immature thrips were extracted from 42 of a total of 49 weed species. Four weed species of a total 35 weed species sampled between April and May in the sampling areas hosted 63% of larvae and approximately 50% of F. occidentalis collected. A total of 23 thrips species was recorded from weeds sampled in this study. F. occidentalis accounted for 83% of a total 47 640 adult thrips collected and followed by low rates of T. tabaci and F. intonsa (9 and 1%, respectively). Melanthrips spp. accounted for 3.54% of total numbers of adult thrips. Flower-inhabiting thrips species and T. tabaci were most abundant on weeds between April and May when the number of weed species in bloom was greatest, then decreased to low levels after May. Most pestiferous thrips on weeds species were collected from vegetable production areas. F. occidentalis was the predominant thrips comprising over 80% in most months in the vegetable grown area. In polycultured area, the composition of adult thrips shifted monthly. While Melanthrips was the more prevailing thrips by rates 53% in February and 81% in March, F. occidentalis was the predominant thrips with 60 to 62% in spring, respectively.  相似文献   

15.
To develop an insecticide resistance management program for onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), on onions (Allium spp.), we surveyed populations in commercial onion fields in New York and evaluated their susceptibility to the two most widely used classes of insecticides plus two new insecticides during 2003-2005. All insecticide evaluations were conducted using the Thrips Insecticide Bioassay System (TIBS). As in our surveys conducted during 2002-2003, there were large temporal and spatial variations in susceptibility to the pyrethroid lambda-cyhalothrin (Warrior) across onion-growing regions in 2003. New data indicate that the field rate of methomyl (Lannate LV) still provides control but that the genes for resistance to methomyl are present in some populations. Tests with the two new insecticides, acetamiprid (Assail 70 WP) and spinosad (SpinTor 2CS), indicated they provided > 85% mortality at the field rate. To determine the spatial variation in insecticide susceptibility within a region, a series of systematic assays were conducted with lambda-cyhalothrin and methomyl. In 2004 and 2005, our data indicated that the within-region spatial variation in susceptibility to lambda-cyhalothrin was not large at the field rate or for the 100 ppm rate of methomyl. In 2005, a year in which T. tabaci densities in most fields were much higher than in 2004, growers were unable to control T. tabaci in particular fields and attributed this lack of control to resistance. Yet, we found similar levels of high susceptibility in all fields when using TIBS. This finding suggests that resistance had not developed and that variation in control may have been due to other factors, such as localized higher populations, poor spray coverage, too much time between spray applications, or different onion varieties.  相似文献   

16.
Cyromazine seed treatments were evaluated for onion maggot control in green onion crops. The more tolerant to organophosphates of two populations of onion maggots was chosen for further research, based on the results of adult assays in a Potter spray tower. In the laboratory, first-instar mortality was compared between film-coated seed treatment and soil drench treatment. The LC50 for the film-coated seed treatment was approximately one fourth that of the soil drench treatment. In choice assays, no significant difference was observed between the number of eggs deposited on seedlings grown from film-coated seeds with cyromazine and film-coated seeds without cyromazine. Field studies demonstrated that all rates of cyromazine seed treatment resulted in protection of onion plants from onion maggot damage. Green onions may not require as high a rate of cyromazine for control of onion maggots as the rate established for use in dry onions for two reasons: the seeding rate is much higher for green onions resulting in more AI/ha for a given amount of AI/kg of seed, and a given percentage of stand loss is more difficult to detect in green onions than in dry onions.  相似文献   

17.
Endophytic fungi, which live within host plant tissues without causing any visible symptom of infection, are important mutualists that mediate plant–herbivore interactions. Thrips tabaci (Lindeman) is one of the key pests of onion, Allium cepa L., an economically important agricultural crop cultivated worldwide. However, information on endophyte colonization of onions, and their impacts on the biology of thrips feeding on them, is lacking. We tested the colonization of onion plants by selected fungal endophyte isolates using two inoculation methods. The effects of inoculated endophytes on T. tabaci infesting onion were also examined. Seven fungal endophytes used in our study were able to colonize onion plants either by the seed or seedling inoculation methods. Seed inoculation resulted in 1.47 times higher mean percentage post-inoculation recovery of all the endophytes tested as compared to seedling inoculation. Fewer thrips were observed on plants inoculated with Clonostachys rosea ICIPE 707, Trichoderma asperellum M2RT4, Trichoderma atroviride ICIPE 710, Trichoderma harzianum 709, Hypocrea lixii F3ST1 and Fusarium sp. ICIPE 712 isolates as compared to those inoculated with Fusarium sp. ICIPE 717 and the control treatments. Onion plants colonized by C. rosea ICIPE 707, T. asperellum M2RT4, T. atroviride ICIPE 710 and H. lixii F3ST1 had significantly lower feeding punctures as compared to the other treatments. Among the isolates tested, the lowest numbers of eggs were laid by T. tabaci on H. lixii F3ST1 and C. rosea ICIPE 707 inoculated plants. These results extend the knowledge on colonization of onions by fungal endophytes and their effects on Thrips tabaci.  相似文献   

18.
The agro-ecology of onion couch (Arrhenatherum elatius var. bulbosum), a well known weed of arable land is studied. Contribution of seeds from onion couch and a more widespread variety of Arrhenatherum elatius: tall oat-grass, towards future ingress of onion couch in arable fields has indicated that the tall oat-grass variety is not a potential weed of arable land. It appears that vegetative propagules rather than the seeds are the effective means of propagation of the onion couch variety in arable fields. An experiment performed to test any modifying effect of the soil texture indicated that onion couch is restricted to loamy soils and there is a complete absence from heavy clays and sandy soils. This could be due to the moist and protective micro-environment provided by the texture of the soils to partially buried vegetative propagules of onion couch, which are susceptible to drought.  相似文献   

19.
In experiments over 3 years, separate field plots were cultivated once only at 2-wk intervals. Cultivation resulted in a flush of weed seedlings, representing usually less than 6% of the apparently viable seeds in the top 10 cm of soil and with a species composition which varied with the time of year. Subsequent flushes coincided in timing and extent with those on soil which had been undisturbed and were related to significant rainfall events. In each year there were periods when lack of soil moisture restricted emergence. At these times, seeds were released from dormancy by cultivation but germination of some or all of them was delayed. There was a general correspondence in the emergence patterns of weeds and of carrot and onion sown after each cultivation. On occasions when the seedbed was drying out, establishment of the comparatively rapidly-germinating radish and cabbage was greater than that of carrot, onion or weeds. Effective initiation of germination of both crops and weeds was traceable to rainfall events. Emergence was reduced or delayed on more than half of the 45 cultivation occasions during the three growing seasons, and the results emphasise the importance of soil moisture in determining the extent and timing of seedling emergence.  相似文献   

20.
Two aspects of the within-plant distribution of Thrips tabaci Lindeman (Thysanoptera: Thripidae) on onion, Allium cepa L., plants were investigated: 1) diurnal variations in the distribution of adults and larvae between basal and upper sections of onion leaves, and 2) between-leaf and within-leaf distribution of the eggs. The diurnal investigations showed that higher proportions of larvae than of adults congregated at the basal sections of plants, particularly when plants were young and thrips density was low. As plants matured and thrips density increased, the larvae became more dispersed. Regardless of plant size, there were always more adults in the upper than basal plant sections. There were no clear time-windows during the 24-h diurnal cycle when more thrips were in the upper plant parts. T. tabaci eggs were laid everywhere in the plant. Leaves of intermediate ages had more eggs than older or younger leaves. Within leaves, the white leaf sheath received the least eggs and leaf tips received slightly more eggs than leaf sheaths. The highest egg density was found between the green leaf base and the leaf tips. Regardless of plant size, more than half of all eggs were laid above the basal sections. The percentage increased to >95% in mature plants. Except when plants were small the outer leaves were preferred over inner leaves and upper leaf sections preferred over lower leaf sections as egg-laying sites by adults. Implications of the results in the management of T. tabaci are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号