首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Kessler S  Townsley B  Sinha N 《Plant physiology》2006,141(4):1349-1362
Plant development requires regulation of both cell division and differentiation. The class 1 KNOTTED1-like homeobox (KNOX) genes such as knotted1 (kn1) in maize (Zea mays) and SHOOTMERISTEMLESS in Arabidopsis (Arabidopsis thaliana) play a role in maintaining shoot apical meristem indeterminacy, and their misexpression is sufficient to induce cell division and meristem formation. KNOX overexpression experiments have shown that these genes interact with the cytokinin, auxin, and gibberellin pathways. The L1 layer has been shown to be necessary for the maintenance of indeterminacy in the underlying meristem layers. This work explores the possibility that the L1 affects meristem function by disrupting hormone transport pathways. The semidominant Extra cell layers1 (Xcl1) mutation in maize leads to the production of multiple epidermal layers by overproduction of a normal gene product. Meristem size is reduced in mutant plants and more cells are incorporated into the incipient leaf primordium. Thus, Xcl1 may provide a link between L1 division patterns, hormonal pathways, and meristem maintenance. We used double mutants between Xcl1 and dominant KNOX mutants and showed that Xcl1 suppresses the Kn1 phenotype but has a synergistic interaction with gnarley1 and rough sheath1, possibly correlated with changes in gibberellin and auxin signaling. In addition, double mutants between Xcl1 and crinkly4 had defects in shoot meristem maintenance. Thus, proper L1 development is essential for meristem function, and XCL1 may act to coordinate hormonal effects with KNOX gene function at the shoot apex.  相似文献   

2.
The above ground organs of plants are generated by the shoot apical meristem. Cellular characteristics and molecular markers indicate that the shoot meristem is patterned into domains with different functions, with stem cells residing in the outer three cell layers of the central zone of the meristem. The boundaries of the domains are determined by positional signals. Here we will discuss our current understanding of the signaling network involved in determining stem cell fate and in setting the boundaries of the stem cell niche at the plant shoot apex.  相似文献   

3.
The shoot apical meristem is a group of rapidly dividing cells that generate all aerial parts of the plant. It is a highly organised structure, which can be divided into functionally distinct domains, characterised by specific proliferation rates of the individual cells. Genetic studies have enabled the identification of regulators of meristem function. These factors are involved in the formation and maintenance of the meristem, as well as in the formation of the primordia. Somehow, they must also govern cell proliferation rates within the shoot apex. Possible links between meristem regulators and the cell cycle machinery will be discussed. In order to analyse the role of cell proliferation in development, cell cycle gene expression has been perturbed using transgenic approaches and mutation. The effect of these alterations on growth and development at the shoot apex will be presented. Together, these studies give a first insight into the regulatory networks controlling the cell cycle and into the significance of cell proliferation in plant development.  相似文献   

4.
5.
As the shoot apex produces most of the cells that comprise the aerial part of the plant, perfect orchestration between cell division rates and fate specification is essential for normal organ formation and plant development. However, the inter‐dependence of cell‐cycle machinery and meristem‐organizing genes is still poorly understood. To investigate this mechanism, we specifically inhibited the cell‐cycle machinery in the shoot apex by expression of a dominant negative allele of the A‐type cyclin‐dependent kinase (CDK) CDKA;1 in meristematic cells. A decrease in the cell division rate within the SHOOT MERISTEMLESS domain of the shoot apex dramatically affected plant growth and development. Within the meristem, a subset of cells was driven into the differentiation pathway, as indicated by premature cell expansion and onset of endo‐reduplication. Although the meristem structure and expression patterns of the meristem identity genes were maintained in most plants, the reduced CDK activity caused splitting of the meristem in some plants. This phenotype correlated with the level of expression of the dominant negative CDKA;1 allele. Therefore, we propose a threshold model in which the effect of the cell‐cycle machinery on meristem organization is determined by the level of CDK activity.  相似文献   

6.
7.
In Arabidopsis thaliana, the stem cell population of the shoot system is controlled by regulatory circuitry involving the WUSCHEL (WUS) and CLAVATA (CLV1-3) genes. WUS signals from the organizing center (OC) to promote stem cell fate at the meristem apex. Stem cells express the secreted peptide CLV3 that activates a signal transduction cascade to restrict WUS expression, thus providing a feedback mechanism. Stem cell homeostasis is proposed to be achieved by balancing these signals. We tested the dynamics of CLV3 signaling using an inducible gene expression system. We show here that increasing the CLV3 signal can very rapidly repress WUS expression during development, which in turn causes a fast reduction of CLV3 expression. We demonstrate that increased CLV3 signaling restricts meristem growth and promotes allocation of peripheral meristem cells into organ primordia. In addition, we extend the current model for stem cell control by showing that meristem homeostasis tolerates variation in CLV3 levels over a 10-fold range and that high-level CLV3 signaling can be partially compensated with time, indicating that the level of CLV3 expression communicates only limited information on stem cell number to the underlying OC cells.  相似文献   

8.
Early events of multiple bud formation and shoot development in germinating soybean embryonic axes treated for 24 hr with the cytokinin, 6-benzylaminopurine (BAP), were compared to the development of untreated control axes using four different techniques: photomicrography, scanning electron microscopy, histology, and autoradiography. Shoot apex development in BAP-treated embryonic axes was delayed by about 9 to 15 hr. A transient inhibition of DNA synthesis in the primary apical meristem and axillary buds was observed with subsequent changes in the timing of cell division patterns in these regions. Meristematic regions (supernumerary vegetative buds) were observed in BAP-treated axes around the perimeter of the apical dome at and above the level of the axillary buds. Cells elongated from some of the BAP-induced meristematic regions to form four to six shoots. In the absence of BAP, excision of the primary apical meristem and/or axillary buds did not result in multiple bud formation. These results suggest that transient exposure to BAP interrupted chromosomal DNA replication and reprogrammed the developmental fate of a large number of cells in the shoot apex. We postulate that interruption of DNA synthesis, either directly, by interfering with DNA replication, or indirectly, by preventing entry into S-phase, effected redetermination of the shoot apex cells.  相似文献   

9.
The ability of meristems to continuously produce new organs depends on the activity of their stem cell populations, which are located at the meristem tip. In Arabidopsis, the size of the stem cell domain is regulated by two antagonistic activities. The WUS (WUSCHEL) gene, encoding a homeodomain protein, promotes the formation and maintenance of stem cells. These stem cells express CLV3 (CLAVATA3), and signaling of CLV3 through the CLV1/CLV2 receptor complex restricts WUS activity. Homeostasis of the stem cell population may be achieved through feedback regulation, whereby changes in stem cell number result in corresponding changes in CLV3 expression levels, and adjustment of WUS expression via the CLV signal transduction pathway. We have analyzed whether expression of CLV3 is controlled by the activity of WUS or another homeobox gene, STM (SHOOT MERISTEMLESS), which is required for stem cell maintenance. We found that expression of CLV3 depends on WUS function only in the embryonic shoot meristem. At later developmental stages, WUS promotes the level of CLV3 expression, together with STM. Within a meristem, competence to respond to WUS activity by expressing CLV3 is restricted to the meristem apex.  相似文献   

10.
Postembryonic development in higher plants is marked by repetitive organ formation via a self-perpetuating stem cell system, the shoot meristem. Organs are initiated at the shoot meristem periphery, while a central zone harbors the stem cells. Here we show by genetic and molecular analyses that the ZWILLE (ZLL) gene is specifically required to establish the central-peripheral organization of the embryo apex and that this step is critical for shoot meristem self-perpetuation. zll mutants correctly initiate expression of the shoot meristem-specific gene SHOOT MERISTEMLESS in early embryos, but fail to regulate its spatial expression pattern at later embryo stages and initiate differentiated structures in place of stem cells. We isolated the ZLL gene by map-based cloning. It encodes a novel protein, and related sequences are highly conserved in multicellular plants and animals but are absent from bacteria and yeast. We propose that ZLL relays positional information required to maintain stem cells of the developing shoot meristem in an undifferentiated state during the transition from embryonic development to repetitive postembryonic organ formation.  相似文献   

11.
The shoot apical meristem (SAM) produces stem and initiates leaves. Its structure is maintained despite a continuous flow of cells basipetally from the distal portion of the meristem. The apoplasm and symplasm are the obvious means of cell integration, and their role in chemical cell-to-cell signaling is known. However, the cell wall apoplasm is most likely also involved in a mechanical integration mode, in which mechanical stress and strains (elastic and plastic strain, i.e., growth) are putative signaling factors. Shoot apex cells grow symplastically and their growth is in general anisotropic. Therefore tensor of growth rates that depends on the displacements caused by growth is the most suitable physical entity to describe growth. The tensor approach introduces the concept of principal directions of growth, i.e., the directions in which growth rates attain extremal values. Because of the symplastic mode of growth, the cell wall pattern within the shoot apical meristem informs us about the sequence and planes of cell divisions and about the deformation of existing walls. In consequence, within the meristem, periclines and anticlines can be recognized, both representing the principal directions of growth.  相似文献   

12.
Plants maintain pools of totipotent stem cells throughout their entire life. These stem cells are embedded within specialized tissues called meristems, which form the growing points of the organism. The shoot apical meristem of the reference plant Arabidopsis thaliana is subdivided into several distinct domains, which execute diverse biological functions, such as tissue organization, cell-proliferation and differentiation. The number of cells required for growth and organ formation changes over the course of a plants life, while the structure of the meristem remains remarkably constant. Thus, regulatory systems must be in place, which allow for an adaptation of cell proliferation within the shoot apical meristem, while maintaining the organization at the tissue level. To advance our understanding of this dynamic tissue behavior, we measured domain sizes as well as cell division rates of the shoot apical meristem under various environmental conditions, which cause adaptations in meristem size. Based on our results we developed a mathematical model to explain the observed changes by a cell pool size dependent regulation of cell proliferation and differentiation, which is able to correctly predict CLV3 and WUS over-expression phenotypes. While the model shows stem cell homeostasis under constant growth conditions, it predicts a variation in stem cell number under changing conditions. Consistent with our experimental data this behavior is correlated with variations in cell proliferation. Therefore, we investigate different signaling mechanisms, which could stabilize stem cell number despite variations in cell proliferation. Our results shed light onto the dynamic constraints of stem cell pool maintenance in the shoot apical meristem of Arabidopsis in different environmental conditions and developmental states.  相似文献   

13.
14.
Vegetative development in the Arabidopsis shoot apex follows both sequential and repetitive steps. Early in development, the young vegetative meristem is flat and has a rectangular shape with bilateral symmetry. The first pair of leaf primordia is radially symmetrical and is initiated on opposite sides of the meristem. As development proceeds, the meristem changes first to a bilaterally symmetrical trapezoid and then to a radially symmetrical dome. Vegetative development from the domed meristem continues as leaves are initiated in a repetitive manner. Abnormal development of the vegetative shoot apex is described for a number of mutants. The mutants we describe fall into at least three classes: (1) lesions in the shoot apex that do not show an apparent alteration in the shoot apical meristem, (2) lesions in the apical meristem that also (directly or indirectly) alter leaf primordia, and (3) lesions in the apical meristem that alter meristem size and leaf number but not leaf morphology. These mutations provide tools both to genetically analyze vegetative development of the shoot apex and to learn how vegetative development influences floral development.  相似文献   

15.
The indeterminate growth pattern displayed by shoots is mediated by the proper maintenance of the shoot meristem.Meristem maintenance is dependent upon the balance of stem cell perpetuation in the cent...  相似文献   

16.
The duration of mitosis and the cell cycle were determined for defined cell populations of the shoot apical meristem of Ceratopteris thalictroides Brong. by using the colchicine-induced metaphase accumulation technique. The results indicate that the apical cell is mitotically active and cycles at an apparently greater frequency than the cells of subjacent populations. Duration of mitosis was similar for all cells of the meristem. These results are correlated with mitotic indices of control apices, the geometry of the apex, and the mean number of cells in the meristem. Shoot apices from adult plants were examined to determine mitotic indices within the meristem; mitotic activity was again noted for the apical cell. These results contradict recent proposals that the pteridophyte apical cell serves as a unicellular quiescent center which lacks histogenic potential and offer experimental support for the classical concept of apical cell function in those fern shoot meristems which terminate in a single apical cell.  相似文献   

17.
An investigation was made of the anatomical structure of the shoot apex ofSenecio vulgaris L. a photoperiodically neutral plant, and compared with the formation of successive leaf primordia along the axis up to the initiation of the terminal inflorescence. In the shoot apex of a germinating plant a central zone can first be distinguished from the peripheral zone which is composed of small and intensely stained cells. Later, a rib meristem appears. At the time of the initiation of the middle (the largest) leaves, the shoot apex has a distinct small central zone and a well developed peripheral zone and rib meristem. Between these zones there is a group of cells dividing in all directions, the subcentral zone. At the time of initiation of the last leaves, the central zone extends to the flanks and gradually ceases to be distinguishable. At the same time, the subcentral zone increases in size. This is caused first by cell division and later, with the initiation of the last, most reduced leaves, by enlargement of the cells. Vacuolization in the inner part of the apex and the arrangement of the superficial cells in rows parallel to the surface of the apex, is a preparatory step to the initiation of the inflorescence.  相似文献   

18.
19.
Postembryonic organ formation in higher plants relies on the activity of stem cell niches in shoot and root meristems where differentiation of the resident cells is repressed by signals from surrounding cells. We searched for mutations affecting stem cell maintenance and isolated the semidominant l28 mutant, which displays premature termination of the shoot meristem and differentiation of the stem cells. Allele competition experiments suggest that l28 is a dominant-negative allele of the APETALA2 (AP2) gene, which previously has been implicated in floral patterning and seed development. Expression of both WUSCHEL (WUS) and CLAVATA3 (CLV3) genes, which regulate stem cell maintenance in the wild type, were disrupted in l28 shoot apices from early stages on. Unlike in floral patterning, AP2 mRNA is active in the center of the shoot meristem and acts via a mechanism independent of AGAMOUS, which is a repressor of WUS and stem cell maintenance in the floral meristem. Genetic analysis shows that termination of the primary shoot meristem in l28 mutants requires an active CLV signaling pathway, indicating that AP2 functions in stem cell maintenance by modifying the WUS-CLV3 feedback loop.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号