首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
H. H. Paradies  L. Göke  G. Werz 《Protoplasma》1977,93(2-3):249-265
Summary The structure of a purified protein associated with the cell wall polysaccharides of the marine green algaeAcetabularia (Polyphysa) cliftonii has been studied by means of X-ray diffraction, infrared spectroscopy and circular dichroism. The homogeneous preparation of the cell wall protein has a molecular weight of 14,000, as determined by sodium-dodecylsulfate electrophoresis. Regular layer line reflections on the X-ray diffraction photographs suggest that a distinct order exists in the arrangement of the protein fibrils. Through infrared spectroscopy of thin aqueous films of the protein, as well as of the fibers, it was established that the -helical structure is predominant in the cell wall protein. The fibers crystallize in a hexagonal unit cell witha=14.5 Å and c=27.0 Å, at a water content of two molecules per residue. Increase in water content causes an increase in thea-axis, but without change in thec-direction, thus keeping the -helical conformation. Moreover the spectral data in the amide A, I, II, III, and IV-regions show that the cell wall protein has an ordered -helical conformation.  相似文献   

8.
9.
10.
11.
Electron microscopy and computer image analysis have been used to determine the three-dimensional structure of the crystalline glycoprotein cell wall layer of the alga Lobomonas piriformis. Images of negatively stained specimens, tilted through a range of angles up to 70 °, were combined to give a map of the molecular envelope to a resolution of 2.0 nm. The cell wall layer consists of crystalline plates the centres and edges of which display distinctly different but isomorphous structures. A comparison of three-dimensional reconstructions of the two areas shows the difference probably to be due to a conformational change of one of the glycoprotein subunits. The structure consists of two sets of dimers composed of rod-shaped subunits which lie with their long axes approximately in the plane of the crystal. The centre-edge transition may have significance in the pathway of accretion of new subunits during cell wall growth.  相似文献   

12.
13.
Plant cell wall is an example of a widespread natural supramolecular structure: its components are considered to be the most abundant organic compounds renewable by living organisms. Plant cell wall includes numerous components, mainly polysaccharidic; its formation is largely based on carbohydrate-carbohydrate interactions. In contrast to the extracellular matrix of most other organisms, the plant cell compartment located outside the plasma membrane is so structured that has been named “wall”. The present review summarizes data on the mechanisms of formation of this supramolecular structure and considers major difficulties and results of research. Existing approaches to the study of interactions between polysaccharides during plant cell wall formation have been analyzed, including: (i) characterization of the structure of natural polysaccharide complexes obtained during cell wall fractionation; (ii) analysis of the interactions between polysaccharides “at mixing in a tube”; (iii) study of the interactions between isolated individual plant cell wall matrix polysaccharides and microfibrils formed by cellulose-synthesizing microorganisms; and (iv) investigation of cell wall formation and modification directly in plant objects. The key stages in formation of plant cell wall supramolecular structure are defined and characterized as follows: (i) formation of cellulose microfibrils; (ii) interactions between matrix polysaccharides within Golgi apparatus substructures; (iii) interaction between matrix polysaccharides, newly secreted outside the plasma membrane, and cellulose microfibrils during formation of the latter; (iv) packaging of the formed complexes and individual polysaccharides in cell wall layers; and (v) modification of deposited cell wall layers.  相似文献   

14.
15.
The fine structure of the collenchyma cell wall   总被引:1,自引:0,他引:1  
S. C. Chafe 《Planta》1969,90(1):12-21
  相似文献   

16.
Dynamics of cell wall structure in Saccharomyces cerevisiae   总被引:13,自引:0,他引:13  
The cell wall of Saccharomyces cerevisiae is an elastic structure that provides osmotic and physical protection and determines the shape of the cell. The inner layer of the wall is largely responsible for the mechanical strength of the wall and also provides the attachment sites for the proteins that form the outer layer of the wall. Here we find among others the sexual agglutinins and the flocculins. The outer protein layer also limits the permeability of the cell wall, thus shielding the plasma membrane from attack by foreign enzymes and membrane-perturbing compounds. The main features of the molecular organization of the yeast cell wall are now known. Importantly, the molecular composition and organization of the cell wall may vary considerably. For example, the incorporation of many cell wall proteins is temporally and spatially controlled and depends strongly on environmental conditions. Similarly, the formation of specific cell wall protein-polysaccharide complexes is strongly affected by external conditions. This points to a tight regulation of cell wall construction. Indeed, all five mitogen-activated protein kinase pathways in bakers' yeast affect the cell wall, and additional cell wall-related signaling routes have been identified. Finally, some potential targets for new antifungal compounds related to cell wall construction are discussed.  相似文献   

17.
The recently described scaffold model of murein architecture depicts the gram-negative bacterial cell wall as a gel-like matrix composed of cross-linked glycan strands oriented perpendicularly to the plasma membrane while peptide bridges adopt a parallel orientation (B. A. Dmitriev, F. V. Toukach, K. J. Schaper, O. Holst, E. T. Rietschel, and S. Ehlers, J. Bacteriol. 185:3458-3468, 2003). Based on the scaffold model, we now present computer simulation studies on the peptidoglycan arrangement of the gram-positive organism Staphylococcus aureus, which show that the orientation of peptide bridges is critical for the highly cross-linked murein architecture of this microorganism. According to the proposed refined model, staphylococcal murein is composed of glycan and oligopeptide chains, both running in a plane that is perpendicular to the plasma membrane, with oligopeptide chains adopting a zigzag conformation and zippering adjacent glycan strands along their lengths. In contrast to previous models of murein in gram-positive bacteria, this model reflects the high degree of cross-linking that is the hallmark of the staphylococcal cell wall and is compatible with distinguishing features of S. aureus cytokinesis such as the triple consecutive alteration of the division plane orientation and the strictly centripetal mode of septum closure.  相似文献   

18.
19.
20.
Candidiasis are among the fungal infections the most difficult to diagnose and treat. Research focused on specific fungal components which are absent in the host, such as the cell wall has lead to a better understanding of Candida albicans pathogenicity and clinical impact. The cell wall is responsible for antigenic expression and primary interaction with the host. It is composed mainly of beta-glucans, chitin and mannoproteins, which account for the rigidity of the wall and for the fungal morphology. Of these components, mannoproteins might carry a "morphogenetic code" which might modulate the molecular architecture of the cell wall. The features of specific cell wall proteins as part of building blocks to form this structure is revised, and the usefulness of monoclonal antibodies obtained against cell wall components to study those processes, together with their clinical applicability, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号