首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Contact points between transmembrane segments (TMs) two and three of the glycine receptor are undefined and may play an important role in channel gating. We tested whether two amino acids in TM2 (S267) and TM3 (A288), known to be critical for alcohol and volatile anesthetic action, could cross-link by mutating both to cysteines and expressing the receptors in Xenopus laevis oocytes. In contrast with the wild-type receptor and single cysteine mutants, the S267C/A288C double mutant displayed unusual responses, including a tonic leak activity that was closed by strychnine and a run-down of the response upon repeated applications of glycine. We hypothesized that these characteristics were due to cross-linking of the two cysteines on opposing faces of these adjacent, alpha helical TMs. This would alter the movement of these two regions required for normal gating. To test this hypothesis, we used dithiothreitol to reduce the putative S267C-A288C disulfide bond. Reduction abolished the leak current and provided normal responses to glycine. Subsequent application of the cross-linking agent mercuric chloride caused the initial characteristics to return. These data demonstrate that S267 and A288 are near-neighbors and provide insight towards the location and role of the TM2-TM3 interface in ligand-gated ion channels.  相似文献   

2.
We present a homology based model of the ligand binding domain (LBD) of the homopentameric alpha1 glycine receptor (GlyR). The model is based on multiple sequence alignment with other members of the nicotinicoid ligand gated ion channel superfamily and two homologous acetylcholine binding proteins (AChBP) from the freshwater (Lymnaea stagnalis) and saltwater (Aplysia californica) snails with known high resolution structure. Using two template proteins with known structure to model three dimensional structure of a target protein is especially advantageous for sequences with low homology as in the case presented in this paper. The final model was cross-validated by critical evaluation of experimental and published mutagenesis, functional and other biochemical studies. In addition, a complex structure with strychnine antagonist in the putative binding site is proposed based on docking simulation using Autodock program. Molecular dynamics (MD) simulations with simulated annealing protocol are reported on the proposed LBD of GlyR, which is stable in 5 ns simulation in water, as well as for a deformed LBD structure modeled on the corresponding domain determined in low-resolution cryomicroscopy structure of the alpha subunit of the full-length acetylcholine receptor (AChR). Our simulations demonstrate that the beta-sandwich central core of the protein monomer is fairly rigid in the simulations and resistant to deformations in water.  相似文献   

3.
The strychnine-sensitive glycine receptor (GlyR) is a ligand-gated chloride channel composed of ligand binding alpha- and gephyrin anchoring beta-subunits. To identify the secondary and quaternary structures of extramembraneous receptor domains, the N-terminal extracellular domain (alpha1-(1-219)) and the large intracellular TM3-4 loop (alpha1-(309-392)) of the human GlyR alpha1-subunit were individually expressed in HEK293 cells and in Escherichia coli. The extracellular domain obtained from E. coli expression was purified in its denatured form and refolding conditions were established. Circular dichroism and Fourier-transform-infrared spectroscopy suggested approximately 25% alpha-helix and approximately 48% beta-sheet for the extracellular domain, while no alpha-helices were detectable for the TM3-4 loop. Size exclusion chromatography and sucrose density centrifugation indicated that isolated glycine receptor domains assembled into multimers of distinct molecular weight. For the extracellular domain from E. coli, we found an apparent molecular weight compatible with a 15mer by gel filtration. The N-terminal domain from HEK293 cells, analyzed by sucrose gradient centrifugation, showed a bimodal distribution, suggesting oligomerization of approximately 5 and 15 subunits. Likewise, for the intracellular domain from E. coli, a single molecular mass peak of approximately 49 kDa indicated oligomerization in a defined native structure. As shown by [(3)H]strychnine binding, expression in HEK293 cells and refolding of the isolated extracellular domain reconstituted high affinity antagonist binding. Cell fractionation, alkaline extraction experiments, and immunocytochemistry showed a tight plasma membrane association of the isolated GlyR N-terminal protein. These findings indicate that distinct functional characteristics of the full-length GlyR are retained in the isolated N-terminal domain.  相似文献   

4.
Calcitonin receptor-like receptor (CRLR) is a seven-transmembrane (7-TM) domain class B G protein-coupled receptor (GPCR) which requires coexpression of different receptor activity modifying proteins (RAMP) to become a functional calcitonin gene-related peptide (CGRP) receptor or an adrenomedullin (AM) receptor. The N-terminal (Nt) extracellular region of class B GPCRs in ligand binding has been reported for receptors such as glucagon and parathyroid hormone. We hypothesize that the Nt-domain of CRLR (Nt-CRLR) is an autonomously folded unit possessing a well-defined structure and is involved in ligand binding and specificity. To obtain structural and functional information on the Nt-CRLR, we cloned and expressed the Nt-CRLR as a fusion protein in Escherichia coli. Overexpressed protein formed an inclusion body, which was refolded and purified, resulting in a soluble monomeric protein. Far-UV CD and fluorescence spectra of Nt-CRLR showed characteristics of a folded protein. The ability of Nt-CRLR to bind CGRP and AM independent of RAMPs was determined by studying inhibition of (125)I-CGRP and (125)I-AM binding to pregnant rat uterine membrane in the presence of Nt-CRLR protein. We observe that Nt-CRLR inhibits (125)I-CGRP and (125)I-AM binding to rat uterus in a dose-dependent fashion (IC(50) = 0.25 and 0.29 muM, respectively). Taken together, our data provide evidence that Nt-CRLR is structured and further that a significant part of the binding affinity comes from binding to the Nt-domain.  相似文献   

5.
The IL-1R on murine T cells is an 80-kDa cell surface glycoprotein which binds both IL-1 alpha and IL-1 beta. We have recently isolated a cDNA clone encoding this molecule. From the primary sequence mature receptor is predicted to be a 557 residue integral membrane protein with a 319 residue carbohydrate-rich extracellular region. We have constructed a cDNA clone encoding this region of the protein (residues 1 to 316). Expression of this cDNA in HeLa cells leads to secretion of a soluble IL-1 alpha binding protein into the culture medium. Quantitative binding experiments with the truncated receptor show that it possesses IL-1 binding properties which are indistinguishable from those of full length IL-1R. Gel filtration chromatography experiments show that a complex can be formed between a single truncated receptor molecule and a single IL-1 alpha molecule.  相似文献   

6.
Recent crystal structures of G protein-coupled receptors (GPCRs) show the remarkable structural diversity of extracellular loop 2 (ECL2), implying its potential role in ligand binding and ligand-induced receptor conformational selectivity. Here we have applied molecular modeling and mutagenesis studies to the TM4/ECL2 junction (residues Pro(174(4.59))-Met(180(4.66))) of the human gonadotropin-releasing hormone (GnRH) receptor, which uniquely has one functional type of receptor but two endogenous ligands in humans. We suggest that the above residues assume an α-helical extension of TM4 in which the side chains of Gln(174(4.60)) and Phe(178(4.64)) face toward the central ligand binding pocket to make H-bond and aromatic contacts with pGlu(1) and Trp(3) of both GnRH I and GnRH II, respectively. The interaction between the side chains of Phe(178(4.64)) of the receptor and Trp(3) of the GnRHs was supported by reciprocal mutations of the interacting residues. Interestingly, alanine mutations of Leu(175(4.61)), Ile(177(4.63)), and Met(180(4.66)) decreased mutant receptor affinity for GnRH I but, in contrast, increased affinity for GnRH II. This suggests that these residues make intramolecular or intermolecular contacts with residues of transmembrane (TM) domain 3, TM5, or the phospholipid bilayer, which couple the ligand structure to specific receptor conformational switches. The marked decrease in signaling efficacy of I177A and F178A also indicates that IIe(177(4.63)) and Phe(178(4.64)) are important in stabilizing receptor-active conformations. These findings suggest that the TM4/ECL2 junction is crucial for peptide ligand binding and, consequently, for ligand-induced receptor conformational selection.  相似文献   

7.
Ligand-gated ion channels undergo conformational changes that transfer the energy of agonist binding to channel opening. Within ionotropic glutamate receptor (iGluR) subunits, this process is initiated in their bilobate ligand binding domain (LBD) where agonist binding to lobe 1 favors closure of lobe 2 around the agonist and allows formation of interlobe hydrogen bonds. AMPA receptors (GluAs) differ from other iGluRs because glutamate binding causes an aspartate-serine peptide bond in a flexible part of lobe 2 to rotate 180° (flipped conformation), allowing these residues to form cross-cleft H-bonds with tyrosine and glycine in lobe 1. This aspartate also contacts the side chain of a lysine residue in the hydrophobic core of lobe 2 by a salt bridge. We investigated how the peptide flip and electrostatic contact (D655-K660) in GluA3 contribute to receptor function by examining pharmacological and structural properties with an antagonist (CNQX), a partial agonist (kainate), and two full agonists (glutamate and quisqualate) in the wildtype and two mutant receptors. Alanine substitution decreased the agonist potency of GluA3(i)-D655A and GluA3(i)-K660A receptor channels expressed in HEK293 cells and differentially affected agonist binding affinity for isolated LBDs without changing CNQX affinity. Correlations observed in the crystal structures of the mutant LBDs included the loss of the D655-K660 electrostatic contact, agonist-dependent differences in lobe 1 and lobe 2 closure, and unflipped D(A)655-S656 bonds. Glutamate-stimulated activation was slower for both mutants, suggesting that efficient energy transfer of agonist binding within the LBD of AMPA receptors requires an intact tether between the flexible peptide flip domain and the rigid hydrophobic core of lobe 2.  相似文献   

8.
9.
A loop structure, formed by the putative disulfide bridging of Cys198 and Cys209, is a principal element of the ligand binding site in the glycine receptor (GlyR). Disruption of the loop's tertiary structure by Ser mutations of these Cys residues either prevented receptor assembly on the cell surface, or created receptors unable to be activated by agonists or to bind the competitive antagonist, strychnine. Mutation of residues Lys200, Tyr202 and Thr204 within this loop reduced agonist binding and channel activation sensitivities by up to 55-, 520- and 190-fold, respectively, without altering maximal current sizes, and mutations of Lys200 and Tyr202 abolished strychnine binding to the receptor. Removal of the hydroxyl moiety from Tyr202 by mutation to Phe profoundly reduced agonist sensitivity, whilst removal of the benzene ring abolished strychnine binding, thus demonstrating that Tyr202 is crucial for both agonist and antagonist binding to the GlyR. Tyr202 also influences receptor assembly on the cell surface, with only large chain substitutions (Phe, Leu and Arg, but not Thr, Ser and Ala) forming functional receptors. Our data demonstrate the presence of a second ligand binding site in the GlyR, consistent with the three-loop model of ligand binding to the ligand-gated ion channel superfamily.  相似文献   

10.
11.
High level expression of biochemically active human estrogen receptor hormone binding domain (hER-HBD) was achieved using a Saccharomyces cerevisae expression system. Using dissociation kinetic analysis, density gradient centrifugation and cross-linking studies, a spontaneous dimerization activity of hER-HBD independent of the presence of the DNA binding domain, ligand, and of elevated temperature is demonstrated.  相似文献   

12.
The ligand binding domain (LBD) of the nicotinic acetylcholine receptor has served as a prototype for understanding molecular recognition in the family of neurotransmitter-gated ion channels. During the past fifty years, studies progressed from fundamental electrophysiological analyses of ACh-evoked ion flow, to biochemical purification of the receptor protein, pharmacological measurements of ligand binding, molecular cloning of receptor subunits, site-directed mutagenesis combined with functional analysis and recently, atomic structural determination. The emerging picture of the nicotinic receptor LBD is a specialized pocket of aromatic and hydrophobic residues formed at interfaces between protein subunits that changes conformation to convert agonist binding into gating of an intrinsic ion channel.  相似文献   

13.
Coleman MD  Bass RB  Mehan RS  Falke JJ 《Biochemistry》2005,44(21):7687-7695
The aspartate receptor of the bacterial chemotaxis pathway serves as a scaffold for the formation of a multiprotein signaling complex containing the receptor and the cytoplasmic pathway components. Within this complex, the receptor regulates the autophosphorylation activity of histidine kinase CheA, thereby controlling the signals sent to the flagellar motor and the receptor adaptation system. The receptor cytoplasmic domain, which controls the on-off switching of CheA, possesses 14 glycine residues that are highly conserved in related receptors. In principle, these conserved glycines could be required for static turns, bends, or close packing in the cytoplasmic domain, or they could be required for conformational dynamics during receptor on-off switching. To determine which glycines are essential and to probe their functional roles, we have substituted each conserved glycine with both alanine and cysteine, and then measured the effects on receptor function in vivo and in vitro. The results reveal a subset of six glycines which are required for receptor function during cellular chemotaxis. Two of these essential glycines (G388 and G391) are located at a hairpin turn at the distal end of the folded cytoplasmic domain, where they are required for the tertiary fold of the signaling subdomain and for CheA kinase activation. Three other essential glycines (G338, G339, and G437) are located at the border between the adaptation and signaling subdomains, where they play key roles in CheA kinase activation and on-off switching. These three glycines form a ring around the four-helix bundle that comprises the receptor cytoplasmic domain, yielding a novel architectural feature termed a bundle hinge. The final essential glycine (G455) is located in the adaptation subdomain where it is required for on-off switching. Overall, the findings confirm that six of the 14 conserved cytoplasmic glycines are essential for receptor function because they enable helix turns and bends required for native receptor structure, and in some cases for switching between the on and off signaling states. An initial working model proposes that the novel bundle hinge enables the four-helix bundle to bend, perhaps during the assembly of the receptor trimer of dimers or during on-off switching. More generally, the findings predict that certain human disease states, including specific cancers, could be triggered by lock-on mutations at essential glycine positions that control the on-off switching of receptors and signaling proteins.  相似文献   

14.
For G-protein-coupled receptors (GPCRs) in general, the roles of extracellular residues are not well defined compared with residues in transmembrane helices (TMs). Nevertheless, extracellular residues are important for various functions in both peptide-GPCRs and amine-GPCRs. In this study, the V(1a) vasopressin receptor was used to systematically investigate the role of extracellular charged residues that are highly conserved throughout a subfamily of peptide-GPCRs, using a combination of mutagenesis and molecular modeling. Of the 13 conserved charged residues identified in the extracellular loops (ECLs), Arg(116) (ECL1), Arg(125) (top of TMIII), and Asp(204) (ECL2) are important for agonist binding and/or receptor activation. Molecular modeling revealed that Arg(125) (and Lys(125)) stabilizes TMIII by interacting with lipid head groups. Charge reversal (Asp(125)) caused re-ordering of the lipids, altered helical packing, and increased solvent penetration of the TM bundle. Interestingly, a negative charge is excluded at this locus in peptide-GPCRs, whereas a positive charge is excluded in amine-GPCRs. This contrasting conserved charge may reflect differences in GPCR binding modes between peptides and amines, with amines needing to access a binding site crevice within the receptor TM bundle, whereas the binding site of peptide-GPCRs includes more extracellular domains. A conserved negative charge at residue 204 (ECL2), juxtaposed to the highly conserved disulfide bond, was essential for agonist binding and signaling. Asp(204) (and Glu(204)) establishes TMIII contacts required for maintaining the beta-hairpin fold of ECL2, which if broken (Ala(204) or Arg(204)) resulted in ECL2 unfolding and receptor dysfunction. This study provides mechanistic insight into the roles of conserved extracellular residues.  相似文献   

15.
Aromatic amino acids are important components of the ligand binding site in the Cys loop family of ligand-gated ion channels. To examine the role of tryptophan residues in the ligand binding domain of the 5-hydroxytryptamine(3) (5-HT(3)) receptor, we used site-directed mutagenesis to change each of the eight N-terminal tryptophan residues in the 5-HT(3A) receptor subunit to tyrosine or serine. The mutants were expressed as homomeric 5-HT(3A) receptors in HEK293 cells and analyzed with radioligand binding, electrophysiology, and immunocytochemistry. Mutation of Trp(90), Trp(183), and Trp(195) to tyrosine resulted in functional receptors, although with increased EC(50) values (2-92-fold) to 5-HT(3) receptor agonists. Changing these residues to serine either ablated function (Trp(90) and Trp(183)) or resulted in a further increase in EC(50) (Trp(195)). Mutation of residue Trp(60) had no effect on ligand binding or receptor function, whereas mutation of Trp(95), Trp(102), Trp(121), and Trp(214) ablated ligand binding and receptor function, and all but one of the receptors containing these mutations were not expressed at the plasma membrane. We propose that Trp(90), Trp(183), and Trp(195) are intimately involved in ligand binding, whereas Trp(95), Trp(102), Trp(121), and Trp(214) have a critical role in receptor structure or assembly.  相似文献   

16.
Evidence is presented for a role of disulfide bridging in forming the ligand binding site of the beta 2-adrenergic receptor (beta AR). The presence of disulfide bonds at the ligand binding site is indicated by "competitive" inhibition by dithiothreitol (DTT) in radioligand binding assays, by specific protection by beta-adrenergic ligands of these effects, and by the requirement of disulfide reduction for limit proteolysis of affinity ligand labeled receptor. The kinetics of binding inhibition by DTT suggest at least two pairs of disulfide-bonded cysteines essential for normal binding. Through site-directed mutagenesis, we indeed were able to identify four cysteines which are critical for normal ligand binding affinities and for the proper expression of functional beta AR at the cell surface. Unexpectedly, the four cysteines required for normal ligand binding are not those located within the hydrophobic transmembrane domains of the receptor (where ligand binding is presumed to occur) but lie in the extracellular hydrophilic loops connecting these transmembrane segments. These findings indicate that, in addition to the well-documented involvement of the membrane-spanning domains of the receptor in ligand binding, there is an important and previously unsuspected role of the hydrophilic extracellular domains in forming the ligand binding site.  相似文献   

17.
Zhang Z  Wriggers W 《Biochemistry》2011,50(12):2144-2156
Epidermal growth factor receptors (EGFRs) and their cytoplasmic tyrosine kinases play important roles in cell proliferation and signaling. The EGFR extracellular domain (sEGFR) forms a dimer upon the binding of ligands, such as epidermal growth factor (EGF) and transforming growth factor α (TGFα). In this study, multiple molecular dynamics (MD) simulations of the 2:2 EGF·sEGFR3-512 dimer and the 2:2 TGFα·sEGFR3-512 dimer were performed in solvent and crystal environments. The simulations of systems comprising up to half a million atoms reveal part of the structural dynamics of which sEGFR dimers are capable. The solvent simulations consistently exhibited a prominent conformational relaxation from the initial crystal structures on the nanosecond time scale, leading to symmetry breaking and more extensive contacts between the two sEGFR monomers. In the crystal control simulation, this symmetry breaking and compaction was largely suppressed by crystal packing contacts. The simulations also provided evidence that the disordered domain IV of sEGFR may act as a stabilizing spacer in the dimer. Thus, the simulations suggest that the sEGFR dimer can take diverse configurations in solvent environments. These biologically relevant conformations of the EGFR signal transduction network can be controlled by contacts among the structural domains of sEGFR and its ligands.  相似文献   

18.
The type 1 sigma receptor expressed in Xenopus oocytes showed binding abilities for the sigma-1 ligands, [3H](+)pentazocine and [3H]NE-100, with similar kinetic properties as observed in native tissue membranes. Amino acid substitutions (Ser99Ala, Tyr103Phe and di-Leu105,106di-Ala) in the transmembrane domain did not alter the expression levels of the type 1 sigma receptor as determined by immunoblot analysis using an anti-type 1 sigma receptor antiserum. By contrast, ligand binding was significantly suppressed by the substitutions. These findings provide evidence that the transmembrane domain of the type 1 sigma receptor plays a critical role in ligand binding of this receptor.  相似文献   

19.
The yeast pheromone receptor, Ste2p, is a G protein coupled receptor that initiates cellular responses to alpha-mating pheromone, a 13 residue peptide that carries a net positive charge at physiological pH. We have examined the role of extracellular charged groups on the receptor in response to the pheromone. Substitutions of Asn or Ala for one extracellular residue, Asp275, affected both pheromone binding and signaling, suggesting that this position interacts directly with ligand. The other seven extracellular acidic residues could be individually replaced by polar residues with no detectable effects on receptor function. However, substitution of Ala for each of these seven residues resulted in impairment of signaling without affecting pheromone binding, implying that the polar nature of these residues promotes receptor activation. In contrast, substitution of Ala for each of the six positively charged residues at the extracellular surface of Ste2p did not affect signaling.  相似文献   

20.
The gamma-aminobutyric acid type B (GABAB) receptor is distantly related to the metabotropic glutamate receptor-like family of G-protein-coupled receptors (family 3). Sequence comparison revealed that, like metabotropic glutamate receptors, the extracellular domain of the two GABAB receptor splice variants possesses an identical region homologous to the bacterial periplasmic leucine-binding protein (LBP), but lacks the cysteine-rich region common to all other family 3 receptors. A three-dimensional model of the LBP-like domain of the GABAB receptor was constructed based on the known structure of LBP. This model predicts that four of the five cysteine residues found in this GABAB receptor domain are important for its correct folding. This conclusion is supported by analysis of mutations of these Cys residues and a decrease in the thermostability of the binding site after dithiothreitol treatment. Additionally, Ser-246 was found to be critical for CGP64213 binding. Interestingly, this residue aligns with Ser-79 of LBP, which forms a hydrogen bond with the ligand. The mutation of Ser-269 was found to differently affect the affinity of various ligands, indicating that this residue is involved in the selectivity of recognition of GABAB receptor ligands. Finally, the mutation of two residues, Ser-247 and Gln-312, was found to increase the affinity for agonists and to decrease the affinity for antagonists. Such an effect of point mutations can be explained by the Venus flytrap model for receptor activation. This model proposes that the initial step in the activation of the receptor by agonist results from the closure of the two lobes of the binding domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号