首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are species differences with regard to the composition of the ciliary ganglion. For instance, in rabbits and cats it consists solely of oculomotor nerves and has no sympathetic or sensory innervation. The purpose of this study is to clarify the participation of these nerves in the ciliary ganglion of the dog by histochemical methods. Cholinesterase (ChE) activity was studied by Karnovsky's method and catecholamine fluorescence by the glyoxylic acid method. Furthermore, the origins of the respective nerves were investigated by a serial preparation method, involving unilateral cervical sympathectomy and tracer dye injection in the ganglion. The results obtained were: (1) Ciliary ganglion cells showed intense ChE activity. Oculomotor nerve fibers leading to the ganglion showed moderate ChE activity, while the reaction in the short ciliary nerves was strong. (2) Aminergic nerves were present in the intercellular space of the ciliary ganglion, and bilateral or central innervation was suggested by the results of cervical sympathectomy. (3) Connection between the ciliary and trigeminal ganglia was proved by the dye tracer study. The results show that the ciliary ganglion in dogs is composed of oculomotor, trigeminal and sympathetic nerves.  相似文献   

2.
3.
4.
5.
6.
7.
Electrical responses of some nerves of the ciliary ganglion to stimulation of its other nerves were recorded, and intracellular recordings were also made from neurons of the ganglion (in situ). The overwhelming majority of preganglionic fibers terminate synaptically on neurons of the ganglion. Postganglionic fibers leave in the lateral and medial ciliary nerves, in which the velocity of conduction of excitation ranges from 1.9 to 9.0 m/sec. A few preganglionic fibers pass through the ciliary ganglion into the lateral ciliary nerve, giving off collaterals to neurons of the ganglion, so that stimulation of the lateral ciliary nerve evokes a response in the medial ciliary nerve (preganglionic axon reflex). The resting potential of neurons of the ciliary ganglion is 57±2.8 mV, and their action potential 68±3.6 mV. Single orthodromic stimulation usually evokes a single action potential in a neuron. The amplitude of the EPSP is increased during hyperpolarization of the postsynaptic membrane, confirming the chemical nature of synaptic transmission in the ganglion. The antidromic response consists of an IS-component and spike. The spike is followed by after-hyperpolarization, with a mean amplitude equal to 31% of the spike amplitude, and the time taken for it to fall to one–third of its initial amplitude is 75–135 msec.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 101–108, July–August, 1969.  相似文献   

8.
9.
Transcellular interactions between neuroligins (NL) and beta-neurexin have been widely documented to promote maturation and function of both glutamatergic and GABAergic synapses. Recently it has been shown that neuroligin-1 plays a similar role at nicotinic synapses on chick ciliary ganglion neurons in culture, acting from the postsynaptic side to enhance transmitter release from adjacent cholinergic terminals and boost nicotinic input to the cells. We show here that the ciliary ganglion expresses three forms of neuroligin as well as two beta-neurexins and an alpha-neurexin. Overexpression of the beta-neurexins, but not the alpha-neurexin, can induce clustering of endogenous PSD-95 in adjacent neurons, presumably engaging neuroligin in the postsynaptic cell. The trans effects of beta-neurexins are selective; though both alpha3- and alpha7-containing nicotinic receptors are available on opposing cells, beta-neurexins induce coclustering of alpha3- but not alpha7-containing nicotinic receptors. Overexpression of other putative synaptogenic molecules, including SynCAM and L1, are ineffective at trans-clustering of PSD-95 on adjacent neurons. The beta-neurexins also exert a cis effect, coclustering presynaptic markers along with beta-neurexin in neurites juxtaposed to postsynaptic proteins, consistent with organizing presynaptic components as well. Striated muscle, the synaptic target of ciliary neurons in vivo, also expresses neuroligin. The results demonstrate that NL and neurexins are present at multiple sites in nicotinic cholinergic pathways and suggest the possibility of both cis- and trans-interactions to influence nicotinic signaling.  相似文献   

10.
Innervation of the arteriovenous anastomoses in the dog tongue   总被引:1,自引:0,他引:1  
Summary Profiles of nerve plexuses in the arteriovenous anastomoses of the dog tongue were investigated by both transmission and scanning electron microscopy. Three-dimensional morphology of the vascular nerves was examined after removal of the connective tissue components by the HCl-hydrolysis method. Tight bending and a rich nerve supply were the most characteristic features of the anastomosing channels. The tunica media consisted of an outer circular layer of typical smooth-muscle cells and an inner region containing longitudinal plicae of ramified smoothmuscle cells. The tunica adventitia was exclusively occupied by nerve bundles; fibroblasts were poorly developed. Numerous nerve bundles of variable size were coiled around the anastomosing channels, and occasional bundles ran crosswise over the U-shaped bent vessels.  相似文献   

11.
12.
Ciliary ganglion (CG) neurons undergo target-dependent cell death during embryonic development. Although ciliary neurotrophic factor (CNTF) was identified in vitro by its ability to support the survival of chick CG neurons, its function as a target-derived neurotrophic factor has been questioned by those working on mammalian-derived forms of CNTF. We have purified and cloned a chicken CNTF [chCNTF; formerly growth-promoting activity (GPA)] that is expressed in CG targets during the period of cell death and is secreted by cells transfected with chCNTF. In the present study we used a retroviral vector, RCASBP(A), to overexpress chCNTF in CG target tissues. Elevation of chCNTF biological activity three- to fourfold in the embryonic eye rescued an average of 31% of the neurons that would have normally died in vivo. In some individuals, nearly all of the neurons were rescued. ChCNTF had no effect on the number of neurons observed prior to cell death, nor were there any deleterious effects of either viral infection or overexpression of CNTF. These results show that chCNTF is able to function in vivo as a trophic factor for CG neurons, and suggest that limited availability of trophic support is one of the factors regulating CG neuron survival during development. © 1998 John Wiley & Sons, Inc. J Neurobiol 34: 283–293, 1998  相似文献   

13.
In the chick ciliary ganglion, neuronal number is kept constant between St. 29 and St. 34 (E6-E8) despite a large amount of cell death. Here, we characterize the source of neurogenic cells in the ganglion as undifferentiated neural crest-derived cells. At St. 29, neurons and nonneuronal cells in the ciliary ganglion expressed the neural crest markers HNK-1 and p75(NTR). Over 50% of the cells were neurons at St. 29; of the nonneuronal cells, a small population expressed glial markers, whereas the majority was undifferentiated. When placed in culture, nonneuronal cells acquired immunoreactivity for HuD, suggesting that they had commenced neuronal differentiation. The newly differentiated neurons arose from precursors that did not incorporate bromodeoxyuridine. To test whether these precursors could undergo neural differentiation in vivo, purified nonneuronal cells from St. 29 quail ganglia were transplanted into chick embryos at St. 9-14. Subsequently, quail cells expressing neuronal markers were found in the chick ciliary ganglion. The existence of this precursor pool was transient because nonneuronal cells isolated from St. 38 ganglia failed to form neurons. Since all ciliary ganglion neurons are born prior to St. 29, these results demonstrate that there are postmitotic neural crest-derived precursors in the developing ciliary ganglion that can differentiate into neurons in the appropriate environment.  相似文献   

14.
Purified proteins acting on cultured chick embryo ciliary ganglion neurons   总被引:2,自引:0,他引:2  
Chick embryo ciliary ganglion neurons in dissociated monolayer culture have been used to examine molecular requirements for neuronal survival and neurite growth. These neurons will rapidly die in vitro unless supplied with an adequate level of ciliary neuronotrophic factor (CNTF), and even in the presence of CNTF they will not vigorously extend neurites on polyornithine substrata unless supplied with appropriate amounts of polyornithine-binding neurite-promoting factors (PNPFs). Recent work on the purification and partial characterization of embryonic chick eye CNTF and rat schwannoma PNPF is reviewed, and in vitro responses of ciliary ganglion neurons to other purified proteins such as laminin, fibronectin, insulin, and nerve growth factor are mentioned.  相似文献   

15.
16.
17.
Summary Somatic spine synapses modified with postsynaptic electron opaque materials were found in the axo-somatic ciliary ganglion synapse of the chick.A part of the postsynaptic cell body protrudes into the presynaptic calyciform ending as a somatic spine with about 1 in length and 0.15 in diameter, and forms the so-called synaptic complex with presynaptic process. Moreover, conspicuous electron opaque materials can be seen in the central axis of the spine, except for its end portion. Sometimes, these opaque materials are seen as arrayed dots.The morphological characteristics of the somatic spine synapses in this study are quite similar to that found in the habenula and interpeduncular nuclei of the cat (Milhaud and Pappas, 1966). the biological significance of which is obscure at present.This work was supported in part by grant from the Education Ministry of Japan.  相似文献   

18.
19.
Programmed cell death is a prominent feature of embryonic development and is essential in matching the number of neurons to the target tissues that are innervated. Although a decrease in neuronal number which coincides with peripheral synaptogenesis has been well documented in the avian ciliary ganglion, it has not been clear whether cell death also occurs earlier. We observed TUNEL-positive neurons as early as stage 24, with a large peak at stage 29. This cell death at stage 29 was followed by a statistically significant (P < 0.0001) decrease in total neuron number at stage 31. The total number of neurons was recovered by stage 33/34. This suggested that dying neurons were replaced by new neurons. This replacement process did not involve proliferation because bromodeoxyuridine applied at stages 29 and 31 was unable to label neurons harvested at stage 33/34. The peak of cell death at stage 29 was increased 2.3-fold by removal of the optic vesicle and was reduced by 50% when chCNTF was overexpressed. Taken together, these results suggest that the regulation of neuron number in the ciliary ganglion is a dynamic process involving both cell death and neural replacement from postmitotic precursors prior to differentiation and innervation of target tissues.  相似文献   

20.
We have studied calcium signals and their role in the migration of neuronal and nonneuronal cells of embryonic chick ciliary ganglion (CG). In vitro, neurons migrate in association with nonneuronal cells to form cellular aggregates. Changes in the modulus of the velocity of the neuron-nonneuronal cell complex were observed in response to treatments that increased or decreased intracellular calcium concentration. In addition, both cell types generated spontaneous calcium activity that was abolished by removal of extracellular calcium. Calcium signals in neurons could be characterized as either spikes or waves. Neuronal spikes were found to be related to action potential generation whereas neuronal waves were due to voltage-independent calcium influx. Nonneuronal cells generated calcium oscillations that were dependent on calcium release from intracellular stores and on voltage-independent calcium influx. Application of thimerosal, a compound that stimulates calcium mobilization from internal stores, increased: (1) the amplitude of spontaneous nonneuronal oscillations; (2) the area of migrating nonneuronal cells; and (3) the velocity of the neuronal-nonneuronal cell complex. We conclude that CG cell migration is a calcium dependent process and that nonneuronal cell calcium oscillations play a key role in the modulation of velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号