首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Oral administration of 7.0 mg/kg calcium carbimide (calcium cyanamide, CC) to the rat produced differential inhibition of hepatic aldehyde dehydrogenase (ALDH) isozymes, as indicated by the time-course profiles of enzyme activity. The low-Km mitochondrial ALDH was most susceptible to inhibition following CC administration, with complete inhibition occurring at 0.5 h and return to control activity at 96 h. The low-Km cytosolic and high-Km mitochondrial, cytosolic, and microsomal ALDH isozymes were inhibited to a lesser degree and (or) for a shorter duration compared with the mitochondrial low-Km enzyme. The time course of carbimide, the hydrolytic product of CC, was determined in plasma following oral administration of 7.0 mg/kg CC to the rat. The maximum plasma carbimide concentration (102 ng/mL) occurred at 1 h and the apparent elimination half-life in plasma was 1.5 h. Carbimide was not measurable in the liver during the 6.5 h time interval when carbimide was present in the plasma. There were negative, linear correlations between plasma carbimide concentration and hepatic low-Km mitochondrial, low-Km cytosolic, and high-Km microsomal ALDH activities. In vitro studies demonstrated that carbimide, at concentrations obtained in plasma following oral CC administration, produced only 19% inhibition of low-Km mitochondrial ALDH and no inhibition of low-Km cytosolic and high-Km microsomal ALDH isozymes. These data demonstrate that carbimide, itself, is not primarily responsible for hepatic ALDH inhibition in vivo following oral CC administration. It would appear that carbimide must undergo metabolic conversion in vivo to inhibit hepatic ALDH enzymes, which is supported by the observation of no measurable carbimide in the liver when ALDH was maximally inhibited following oral CC administration.  相似文献   

2.
1. Plasma sex steroid concentrations, onset of gonadal maturation, and hepatic microsomal UDP-glucuronyltransferase (UDPGT) activities were followed under natural temperature and photoperiod in outdoor tanks, and under controlled laboratory temperature and photoperiod regimens in common carp (Cyprinus carpio). 2. Decreased activity of UDPGT was out of phase with elevations in plasma testosterone and 17 beta-estradiol during gonadal maturation. 3. Injection of pituitary extract induced final gonadal maturation and transient elevations (within 24 hr) of both plasma sex steroid concentrations and UDPGT activities. 4. There were no simple relationships between plasma sex steroid concentrations and activity of hepatic microsomal UDPGT in common carp.  相似文献   

3.
Five sows, five cows, five hens, six guinea pigs, six rabbits, and six rats were used in a study to determine if hepatic microsomal triglyceride transfer protein activity differed among species that varied in site of fatty acid synthesis and rate of hepatic triglyceride export. No differences in plasma nonesterified fatty acids were seen among species. Plasma concentrations of glucose were highest in the hen, intermediate in the rat, guinea pig, and rabbit and lowest in the sow and cow. Liver triglyceride was low in all species with the only significant difference being between the hen and the guinea pig (4.7 and 1.1%, DM basis, respectively). No microsomal triglyceride transfer protein activity was found in muscle. The cow, rat, and guinea pig had the lowest levels and the hen and rabbit the highest levels of duodenal microsomal triglyceride transfer protein activity. Hepatic microsomal triglyceride transfer protein activity was significantly higher in the sow than the other species. Hepatic microsomal triglyceride transfer protein activity was 1.51, 1.63, 2.36, 2.72, 2.95, and 6.70 nmole triolein transferred/h/mg microsomal protein for the guinea pig, rabbit, cow, rat, hen, and sow, respectively. Microsomal triglyceride transfer protein activity in duodenal tissue was 18.0, 18.6, 19.2, 33.4, 113, and 161% of hepatic microsomal triglyceride transfer protein activity for the sow, cow, rat, guinea pig, hen, and rabbit, respectively. Hepatic microsomal triglyceride transfer protein activity scaled to liver weight and metabolic body size was 2.69, 3.36, 4.58, 5.83, 7.49, and 22.3 nmole triolein transferred in the liver/min/kg body weight0.75 for the rabbit, guinea pig, rat, hen, cow, and sow, respectively. There was little relationship between previously published rates for triglyceride export and hepatic microsomal triglyceride transfer protein activity measured in this experiment.  相似文献   

4.
Demonstration of the presence of G-proteins in hepatic microsomal fraction   总被引:5,自引:0,他引:5  
The presence of G-proteins in isolated hepatic microsomal vesicles is demonstrated. The G-proteins were identified by their capacity to be ADP-ribosylated by cholera and pertussis toxins. Cholera toxin identified 42 and 45 kDa proteins, corresponding to alpha s-1 and alpha s-2, respectively. Pertussis toxin identified a 40 kDa protein corresponding to alpha i. The microsomal G-proteins are identical to the corresponding G proteins of the plasma membrane, but are present in different proportions; the microsomes have considerably less alpha s proteins than the plasma membrane.  相似文献   

5.
In vitro, cytochrome b5 modulates the rate of cytochrome P450-dependent mono-oxygenation reactions. However, the role of this enzyme in determining drug pharmacokinetics in vivo and the consequential effects on drug absorption distribution, metabolism, excretion, and toxicity are unclear. In order to resolve this issue, we have carried out the conditional deletion of microsomal cytochrome b5 in the liver to create the hepatic microsomal cytochrome b5 null mouse. These mice develop and breed normally and have no overt phenotype. In vitro studies using a range of substrates for different P450 enzymes showed that in hepatic microsomal cytochrome b5 null NADH-mediated metabolism was essentially abolished for most substrates, and the NADPH-dependent metabolism of many substrates was reduced by 50-90%. This reduction in metabolism was also reflected in the in vivo elimination profiles of several drugs, including midazolam, metoprolol, and tolbutamide. In the case of chlorzoxazone, elimination was essentially unchanged. For some drugs, the pharmacokinetics were also markedly altered; for example, when administered orally, the maximum plasma concentration for midazolam was increased by 2.5-fold, and the clearance decreased by 3.6-fold in hepatic microsomal cytochrome b5 null mice. These data indicate that microsomal cytochrome b5 can play a major role in the in vivo metabolism of certain drugs and chemicals but in a P450- and substrate-dependent manner.  相似文献   

6.
A high cholesterol diet induced a fatty liver and an increase in cholesterol oleate in spontaneously hypertensive rats. The activity of microsomal glycerophosphate acyltransferase in liver increased 2-3-fold to meet the increased supply of oleate, the synthesis of which was stimulated by a 10-fold increase in microsomal delta 9-desaturase activity. Hepatic fatty acid synthetase and diacylglycerol acyltransferase activities were decreased somewhat. These results, together with the fact that the large increases in hepatic cholesterol ester and triacylglycerol were not correspondingly reflected in plasma, indicated that the fatty liver resulted from decreased secretion of lipoprotein rather than increased lipogenesis. Endogenous cholesterol in liver microsomes increased 2-fold and hepatic acyl-CoA:cholesterol acyltransferase activity increased 3-fold, whereas plasma lecithin:cholesterol acyltransferase activity was unchanged. Thus, the increase in cholesterol oleate seen in spontaneously hypertensive rats fed a high cholesterol diet is due mainly to increases in acyl-CoA:cholesterol acyltransferase and delta 9-desaturase activities.  相似文献   

7.
The microsomal triglyceride transfer protein (MTP) is essential for the hepatic secretion of apolipoprotein (apo) B-containing lipoproteins. Previous studies have indicated that inhibition of MTP results in decreased apoB plasma levels and decreased hepatic triglyceride secretion. However, the metabolic effects of overexpression of MTP have not been investigated. We constructed a recombinant adenovirus expressing MTP (AdhMTP) and used it to assess the effects of hepatic overexpression of MTP in mice. Injection of AdhMTP into C57BL/6 mice resulted in a 3-fold increase in hepatic microsomal triglyceride transfer activity compared to mice injected with Adnull. On day 4 after virus injection, AdhMTP-injected mice had significantly elevated plasma TG levels as compared to control virus (Adnull)-injected mice. Hepatic TG secretion rates were significantly greater in AdhMTP-injected mice (184 +/- 12 mg/kg/h) compared with Adnull-injected mice (65 +/- 9 mg/kg/h, P < 0.001). In addition, hepatic very low density lipoprotein (VLDL) apoB secretion in the AdhMTP-injected group was 74% higher than in the control virus group. Hepatic secretion of apoB-48 and apoB-100 contributed equally to this increase.These results provide the first data that hepatic overexpression of MTP results in increased secretion of VLDL-triglycerides as well as VLDL-apoB in vivo. These results suggest that MTP is rate-limiting for VLDL apoB secretion in wild-type mice under basal chow-fed conditions.  相似文献   

8.
The metabolism of [14C]acetylisoniazid was studied in male New Zealand White rabbits. Pretreatment of the rabbits with the microsomal enzyme inducers rifampin and phenobarbital had little effect on acetylisoniazid metabolism. Rifampin appears to produce some inhibition of acetylation of the metabolite acetylhydrazine to diacetylhydrazine. Acetylation phenotype was an important factor. Covalent binding of 14C to hepatic protein increased as the acetylation rate decreased. In plasma and urine acetylhydrazine levels were negatively correlated with acetylation rate and diacetylhydrazine levels were positively correlated as one would expect. It was concluded that in the rabbit covalent binding to hepatic protein was more dependent on the acetylation rate than on induction of microsomal oxidase.  相似文献   

9.
The activity of hepatic microsomal FAD-monooxygenase showed a positive correlation with plasma corticosterone levels (determined by radioimmunoassay) in 5 inbred strains of mice. The cytochrome P450 content, on the other hand, was essentially unchanged. These results indicate that the genetically set corticosterone levels in turn may mediate the activity of this hepatic enzyme.  相似文献   

10.
This study was performed to determine the effects of dietary perilla oil, a n-3 alpha-linolenic acid (ALA) source, on hepatic lipogenesis as a possible mechanism of lowering triacylglycerol (TG) levels. Male Sprague-Dawley rats were trained for a 3-hour feeding protocol and fed one of five semipurified diets as follows: 1% (w/w) corn oil control diet, or one of four diets supplemented with 10% each of beef tallow, corn oil, perilla oil, and fish oil. Two separate experiments were performed to compare the effects of feeding periods, 4 weeks and 4 days. Hepatic and plasma TG levels were decreased in rats fed perilla oil and fish oil diets, compared with corn oil and beef tallow diets. The activities of hepatic lipogenic enzymes such as fatty acid synthase (FAS), glucose-6-phosphate dehydrogenase, and malic enzyme were suppressed in the fish oil, perilla oil, and corn oil-fed groups, and the effect was the most significant in the fish oil-fed group. Also, the activities of glycolytic enzymes, glucokinase, and L-pyruvate kinase showed the similar trend as that of lipogenic enzymes. The activity of FAS, the key regulatory enzyme in lipogenesis, was positively correlated with hepatic and plasma TG levels and reduced significantly in the perilla oil-fed group compared with corn oil-fed group. In addition, the FAS activity was negatively correlated with the hepatic microsomal content of EPA and DHA. In conclusion, suppression of FAS plays a significant role in the hypolipidemic effects observed in rats fed ALA rich perilla oil and these effects were associated with the increase of hepatic microsomal EPA and DHA contents.  相似文献   

11.
The effects of levonorgestrel treatment (4 micrograms/day per kg body weight 0.75 for 18 days) on rate-limiting enzymes of hepatic triacylglycerol synthesis, namely glycerol-3-phosphate acyltransferase and phosphatidic acid phosphatase were investigated in microsomal, mitochondrial and cytosolic fractions of rat liver. Levonorgestrel treatment resulted in a significant reduction (26%) of hepatic microsomal glycerol-3-phosphate acyltransferase specific activity. Hepatic mitochondrial glycerol-3-phosphate acyltransferase specific activity was unchanged. Levonorgestrel treatment also significantly reduced (by 20%) the specific activity of hepatic microsomal magnesium-independent phosphatidic acid phosphatase. However, magnesium-dependent phosphatic acid phosphatase specific activities in microsomal and cytosolic fractions were unaffected. Cytosolic magnesium-independent phosphatidic acid phosphatase activity was also unchanged. These studies are consistent with the view that levonorgestrel lowers serum triacylglycerol levels, at least in part, by inhibition of the glycerol-3-phosphate acyltransferase (EC 2.3.1.15) step in hepatic triacylglycerol synthesis.  相似文献   

12.
In rats fed a fish oil-enriched diet, plasma triacylglycerols were lowered 51%. At the same time there was a mean 45% reduction in Mg2+-dependent phosphatidate phosphohydrolase activity in liver microsomes and a mean 20% decrease in microsomal triacylglycerol (neutral) and diacylglycerol hydrolase activities, but not of diacylglycerol acyltransferase. These observations support the hypothesis that decreases in the activities of phosphatidate phosphohydrolase and of both lipases are involved in the expression of the inhibitory effects of fish oil feeding on hepatic lipoprotein triacylglycerol secretion. Conversely, the feeding of a sucrose-enriched diet resulted in a mean 39% rise in plasma triacylglycerols, a 19% increase in triacylglycerol hydrolase and a mean 45% increase in Mg2+-dependent microsomal phosphohydrolase activity. The effects of the two nutritional interventions on phosphatidate phosphohydrolase activity confirm a key function for this enzyme in triacylglycerol formation.  相似文献   

13.
Aroclor 1254 was administered intraperitoneally (25 mg kg body wt−1 in 1 ml of arachis oil) at weekly intervals for 4 weeks to trout and carp; arachis oil was used as the control. Activities of the following hepatic microsomal enzymes, aminopyrine demethylase, p-nitroreductase, UDP-glucuronyl-transferase and 1-leucyl-β-naphthylamide splitting enzyme were measured in both species; cytochrome P450 and microsomal protein contents were also determined.
The changes in the levels of androgens, oestrogens and corticoid hormones were measured in the circulating blood of control and treated groups at weekly intervals. The blood was obtained by cardiac puncture.
Results indicated (a) a significant increase in the activities of all the enzymes measured except 1-leucyl-β-naphthylamide splitting enzyme, (b) cytochrome P450 and microsomal protein contents were increased in trout, but not in carp, (c) a significant reduction in the plasma levels of androgens, oestrogens and corticoids in the treated groups, particularly at the end of the fourth week and (d) there was a correlation between increased enzyme activities and a decrease in plasma hormone levels.  相似文献   

14.
1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content could not be explained by a decrease in the hepatic triacylglycerol secretion rate as measured by the Triton WR1339 technique. Since the hepatic triacylglycerol showed significant correlation with microsomal enzyme induction functions, with hepatic glycerolipid synthesis in vitro and with diacylglycerol acyltransferase activity, it is likely to be due to enhanced triacylglycerol synthesis consequent on hepatic microsomal enzyme induction. 6. In contrast with rabbits and guinea pigs, rats injected with phenobarbital showed a decrease in serum triacylglycerol concentration in the starved state; this decrease persisted for up to 5 days after drug administration stopped, and did not occur in non-starved animals. It seems to be independent of the microsomal enzyme-inducing properties of the drug, and may be due to the action of phenobarbital at an extrahepatic site.  相似文献   

15.
A mouse model with liver-specific deletion of the NADPH-cytochrome P450 reductase (Cpr) gene (designated Alb-Cre/Cprlox mice) was generated and characterized in this study. Hepatic microsomal CPR expression was significantly reduced at 3 weeks and was barely detectable at 2 months of age in the Alb-Cre+/-/Cprlox+/+ (homozygous) mice, with corresponding decreases in liver microsomal cytochrome P450 (CYP) and heme oxygenase (HO) activities, in pentobarbital clearance, and in total plasma cholesterol level. Nevertheless, the homozygous mice are fertile and are normal in gross appearance and growth rate. However, at 2 months, although not at 3 weeks, the homozygotes had significant increases in liver weight, accompanied by hepatic lipidosis and other pathologic changes. Intriguingly, total microsomal CYP content was increased in the homozygotes about 2-fold at 3 weeks and about 3-fold at 2 months of age; at 2 months, there were varying degrees of induction in protein (1-5-fold) and mRNA expression (0-67-fold) for all CYPs examined. There was also an induction of HO-1 protein (nearly 9-fold) but no induction of HO-2. These data indicate the absence of significant alternative redox partners for liver microsomal CYP and HO, provide in vivo evidence for the significance of hepatic CPR-dependent enzymes in cholesterol homeostasis and systemic drug clearance, and reveal novel regulatory pathways of CYP expression associated with altered cellular homeostasis. The Alb-Cre/Cprlox mouse represents a unique model for studying the in vivo function of hepatic HO and microsomal CYP-dependent pathways in the biotransformation of endogenous and xenobiotic compounds.  相似文献   

16.
Perinatal development of hepatic cholesterol synthesis in the rat   总被引:2,自引:0,他引:2  
Rates of cholesterol synthesis and HMG CoA reductase activity in rat liver, have been reported to be high before and low after birth. The timing of the decline in perinatal rates of cholesterol synthesis, however, is uncertain. These studies, therefore, determined in vivo rates of cholesterol synthesis using [3H]water and hepatic reductase activity in vitro in perinatal rats. The lipid composition of the plasma, liver and its microsomal subfraction were also determined. Reductase activity increased during late gestation, remained high immediately after birth, then decreased with the commencement of suckling. Rates of cholesterol synthesis increased from gestation day 18 to 20, but in contrast to reductase activity, decreased on the day before birth. Plasma cholesterol and triacylglycerol levels increased to gestation day 19, then decreased to term. By the 6th h after birth, plasma and liver cholesterol and triacylglycerol levels had increased markedly. By 48 h after birth, the high hepatic cholesterol content was associated with an increase in the cholesteryl ester fraction. The microsomal cholesterol/phospholipid molar ratio decreased from gestation day 16 until 12 h after birth, then increased markedly from 36 to 48 h. There was an apparent inverse relationship between the change in microsomal cholesterol/phospholipid molar ratio and the fatty acid unsaturation index from gestation day 16 to 36 h after birth. The results suggest that in late gestation and before suckling, the low in vivo rate of hepatic cholesterol synthesis may not be due to low activity of HMG CoA reductase.  相似文献   

17.
The transfer of non-esterified cholesterol to rat-liver microsomal fraction resulted in a considerable decrease in the activity of 5′-nucleotidase and in changes in the characteristics of the Arrhenius plots of the enzyme. The decrease in the activity of 5′-nucleotidase and the increase in the concentration of non-esterified cholesterol in the serum-treated preparations were serum-concentration-dependent and incubation-time-dependent. The enzyme in serum-treated preparations with high non-esterified cholesterol content showed Arrhenius plots with a constant activation energy between 37 and 19°C, whereas the enzyme in the non-treated microsomal fraction or the lipoprotein-deficient serum-treated preparations showed a break at about 28°C, with activation energies higher below and lower above the break. These changes in the temperature-induced kinetics are consistent with an increase in the concentration of non-esterified cholesterol in the plasma membrane vesicles of the serum-treated preparations. The Arrhenius plots of 5′-nucleotidase in liver microsomal fraction from rats fed cholesterol-supplemented diet showed constant activation energy between 37 and 19°C and had similar characteristics with the plots for 5′-nucleotidase in serum-treated preparations. Since the changes in the characteristics of Arrhenius plots of the enzyme in microsomal fraction from rats that had been denied food for 36 h were in the opposite direction to those produced by feeding cholesterol, these results are consistent with a lower concentration of non-esterified cholesterol in hepatic plasma membranes from fasted rats relative to that in plasma membranes from fed rats. The isolation of a plasma membrane preparation with negligible contamination of endoplasmic reticular membranes from rats fed the standard or cholesterol-supplemented diet and from fasted rats showed that the ratio of cholesterol to phospholipid has increased in the preparation from rats fed cholesterol and decreased in that from rats that had been denied food relative to the ratio in the preparation from rats fed the standard diet. The Arrhenius plots of 5′-nucleotidase in these preparations showed characteristics similar to the corresponding plots of the enzyme in the microsomal fraction from the rats in the three experimental conditions.  相似文献   

18.
The acyl-CoA:cholesterol acyltransferase (ACAT) activity and lipid composition of hepatic microsomal membrane were investigated 6 weeks after both 50 and 75% distal-small-bowel resection (SBR). A significant decrease in hepatic cholesteryl ester levels was observed after SBR, with a significant increase in the cholesteryl ester content of the livers of 75% SBR compared with the 50% SBR. Hepatic total acylglycerols, free cholesterol and phospholipid levels were not modified after the surgical operation. Microsomal free cholesterol was increased after both 50 and 75% SBR. However, a decrease in both microsomal ACAT activity and cholesteryl ester levels were found in microsomes (microsomal fractions) of resected rats, both changes being higher after 75 than after 50% resection. The total phospholipid content of the microsomes did not change after the surgical operation. The microsomal phospholipid fatty acid composition indicated higher changes after 75 than after 50% SBR. These results demonstrated that, in resected animals: (1) the activity of the enzyme responsible for catalysing cholesterol esterification (ACAT) is decreased, and (2) hepatic microsomal free cholesterol does not appear to influence the activity of ACAT.  相似文献   

19.
On day 8 after ligation of the common bile duct in rats a significant increase in the serum content of total lipids, cholesterol, bilirubin and ALT, alkaline phosphatase, and gamma-glutamyltransferase was observed. In the hepatic microsomal fraction there was a marked decrease in the content and activity of microsomal monooxygenases. Introperitoneal injections of berberine (10 mg/kg) for 6 days caused a partial normalization of hepatocyte plasma permeability and activity of microsomal flavin-containing monooxygenases. It is suggested that berberine is a substrate and inducer of flavin-containing monooxygenases. The membrane-stabilizing effect of berberine is probably realized at the level of inhibition of the prooxidant status of liver cells.  相似文献   

20.
In rats the in vivo effects of a chronic low-dose treatment (+/- 60 micrograms/rat per day) with different coumarins (acenocoumarol, phenprocoumon and warfarin) on hepatic and non-hepatic vitamin K-dependent enzyme systems were compared. The plasma concentrations of the three coumarins differed largely but these differences were not reflected in the microsomal coumarin contents. The non-hepatic microsomes contained less than 20% of the coumarins found in liver microsomes. No substantial differences were observed between the following effects of the three anticoagulant treatments. The blood coagulation factor activities were about 10% of normal. The hepatic microsomal vitamin K epoxide reductase activity was diminished to about 35% of control values. The vitamin K epoxide reductase activities present in kidney, lung, spleen, testis and brain microsomes were less influenced by the coumarin treatments; activities ranged between 45 and 65% of normal. In the liver microsomes a 15-fold accumulation of non-carboxylated precursor proteins was found; in the non-hepatic microsomes this effect was less pronounced but still present. The hepatic vitamin K-dependent carboxylase activity was enhanced but the corresponding non-hepatic enzyme activities were slightly or not affected. In addition, the effects of a chronic low-dose warfarin treatment were compared with those after an acute high dose of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号