首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Major structural changes occur in the spliceosome during its catalytic activation, which immediately precedes the splicing of pre-mRNA. Whereas changes in snRNA conformation are well documented at the level of secondary RNA-RNA interactions, little is known about the tertiary structure of this RNA-RNA network, which comprises the spliceosome's catalytic core. Here, we have used the hydroxyl-radical probe Fe-BABE, tethered to the tenth nucleotide (U(+10)) of the 5' end of a pre-mRNA intron, to map RNA-RNA proximities in spliceosomes. These studies revealed that several conserved snRNA regions are close to U(+10) in activated spliceosomes, namely (i) the U6 snRNA ACAGAG-box region, (ii) portions of the U6 intramolecular stem-loop (U6-ISL) including a nucleotide implicated in the first catalytic step (U74), and (iii) the region of U2 that interacts with the branch point. These data constrain the relative orientation of these structural elements with respect to U(+10) in the activated spliceosome. Upon conversion of the activated spliceosome to complex C, the accessibility of U6-ISL to hydroxyl-radical cleavage is altered, suggesting rearrangements after the first catalytic step.  相似文献   

2.
Activation of a cryptic 5' splice site by U1 snRNA   总被引:1,自引:0,他引:1       下载免费PDF全文
In the course of analyzing 5' splice site mutations in the second intron of Schizosaccharomyces pombe cdc2, we identified a cryptic 5' junction containing a nonconsensus nucleotide at position +2. An even more unusual feature of this cryptic 5' junction was its pattern of activation. By analyzing the profile of splicing products for an extensive series of cdc2 mutants in the presence and absence of compensatory U1 alleles, we have obtained evidence that the natural 5' splice site participates in activation of the cryptic 5' splice site, and that it does so via base pairing to U1 snRNA. Furthermore, the results of follow-up experiments strongly suggest that base pairing between U1 snRNA and the cryptic 5' junction itself plays a dominant role in its activation. Most remarkably, a mutant U1 can activate the cryptic 5' splice site even in the presence of a wild-type sequence at the natural 5' junction, providing unambiguous evidence that this snRNA redirects splicing via base pairing. Although previous work has demonstrated that U5 and U6 snRNAs can activate cryptic 5' splice sites through base pairing interactions, this is the first example in which U1 snRNA has been implicated in the final selection of a cryptic 5' junction.  相似文献   

3.
A sensitive assay based on competition between cis-and trans-splicing suggested that factors in addition to U1 snRNP were important for early 5' splice site recognition. Cross-linking and physical protection experiments revealed a functionally important interaction between U4/U6.U5 tri-snRNP and the 5' splice site, which unexpectedly was not dependent upon prior binding of U2 snRNP to the branch point. The early 5' splice site/tri-snRNP interaction requires ATP, occurs in both nematode and HeLa cell extracts, and involves sequence-specific interactions between the highly conserved splicing factor Prp8 and the 5' splice site. We propose that U1 and U5 snRNPs functionally collaborate to recognize and define the 5' splice site prior to establishment of communication with the 3' splice site.  相似文献   

4.
R K Alvi  M Lund    R T Okeefe 《RNA (New York, N.Y.)》2001,7(7):1013-1023
Pre-messenger RNA splicing is a two-step process by which introns are removed and exons joined together. In yeast, the U5 snRNA loop 1 interacts with the 5' exon before the first step of splicing and with the 5' and 3' exons before the second step. In vitro studies revealed that yeast U5 loop 1 is not required for the first step of splicing but is essential for holding the 5' and 3' exons for ligation during the second step. It is critical, therefore, that loop 1 contacts the 5' exon before the first step of splicing to hold this exon following cleavage from the pre-mRNA. At present it is not known how U5 loop 1 is positioned on the 5' exon prior to the first step of splicing. To address this question, we have used site-specific photoactivated crosslinking in yeast spliceosomes to investigate the interaction of U5 loop 1 with the pre-mRNA prior to the first step of splicing. We have found that the highly conserved uridines in loop 1 make ATP-dependent contacts with an approximately 8-nt region at the 5' splice site that includes the invariant GU. These interactions are dependent on functional U2 and U6 snRNAs. Our results support a model where U5 snRNA loop 1 interacts with the 5' exon in two steps during its targeting to the 5' splice site.  相似文献   

5.
Exon mutations uncouple 5' splice site selection from U1 snRNA pairing   总被引:16,自引:0,他引:16  
B Séraphin  M Rosbash 《Cell》1990,63(3):619-629
It has previously been shown that a mutation of yeast 5' splice junctions at position 5 (GUAUGU) causes aberrant pre-mRNA cleavages near the correct 5' splice site. We show here that the addition of exon mutations to an aberrant cleavage site region transforms it into a functional 5' splice site both in vivo and in vitro. The aberrant mRNAs are translated in vivo. The results suggest that the highly conserved G at the 5' end of introns is necessary for the second step of splicing. Further analyses indicate that the location of the U1 snRNA-pre-mRNA pairing is not affected by the exon mutations and that the precise 5' splice site is selected independent of this pairing.  相似文献   

6.
A notable feature of the newly described U12 snRNA-dependent class of eukaryotic nuclear pre-mRNA introns is the highly conserved 8-nt 5'' splice site sequence. This sequence is virtually invariant in all known members of this class from plants to mammals. Based on sequence complementarity between this sequence and the 5'' end of the U11 snRNA, we proposed that U11 snRNP may play a role in identifying and/or activating the 5'' splice site for splicing. Here we show that mutations of the conserved 5'' splice site sequence of a U12-dependent intron severely reduce correct splicing in vivo and that compensatory mutations in U11 snRNA can suppress the effects of the 5'' splice site mutations to varying extents. This provides evidence for a required interaction between U11 snRNA and the 5'' splice site sequence involving Watson-Crick base pairing. This data, in addition to a report that U11 snRNP is bound transiently to the U12-dependent spliceosome, suggests that U11 snRNP is the analogue of U1 snRNP in splicing this rare class of introns.  相似文献   

7.
The splicing of nuclear pre-mRNAs is catalyzed by a large, multicomponent ribonucleoprotein complex termed the spliceosome. Elucidation of the molecular mechanism of splicing identified small nuclear RNAs (snRNAs) as important components of the spliceosome, which, by analogy to the self-splicing group II introns, are implicated in formation of the catalytic center. In particular, the 5' splice site (5'SS) and the branch site, which represent the two substrates for the first step of splicing, are first recognized by U1 and U2 snRNPs, respectively. This initial recognition of splice sites is responsible for the global definition of exons and introns, and represents the primary target for regulation of splicing. Subsequently, pairing interaction between the 5'SS and U1 snRNA is disrupted and replaced by a new interaction of the 5'SS with U6 snRNA. The 5'SS signal contains an invariant GU dinucleotide present at the 5' end of nearly all known introns, however, the mechanism by which the spliceosome recognizes this element is not known. We have identified and characterized a specific UV light-induced crosslink formed between the 5'SS RNA and hPrp8, a protein component of U5 snRNP in the spliceosome that is likely to reflect a specific recognition of the GU dinucleotide for splicing. Because recognition of the 5'SS must be linked to formation of the catalytic site, the identification of a specific and direct interaction between the 5'SS and Prp8 has significant implications for the role of this protein in the mechanism of mRNA splicing.  相似文献   

8.
Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre‐mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre‐mRNA splicing, leading to growth‐deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA‐dependent ATPase involved in monitoring the U2 BSRR‐branch site base‐pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre‐mRNA splicing by directly altering the binding/ATPase activity of Prp5.  相似文献   

9.
U5 snRNA interacts with exon sequences at 5' and 3' splice sites.   总被引:55,自引:0,他引:55  
A J Newman  C Norman 《Cell》1992,68(4):743-754
U5 snRNA is an essential pre-mRNA splicing factor whose function remains enigmatic. Specific mutations in a conserved single-stranded loop sequence in yeast U5 snRNA can activate cleavage of G1----A mutant pre-mRNAs at aberrant 5' splice sites and facilitate processing of dead-end lariat intermediates to mRNA. Activation of aberrant 5' cleavage sites involves base pairing between U5 snRNA and nucleotides upstream of the cleavage site. Processing of dead-end lariat intermediates to mRNA correlates with base pairing between U5 and the first two bases in exon 2. The loop sequence in U5 snRNA may therefore by intimately involved in the transesterification reactions at 5' and 3' splice sites. This pattern of interactions is strikingly reminiscent of exon recognition events in group II self-splicing introns and is consistent with the notion that U5 snRNA may be related to a specific functional domain from a group II-like self-splicing ancestral intron.  相似文献   

10.
The minor U12-dependent class of eukaryotic nuclear pre-mRNA introns is spliced by a distinct spliceosomal mechanism that requires the function of U11, U12, U5, U4atac, and U6atac snRNAs. Previous work has shown that U11 snRNA plays a role similar to U1 snRNA in the major class spliceosome by base pairing to the conserved 5'' splice site sequence. Here we show that U6atac snRNA also base pairs to the 5'' splice site in a manner analogous to that of U6 snRNA in the major class spliceosome. We show that splicing defective mutants of the 5'' splice site can be activated for splicing in vivo by the coexpression of compensatory U6atac snRNA mutants. In some cases, maximal restoration of splicing required the coexpression of compensatory U11 snRNA mutants. The allelic specificity of mutant phenotype suppression is consistent with Watson-Crick base pairing between the pre-mRNA and the snRNAs. These results provide support for a model of the RNA-RNA interactions at the core of the U12-dependent spliceosome that is strikingly similar to that of the major class U2-dependent spliceosome.  相似文献   

11.
Pre-mRNA splicing in metazoans is mainly specified by sequences at the termini of introns. We have selected functional 5' splice sites from randomized intron sequences through repetitive rounds of in vitro splicing in HeLa cell nuclear extract. The consensus sequence obtained after one round of selection in normal extract closely resembled the consensus of natural occurring 5' splice sites, suggesting that the selection pressures in vitro and in vivo are similar. After three rounds of selection under competitive splicing conditions, the base pairing potential to the U1 snRNA increased, yielding a G100%U100%R94%A67%G89%U76%R83% intronic consensus sequence. Surprisingly, a nearly identical consensus sequence was obtained when the selection was performed in nuclear extract containing U1 snRNA with a deleted 5' end, suggesting that other factors than the U1 snRNA are involved in 5' splice site recognition. The importance of a consecutive complementarity between the 5' splice site and the U1 snRNA was analyzed systematically in the natural range for in vitro splicing efficiency and complex formation. Extended complementarity was inhibitory to splicing at a late step in spliceosome assembly when pre-mRNA substrates were incubated in normal extract, but favorable for splicing under competitive splicing conditions or in the presence of truncated U1 snRNA where transition from complex A to complex B occurred more rapidly. This suggests that stable U1 snRNA binding is advantageous for assembly of commitment complexes, but inhibitory for the entry of the U4/U6.U5 tri-snRNP, probably due to a delayed release of the U1 snRNP.  相似文献   

12.
M Sha  T Levy  P Kois    M M Konarska 《RNA (New York, N.Y.)》1998,4(9):1069-1082
We have developed a site-specific chemical modification technique to incorporate a photoreactive azidophenacyl (APA) group at designated internal positions along the RNA phosphodiester backbone. Using this technique, we have analyzed interactions of the 5' splice site (5'SS) RNA within the spliceosome. Several crosslinked products can be detected within complex B using the derivatized 5'SS RNAs, including U6 snRNA, hPrp8p, and 114-, 90-, 70-, 54-, and 27-kDa proteins. The 5'SS RNAs derivatized at intron positions +4 to +8 crosslink to U6 snRNA, confirming the previously reported pairing interaction between these sequences. hPrp8p and p70 are crosslinked to the 5'SS RNA when the APA is placed within the 5' exon. Finally, a set of unidentified proteins, including p114, p54, and p27, is detected with the 5'SS RNA derivatized at intron positions +4 to +8. Introduction of the bulky APA group near the 5'SS junction (positions -2 to +3) strongly interferes with complex B formation and thus no APA crosslinks are observed at these positions. Together with our earlier observation that hPrp8p crosslinks to the GU dinucleotide at the 5' end of the intron, these results suggest that the inhibitory effect of APA results from steric hindrance of the hPrp8p:5'SS interaction. Unexpectedly, thio-modifications within the region of the 5'SS RNA that is involved in base pairing to U6 snRNA strongly stimulate complex B formation.  相似文献   

13.
J Ct  B Chabot 《RNA (New York, N.Y.)》1997,3(11):1248-1261
In the murine gene encoding the neuronal cell adhesion molecule (NCAM), the integrity of the 5' splice site of exon 18 (E18) is essential for regulation of alternative splicing. To further study the contribution of 5' splice site sequences, we used a simple NCAM pre-mRNA containing a portion of E18 fused to E19 and separated by a shortened intron. This RNA is spliced in vitro to produce five sets of lariat intermediates and products, the most abundant set displaying aberrant migration in acrylamide/urea gels. Base pairing interactions between positions +5 and +8 of the intron and positions -3 and -6 from the branch point were responsible for the faster migration of this set of lariat molecules. To test whether the duplex structure forms earlier and contributes to 5' splice site selection, we used NCAM substrates carrying the 5' splice sites of E17 and E18 in competition for the 3' splice site of E19. Mutations upstream of the major branch site improve E18/E19 splicing in NIH3T3 extracts, whereas compensatory mutations at positions +7 and +8 neutralize the effect of branch site mutations and curtail E18/E19 splicing. Our data suggest that duplex formation occurs early and interferes with the assembly of complexes initiated on the 5' splice site of NCAM E18. This novel type of intron interaction may exist in the introns of other mammalian pre-mRNAs.  相似文献   

14.
We have introduced a single photochemical crosslinking reagent into specific sites in the central domain of U6 to identify the sites that are in close proximity to the pre-mRNA substrate. Four distinct U6 snRNAs were synthesized with a single 4-thiouridine (4-thioU) at positions 46, 51, 54, and 57, respectively. Synthetic U6 RNA containing the 4-thioU modifications can functionally reconstitute splicing activity in cell-free yeast splicing extracts depleted of endogenous U6 snRNA. Upon photoactivation with UV (>300 nm), 4-thioU at position 46 forms crosslinks to pre-mRNA near the 5' splice site at nt +4, +5, +6, and +7 in the intron, whereas 4-thioU at position 51 crosslinks to the pre-mRNA at positions -2, -1, +1, +2, +3, and at the invariant G in the lariat intermediate. All crosslinks are dependent on the presence of ATP and the splicing substrate. The two crosslinks to the pre-mRNA from position 46 and 51 of U6 can also occur in prp2 heat-inactivated yeast splicing extracts blocked immediately prior to the first chemical step. Significantly, the crosslink from position 51 can undergo subsequent splicing when the mutant extract is complemented with functional Prp2 protein in a chase experiment, indicating that the crosslink reflects a functional interaction that is maintained during the first step. The crosslink to lariat intermediate appears when the mutant spliceosomes are complemented with functional Prp2 protein added exogenously. This experiment is a paradigm for future studies in which different mutant extracts are used to establish the stage in assembly at which particular RNA-RNA interactions defined by unique crosslinks occur.  相似文献   

15.
Spliceosome formation is initiated by the recognition of the 5′ splice site through formation of an RNA duplex between the 5′ splice site and U1 snRNA. We have previously shown that RNA duplex formation between U1 snRNA and the 5′ splice site can protect pre-mRNAs from degradation prior to splicing. This initial RNA duplex must be disrupted to expose the 5′ splice site sequence for base pairing with U6 snRNA and to form the active spliceosome. Here, we investigated whether hyperstabilization of the U1 snRNA/5′ splice site duplex interferes with splicing efficiency in human cell lines or nuclear extracts. Unlike observations in Saccharomyces cerevisiae, we demonstrate that an extended U1 snRNA/5′ splice site interaction does not decrease splicing efficiency, but rather increases 5′ splice site recognition and exon inclusion. However, low complementarity of the 5′ splice site to U1 snRNA significantly increases exon skipping and RNA degradation. Although the splicing mechanisms are conserved between human and S.cerevisiae, these results demonstrate that distinct differences exist in the activation of the spliceosome.  相似文献   

16.
Xu YZ  Query CC 《Molecular cell》2007,28(5):838-849
ATPase-facilitated steps during spliceosome function have been postulated to afford opportunities for kinetic proofreading. Spliceosome assembly requires the ATPase Prp5p, whose activity might thus impact fidelity during initial intron recognition. Using alanine mutations in S. cerevisiae Prp5p, we identified a suboptimal intron whose splicing could be improved by altered Prp5p activity and then, using this intron, screened for potent prp5 mutants. These prp5 alleles specifically alter branch region selectivity, with improved splicing in vivo of suboptimal substrates correlating with reduced ATPase activity in vitro for a series of mutants in ATPase motif III (SAT). Because these effects are abrogated by compensatory U2 snRNA mutations or other changes that increase branch region-U2 pairing, these results explicitly link a fidelity event with a defined physical structure, the branch region-U2 snRNA duplex, and provide strong evidence that progression of the splicing pathway requires branch region-U2 snRNA pairing prior to Prp5p-facilitated conformational change.  相似文献   

17.
18.
Specific recognition of the 5' splice site (5'SS) by the spliceosome components was studied using a simple in vitro system in which a short 5'SS RNA oligonucleotide specifically induces the assembly of snRNP particles into spliceosome-like complexes and actively participates in a trans-splicing reaction. Short-range cross-liking demonstrates that a U5 snRNP protein component, p220 (the human analogue of the yeast Prp8) specifically interacts with the invariant GU dinucleotide at the 5' end of the intron. The GU:p220 interaction can be detected in the functional splicing complex B. Although p220 has been known to contact several nucleotides around the 5' splice junction, the p220:GU dinucleotide interaction described here is remarkably specific. Consistent with the high conservation of the GU, even minor modifications of this element affect recognition of the 5'SS RNA by p220. Substitution of uridine at the GU with base analogues containing a large methyl or iodo group, but not a smaller flouro group at base position 5, interferes with association of 5'SS RNA with snRNP complexes and their functional participation in splicing.  相似文献   

19.
B Sraphin  L Kretzner    M Rosbash 《The EMBO journal》1988,7(8):2533-2538
We analyzed the effects of suppressor mutations in the U1 snRNA (SNR19) gene from Saccharomyces cerevisiae on the splicing of mutant pre-mRNA substrates. The results indicate that pairing between U1 snRNA and the highly conserved position 5 (GTATGT) of the intron occurs early in spliceosome assembly in vitro. This pairing is important for efficient splicing both in vitro and in vivo. However, pairing at position 5 does not appear to influence 5' splice site selection in vivo, indicating that the previously described U1 snRNA:5' splice junction base pairing interaction is not sufficient to define the 5' cleavage site.  相似文献   

20.
U12-dependent introns containing alterations of the 3' splice site AC dinucleotide or alterations in the spacing between the branch site and the 3' splice site were examined for their effects on splice site selection in vivo and in vitro. Using an intron with a 5' splice site AU dinucleotide, any nucleotide could serve as the 3'-terminal nucleotide, although a C residue was most active, while a U residue was least active. The penultimate A residue, by contrast, was essential for 3' splice site function. A branch site-to-3' splice site spacing of less than 10 or more than 20 nucleotides strongly activated alternative 3' splice sites. A strong preference for a spacing of about 12 nucleotides was observed. The combined in vivo and in vitro results suggest that the branch site is recognized in the absence of an active 3' splice site but that formation of the prespliceosomal complex A requires an active 3' splice site. Furthermore, the U12-type spliceosome appears to be unable to scan for a distal 3' splice site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号