首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
System L is a major nutrient transport system responsible for the transport of large neutral amino acids including several essential amino acids. We previously identified a transporter (L-type amino acid transporter 1: LAT1) subserving system L in C6 rat glioma cells and demonstrated that LAT1 requires 4F2 heavy chain (4F2hc) for its functional expression. Since its oncofetal expression was suggested in the rat liver, it has been proposed that LAT1 plays a critical role in cell growth and proliferation. In the present study, we have examined the function of human LAT1 (hLAT1) and its expression in human tissues and tumor cell lines. When expressed in Xenopus oocytes with human 4F2hc (h4F2hc), hLAT1 transports large neutral amino acids with high affinity (K(m)= approximately 15- approximately 50 microM) and L-glutamine and L-asparagine with low affinity (K(m)= approximately 1.5- approximately 2 mM). hLAT1 also transports D-amino acids such as D-leucine and D-phenylalanine. In addition, we show that hLAT1 accepts an amino acid-related anti-cancer agent melphalan. When loaded intracellularly, L-leucine and L-glutamine but not L-alanine are effluxed by extracellular substrates, confirming that hLAT1 mediates an amino acid exchange. hLAT1 mRNA is highly expressed in the human fetal liver, bone marrow, placenta, testis and brain. We have found that, while all the tumor cell lines examined express hLAT1 messages, the expression of h4F2hc is varied particularly in leukemia cell lines. In Western blot analysis, hLAT1 and h4F2hc have been confirmed to be linked to each other via a disulfide bond in T24 human bladder carcinoma cells. Finally, in in vitro translation, we show that hLAT1 is not a glycosylated protein even though an N-glycosylation site has been predicted in its extracellular loop, consistent with the property of the classical 4F2 light chain. The properties of the hLAT1/h4F2hc complex would support the roles of this transporter in providing cells with essential amino acids for cell growth and cellular responses, and in distributing amino acid-related compounds.  相似文献   

2.
We have isolated a cDNA from a rabbit intestinal cDNA library which, when co-expressed with the heavy chain of the human 4F2 antigen (4F2hc) in mammalian cells, induces system L-like amino acid transport activity. This protein, called LAT2, consists of 535 amino acids and is distinct from LAT1 which also interacts with 4F2hc to induce system L-like amino acid transport activity. LAT2 does not interact with rBAT, a protein with a significant structural similarity to 4F2hc. The 4F2hc/LAT2-mediated transport process differs from the 4F2hc/LAT1-mediated transport in substrate specificity, substrate affinity, tissue distribution, interaction with D-amino acids, and pH-dependence. The 4F2hc/LAT2-associated transport process has a broad specificity towards neutral amino acids with K(t) values in the range of 100-1000 microM, does not interact with D-amino acids to any significant extent, and is stimulated by acidic pH. In contrast, the 4F2hc/LAT1-associated transport process has a narrower specificity towards neutral amino acids, but with comparatively higher affinity (K(t) values in the range of 10-20 microM), interacts with some D-amino acids with high affinity, and is not influenced by pH. LAT2 is expressed primarily in the small intestine and kidney, whereas LAT1 exhibits a much broader tissue distribution.  相似文献   

3.
Amino acid transport across cellular membranes is mediated by multiple transporters with overlapping specificities. We recently have identified the vertebrate proteins which mediate Na+-independent exchange of large neutral amino acids corresponding to transport system L. This transporter consists of a novel amino acid permease-related protein (LAT1 or AmAT-L-lc) which for surface expression and function requires formation of disulfide-linked heterodimers with the glycosylated heavy chain of the h4F2/CD98 surface antigen. We show that h4F2hc also associates with other mammalian light chains, e.g. y+LAT1 from mouse and human which are approximately 48% identical with LAT1 and thus belong to the same family of glycoprotein-associated amino acid transporters. The novel heterodimers form exchangers which mediate the cellular efflux of cationic amino acids and the Na+-dependent uptake of large neutral amino acids. These transport characteristics and kinetic and pharmacological fingerprints identify them as y+L-type transport systems. The mRNA encoding my+LAT1 is detectable in most adult tissues and expressed at high levels in kidney cortex and intestine. This suggests that the y+LAT1-4F2hc heterodimer, besides participating in amino acid uptake/secretion in many cell types, is the basolateral amino acid exchanger involved in transepithelial reabsorption of cationic amino acids; hence, its defect might be the cause of the human genetic disease lysinuric protein intolerance.  相似文献   

4.
The heteromeric amino acid transporters b(0,+)AT-rBAT (apical), y(+)LAT1-4F2hc, and possibly LAT2-4F2hc (basolateral) participate to the (re)absorption of cationic and neutral amino acids in the small intestine and kidney proximal tubule. We show now by immunofluorescence that their expression levels follow the same axial gradient along the kidney proximal tubule (S1>S2S3). We reconstituted their co-expression in MDCK cell epithelia and verified their polarized localization by immunofluorescence. Expression of b(0,+)AT-rBAT alone led to a net reabsorption of l-Arg (given together with l-Leu). Coexpression of basolateral y(+)LAT1-4F2hc increased l-Arg reabsorption and reversed l-Leu transport from (re)absorption to secretion. Similarly, l-cystine was (re)absorbed when b(0,+)AT-rBAT was expressed alone. This net transport was further increased by the coexpression of 4F2hc, due to the mobilization of LAT2 (exogenous and/or endogenous) to the basolateral membrane. In summary, apical b(0,+)AT-rBAT cooperates with y(+)LAT1-4F2hc or LAT2-4F2hc for the transepithelial reabsorption of cationic amino acids and cystine, respectively. The fact that the reabsorption of l-Arg led to the secretion of l-Leu demonstrates that the implicated heteromeric amino acid transporters function in epithelia as exchangers coupled in series and supports the notion that the parallel activity of unidirectional neutral amino acid transporters is required to drive net amino acid reabsorption.  相似文献   

5.
System L-type transport of large neutral amino acids is mediated by ubiquitous LAT1-4F2hc and epithelial LAT2-4F2hc. These heterodimers are thought to function as obligatory exchangers, but only influx properties have been studied in some detail up until now. Here we measured their intracellular substrate selectivity, affinity and exchange stoichiometry using the Xenopus oocyte expression system. Quantification of amino acid influx and efflux by HPLC demonstrated an obligatory amino acid exchange with 1:1 stoichiometry. Strong, differential trans-stimulations of amino acid influx by injected amino acids showed that the intracellular substrate availability limits the transport rate and that the efflux selectivity range resembles that of influx. Compared with high extracellular apparent affinities, LAT1- and LAT2-4F2hc displayed much lower intracellular apparent affinities (apparent K(m) in the millimolar range). Thus, the two system L amino acid transporters that are implicated in cell growth (LAT1-4F2hc) and transcellular transport (LAT2-4F2hc) are obligatory exchangers with relatively symmetrical substrate selectivities but strongly asymmetrical substrate affinities such that the intracellular amino acid concentration controls their activity.  相似文献   

6.
Glycoprotein-associated amino acid transporters (gpaAT) are permease-related proteins that require heterodimerization to express their function. So far, four vertebrate gpaATs have been shown to associate with 4F2hc/CD98 for functional expression, whereas one gpaAT specifically associates with rBAT. In this study, we characterized a novel gpaAT, LAT2, for which mouse and human cDNAs were identified by expressed sequence tag data base searches. The encoded ortholog proteins are 531 and 535 amino acids long and 92% identical. They share 52 and 48% residues with the gpaATs LAT1 and y(+)LAT1, respectively. When mouse LAT2 and human 4F2hc cRNAs were co-injected into Xenopus oocytes, disulfide-linked heterodimers were formed, and an L-type amino acid uptake was induced, which differed slightly from that produced by LAT1-4F2hc: the apparent affinity for L-phenylalanine was higher, and L-alanine was transported at physiological concentrations. In the presence of an external amino acid substrate, LAT2-4F2hc also mediated amino acid efflux. LAT2 mRNA is expressed mainly in kidney and intestine, whereas LAT1 mRNA is expressed widely. Immunofluorescence experiments showed colocalization of 4F2hc and LAT2 at the basolateral membrane of kidney proximal tubules and small intestine epithelia. In conclusion, LAT2 forms with LAT1 a subfamily of L-type gpaATs. We propose that LAT1 is involved in cellular amino acid uptake, whereas LAT2 plays a role in epithelial amino acid (re)absorption.  相似文献   

7.
We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.  相似文献   

8.
Blondeau JP 《Gene》2002,286(2):241-248
The L-type (LAT) family of amino acid transporters is composed of exchangers for neutral, cationic, and anionic amino acids. They form functional heterodimers with membrane glycoproteins, rBAT or 4F2hc/CD98, to which they are linked by a disulphide bond. We report the molecular cloning and tissue expression of new mouse and human homologues of the LAT family, termed mXAT1, mXAT2 and hXAT2. The latter two proteins may correspond to ortholog genes in mouse and human. The hXAT2 gene is located on chromosome 8q21.3. The cloned X amino acid transporter (XAT) cDNAs are predicted to encode proteins of about 50 kDa. From a phylogenetic point of view, the three XAT proteins cluster together, but sequence comparison and secondary structure prediction show that they are also related to the members of the LAT family. Like these transporters, the XAT proteins show 12 transmembrane domains and a conserved cysteine residue, located in the second extracellular loop. This conserved cysteine is involved in the disulphide bond formed between the known members of the LAT family and 4F2hc or rBAT. The mXAT1 and hXAT2 mRNAs are expressed in the kidney but they are not detectable in a variety of other tissues. The corresponding proteins were efficiently translated following transfection of their cDNAs in Chinese hamster ovary (CHO) cells. However, cDNA transfection in CHO cells did not induce amino acid uptake, even when cotransfected with vectors expressing 4F2hc or rBAT. This could be related to the fact that mXAT1 and hXAT2 did not form detectable disulphide-linked heterodimers with 4F2hc or rBAT when they were co-expressed in CHO cells. Identification of other putative partner(s) of these LAT family-related transporters may be necessary to understand their role in renal physiology.  相似文献   

9.
The large neutral amino acid transporter type 1, LAT1, is the principal neutral amino acid transporter expressed at the blood-brain barrier (BBB). Owing to the high affinity (low Km) of the LAT1 isoform, BBB amino acid transport in vivo is very sensitive to transport competition effects induced by hyperaminoacidemias, such as phenylketonuria. The low Km of LAT1 is a function of specific amino acid residues, and the transporter is comprised of 12 phylogenetically conserved cysteine (Cys) residues. LAT1 is highly sensitive to inhibition by inorganic mercury, but the specific cysteine residue(s) of LAT1 that account for the mercury sensitivity is not known. LAT1 forms a heterodimer with the 4F2hc heavy chain, which are joined by a disulfide bond between Cys160 of LAT1 and Cys110 of 4F2hc. The present studies use site-directed mutagenesis to convert each of the 12 cysteines of LAT1 and each of the 2 cysteines of 4F2hc into serine residues. Mutation of the cysteine residues of the 4F2hc heavy chain of the hetero-dimeric transporter did not affect transporter activity. The wild type LAT1 was inhibited by HgCl2 with a Ki of 0.56+/-0.11 microM. The inhibitory effect of HgCl2 for all 12 LAT1 Cys mutants was examined. However, except for the C439S mutant, the inhibition by HgCl2 for 11 of the 12 Cys mutants was comparable to the wild type transporter. Mutation of only 2 of the 12 cysteine residues of the LAT1 light chain, Cys88 and Cys439, altered amino acid transport. The Vmax was decreased 50% for the C88S mutant. A kinetic analysis of the C439S mutant could not be performed because transporter activity was not significantly above background. Confocal microscopy showed the C439S LAT1 mutant was not effectively transferred to the oocyte plasma membrane. These studies show that the Cys439 residue of LAT1 plays a significant role in either folding or insertion of the transporter protein in the plasma membrane.  相似文献   

10.
A cDNA was isolated from the mouse brain that encodes a novel Na(+)-independent neutral amino acid transporter. The encoded protein, designated as Asc-1 (asc-type amino acid transporter 1), was found to be structurally related to recently identified mammalian amino acid transporters for the transport systems L, y(+)L, x(C)(-), and b(0,+), which are linked, via a disulfide bond, to the type II membrane glycoproteins, 4F2 heavy chain (4F2hc), or rBAT (related to b(0,+) amino acid transporter). Asc-1 required 4F2hc for its functional expression. In Western blot analysis in the nonreducing condition, a 118-kDa band, which seems to correspond to the heterodimeric complex of Asc-1 and 4F2hc, was detected in the mouse brain. The band shifted to 33 kDa in the reducing condition, confirming that Asc-1 and 4F2hc are linked via a disulfide bond. Asc-1-mediated transport was not dependent on the presence of Na(+) or Cl(-). Although Asc-1 showed a high sequence homology (66% identity at the amino acid level) to the Na(+)-independent broad scope neutral amino acid transporter LAT2 (Segawa, H., Fukasawa, Y., Miyamoto, K., Takeda, E., Endou, H., and Kanai, Y. (1999) J. Biol. Chem. 274, 19745-19751), Asc-1 also exhibited distinctive substrate selectivity and transport properties. Asc-1 preferred small neutral amino acids such as Gly, L-Ala, L-Ser, L-Thr, and L-Cys, and alpha-aminoisobutyric acid as substrates. Asc-1 also transported D-isomers of the small neutral amino acids, in particular D-Ser, a putative endogenous modulator of N-methyl-D-aspartate-type glutamate receptors, with high affinity. Asc-1 operated preferentially, although not exclusively, in an exchange mode. Asc-1 mRNA was detected in the brain, lung, small intestine, and placenta. The functional properties of Asc-1 seem to be consistent with those of a transporter subserving the Na(+)-independent small neutral amino acid transport system asc.  相似文献   

11.
A cDNA that encodes a novel Na+-independent neutral amino acid transporter was isolated from FLC4 human hepatocarcinoma cells by expression cloning. When expressed in Xenopus oocytes, the encoded protein designated LAT3 (L-type amino acid transporter 3) transported neutral amino acids such as l-leucine, l-isoleucine, l-valine, and l-phenylalanine. The LAT3-mediated transport was Na+-independent and inhibited by 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with the properties of system L. Distinct from already known system L transporters LAT1 and LAT2, which form heterodimeric complex with 4F2 heavy chain, LAT3 was functional by itself in Xenopus oocytes. The deduced amino acid sequence of LAT3 was identical to the gene product of POV1 reported as a prostate cancer-up-regulated gene whose function was not determined, whereas it did not exhibit significant similarity to already identified transporters. The Eadie-Hofstee plots of LAT3-mediated transport were curvilinear, whereas the low affinity component is predominant at physiological plasma amino acid concentration. In addition to amino acid substrates, LAT3 recognized amino acid alcohols. The transport of l-leucine was electroneutral and mediated by a facilitated diffusion. In contrast, l-leucinol, l-valinol, and l-phenylalaninol, which have a net positive charge induced inward currents under voltage clamp, suggesting these compounds are transported by LAT3. LAT3-mediated transport was inhibited by the pretreatment with N-ethylmaleimide, consistent with the property of system L2 originally characterized in hepatocyte primary culture. Based on the substrate selectivity, affinity, and N-ethylmaleimide sensitivity, LAT3 is proposed to be a transporter subserving system L2. LAT3 should denote a new family of organic solute transporters.  相似文献   

12.
13.
We have identified a new human cDNA, L-amino acid transporter-2 (LAT-2), that induces a system L transport activity with 4F2hc (the heavy chain of the surface antigen 4F2, also named CD98) in oocytes. Human LAT-2 is the fourth member of the family of amino acid transporters that are subunits of 4F2hc. The amino acid transport activity induced by the co-expression of 4F2hc and LAT-2 was sodium-independent and showed broad specificity for small and large zwitterionic amino acids, as well as bulky analogs (e.g. BCH (2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid)). This transport activity was highly trans-stimulated, suggesting an exchanger mechanism of transport. Expression of tagged N-myc-LAT-2 alone in oocytes did not induce amino acid transport, and the protein had an intracellular location. Co-expression of N-myc-LAT-2 and 4F2hc gave amino acid transport induction and expression of N-myc-LAT-2 at the plasma membrane of the oocytes. These data suggest that LAT-2 is an additional member of the family of 4F2 light chain subunits, which associates with 4F2hc to express a system L transport activity with broad specificity for zwitterionic amino acids. Human LAT-2 mRNA is expressed in kidney > placenta > brain, liver > spleen, skeletal muscle, heart, small intestine, and lung. Human LAT-2 gene localizes at chromosome 14q11.2-13 (13 cR or approximately 286 kb from marker D14S1349). The high expression of LAT-2 mRNA in epithelial cells of proximal tubules, the basolateral location of 4F2hc in these cells, and the amino acid transport activity of LAT-2 suggest that this transporter contributes to the renal reabsorption of neutral amino acids in the basolateral domain of epithelial proximal tubule cells.  相似文献   

14.
The large neutral amino acid transporter type 1, LAT1, is the principal neutral amino acid transporter expressed at the blood-brain barrier (BBB). Owing to the high affinity (low Km) of the LAT1 isoform, BBB amino acid transport in vivo is very sensitive to transport competition effects induced by hyperaminoacidemias, such as phenylketonuria. The low Km of LAT1 is a function of specific amino acid residues, and the transporter is comprised of 12 phylogenetically conserved cysteine (Cys) residues. LAT1 is highly sensitive to inhibition by inorganic mercury, but the specific cysteine residue(s) of LAT1 that account for the mercury sensitivity is not known. LAT1 forms a heterodimer with the 4F2hc heavy chain, which are joined by a disulfide bond between Cys160 of LAT1 and Cys110 of 4F2hc. The present studies use site-directed mutagenesis to convert each of the 12 cysteines of LAT1 and each of the 2 cysteines of 4F2hc into serine residues. Mutation of the cysteine residues of the 4F2hc heavy chain of the hetero-dimeric transporter did not affect transporter activity. The wild type LAT1 was inhibited by HgCl2 with a Ki of 0.56 ± 0.11 μM. The inhibitory effect of HgCl2 for all 12 LAT1 Cys mutants was examined. However, except for the C439S mutant, the inhibition by HgCl2 for 11 of the 12 Cys mutants was comparable to the wild type transporter. Mutation of only 2 of the 12 cysteine residues of the LAT1 light chain, Cys88 and Cys439, altered amino acid transport. The Vmax was decreased 50% for the C88S mutant. A kinetic analysis of the C439S mutant could not be performed because transporter activity was not significantly above background. Confocal microscopy showed the C439S LAT1 mutant was not effectively transferred to the oocyte plasma membrane. These studies show that the Cys439 residue of LAT1 plays a significant role in either folding or insertion of the transporter protein in the plasma membrane.  相似文献   

15.
16.
17.
System L is a major nutrient transport system responsible for the Na(+)-independent transport of large neutral amino acids including several essential amino acids. In malignant tumors, a system L transporter L-type amino acid transporter 1 (LAT1) is up-regulated to support tumor cell growth. LAT1 is also essential for the permeation of amino acids and amino acid-related drugs through the blood-brain barrier. To search for in vitro assay systems to examine the interaction of chemical compounds with LAT1, we have investigated the expression of system L transporters and the properties of [14C]L-leucine transport in T24 human bladder carcinoma cells. Northern blot, real-time quantitative PCR and immunofluorescence analyses have reveled that T24 cells express LAT1 in the plasma membrane together with its associating protein 4F2hc, whereas T24 cells do not express the other system L isoform LAT2. The uptake of [14C]L-leucine by T24 cells is Na(+)-independent and almost completely inhibited by system L selective inhibitor BCH. The profiles of the inhibition of [14C]L-leucine uptake by amino acids and amino acid-related compounds in T24 cells are comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [14C]L-leucine uptake is, therefore, mediated by LAT1 in T24 cells. Consistent with LAT1 in Xenopus oocytes, the efflux of preloaded [14C]L-leucine is induced by extracellularly applied substrates of LAT1 in T24 cells. This efflux measurement has been proven to be more sensitive than that in Xenopus oocytes, because triiodothyronine, thyroxine and melphalan were able to induce the efflux of preloaded [14C]L-leucine in T24 cells, which was not detected for Xenopus oocyte expression system. T24 cell is, therefore, proposed to be an excellent tool to examine the interaction of chemical compounds with LAT1.  相似文献   

18.
Basolateral efflux is a necessary step in transepithelial (re)absorption of amino acids from small intestine and kidney proximal tubule. The best characterized basolateral amino acid transporters are y+LAT1-4F2hc and LAT2-4F2hc that function as obligatory exchangers and thus, do not contribute to net amino acid (re)absorption. The aromatic amino acid transporter TAT1 was shown previously to localize basolaterally in rat's small intestine and to mediate the efflux of L-Trp in the absence of exchange substrate, upon expression in Xenopus oocytes. We compared here the amino acid influx and efflux via mouse TAT1 in Xenopus oocytes. The results show that mTAT1 functions as facilitated diffusion pathway for aromatic amino acids and that its properties are symmetrical in terms of selectivity and apparent affinity. We show by real-time RT-PCR that its mRNA is highly expressed in mouse small intestine mucosa, kidney, liver, and skeletal muscle as well as present in all other tested tissues. We show that mTAT1 is not N-glycosylated and that it localizes to the mouse kidney proximal tubule. This expression is characterized by an axial gradient similar to that of the luminal neutral amino acid transporter B0AT1 and shows the same basolateral localization as 4F2hc. mTAT1 also localizes to the basolateral membrane of small intestine enterocytes and to the sinusoidal side of perivenous hepatocytes. In summary, we show that TAT1 is a basolateral epithelial transporter and that it can function as a net efflux pathway for aromatic amino acids. We propose that it, thereby, may supply parallel exchangers with recycling uptake substrates that could drive the efflux of other amino acids.  相似文献   

19.
The availability of amino acids in the brain is regulated by the blood-brain barrier (BBB) large neutral amino acid transporter type 1 (LAT1) isoform, which is characterized by a high affinity (low Km) for substrate large neutral amino acids. The hypothesis that brain amino acid transport activity can be altered with single nucleotide polymorphisms was tested in the present studies with site-directed mutagenesis of the BBB LAT1. The rabbit has a high Km LAT1 large neutral amino acid transporter, as compared to the low Km neutral amino acid transporter at the human or rat BBB. The rabbit LAT1 was cloned from a rabbit brain capillary cDNA library. Alignment of the amino acid sequences of rabbit, human, and rat LAT1 revealed two radical amino acid residues that differ in the rabbit relative to the rat or human LAT1. The G219D mutation had a modest effect on the Km and Vmax of tryptophan transport via cloned rabbit LAT1 in frog oocytes, but the W234L variant reduced the Km by 64% and the Vmax by 96%. Conversely, LAT1 transport of either tryptophan or phenylalanine was nearly normalized when the double mutation W234L/G219D variant was produced. These studies show that marked changes in the affinity and capacity of the LAT1 are caused by single nucleotide polymorphisms and that phenotype can be restored with a double mutation.  相似文献   

20.
LAT2 (system L amino acid transporter 2) is composed of the subunits Slc7a8/Lat2 and Slc3a2/4F2hc. This transporter is highly expressed along the basolateral membranes of absorptive epithelia in kidney and small intestine, but is also abundant in the brain. Lat2 is an energy-independent exchanger of neutral amino acids, and was shown to transport thyroid hormones. We report in the present paper that targeted inactivation of Slc7a8 leads to increased urinary loss of small neutral amino acids. Development and growth of Slc7a8(-/-) mice appears normal, suggesting functional compensation of neutral amino acid transport by alternative transporters in kidney, intestine and placenta. Movement co-ordination is slightly impaired in mutant mice, although cerebellar development and structure remained inconspicuous. Circulating thyroid hormones, thyrotropin and thyroid hormone-responsive genes remained unchanged in Slc7a8(-/-) mice, possibly because of functional compensation by the thyroid hormone transporter Mct8 (monocarboxylate transporter 8), which is co-expressed in many cell types. The reason for the mild neurological phenotype remains unresolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号