共查询到20条相似文献,搜索用时 0 毫秒
1.
Antisense RNA control of gene expression in bacteriophage P22. II. Kinetic mechanism and cation specificity of the pairing reaction. 下载免费PDF全文
The bacteriophage P22 sar RNA-ant mRNA pairing reaction was characterized kinetically. The pairing reaction proceeds by a three-step pathway. First, reversible base pairs form between complementary hairpin loops in sar RNA and ant RNA (Kd = 270 nM). Next, stable duplex formation initiates between single-stranded nucleotides in sar RNA and ant RNA; the ant RNA nucleotides are at the bottom of a hairpin stem that is partially accessible. Concomitant unwinding of one sar RNA hairpin and the complementary ant RNA hairpin then occurs, to form a partially paired intermediate (k2 = 12 min(-1). Finally, a complete duplex forms after unwinding of the other sar RNA hairpin and the complementary ant RNA hairpin (k3 = 7 min(-1). Experiments with sar RNA sequence and length variants demonstrate that the precise structures of both sar RNA hairpins affect the kinetic parameters. The pairing reaction is Mg2+-dependent, and shows high specificity for the required cation. Maximal pairing rates are achieved when more than one Mg2+ ion is bound. The cation-dependence and specificity indicate a requirement for Mg2+-dependent tertiary structure. 相似文献
2.
Assembly-controlled autogenous modulation of bacteriophage P22 scaffolding protein gene expression. 总被引:7,自引:5,他引:2 下载免费PDF全文
In the assembly of bacteriophage P22, precursor particles containing two major proteins, the gene 5 coat protein and the gene 8 scaffolding protein, package the DNA molecule. During the encapsidation reaction all of the scaffolding protein molecules are released intact and subsequently participate in further rounds of DNA encapsidation. We have previously shown that even though it lies in the center of the late region of the genetic map, the scaffolding protein gene is not always expressed coordinately with the remainder of the late proteins and that some feature of the phage assembly process affects its expression. We present here in vivo experiments which show that there is an inverse correlation between the amount of unassembled scaffolding protein and the rate of scaffolding protein synthesis and that long amber fragments of the scaffolding protein can turn down the synthesis of intact scaffolding protein in trans. These results support a model for scaffolding protein regulation in which the feature of the assembly process which modulates the rate of scaffolding protein synthesis is the amount of unassembled scaffolding protein itself. 相似文献
3.
4.
5.
6.
7.
P22 cro? mutants were isolated as one class of phage P22 mutants (cly mutants) that have a very high frequeney of lysogeny relative to wild-type P22. These mutants: (1) do not form plaques and over-lysogenize relative to wild-type P22 after infection of a wild-type Salmonella host; (2) are defective in anti-immunity; and (3) fail to turn off high-level synthesis of P22 c2-repressor after infection.P22 cro? mutations are recessive and map between the P22 c2 and c1 genes. P22 cro? mutations are suppressed by clear-plaque mutations in the c1 gene, one of which is simultaneously cy?. They are also suppressed, but incompletely, by mutations in the c2 (repressor) gene, especially those that do not completely abolish c2 gene function.Salmonella host mutants have been isolated that are permissive for the lytic growth of the P22 cro? mutants. 相似文献
8.
9.
Myron Levine Susan Truesdell T. Ramakrishnan Morley J. Bronson 《Journal of molecular biology》1975,91(4):421-438
Two distantly linked clusters of genes on the Salmonella typhimurium phage P22 chromosome are involved in the control of lysogeny and superinfection immunity. One cluster consists of genes c1, c2, and c3, which are primarily responsible for the establishment and maintenance of lysogeny. It has been proposed that the second cluster consists of three loci which are responsible for the synthesis and control of an antirepressor substance which overcomes the repression mediated by the c2 gene product. This paper reports the isolation of mutants in a locus designated “ant” having characteristics expected of antirepressor mutants. Evidence is presented that the other loci in this second immunity region, mnt and virA, control the expression of the ant gene as represser and promoter/operator, respectively. The interactions of these three loci with each other and with the other immunity region are discussed. 相似文献
10.
11.
E proteins of bacteriophage P22. I. Identification and ejection from wild-type and defective particles. 下载免费PDF全文
V Israel 《Journal of virology》1977,23(1):91-97
Of the nine proteins found in the virion of phage P22, four are ejected into the cell after adsorption. The four ejected proteins, termed E proteins, are gp16, gp20, gp26, and gp7. This was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioactively labeled phage that had been adsorbed to cells and then eluted off the surface with distilled water. Phage particles that lack gp7 (7- particles) or gp20 (20- particles) successfully eject all their E proteins. The 16- particles do not eject gp7. Analysis of phage ghosts showed that they lack gp16, gp20, and gp7, but they have gp26 in close to normal quantities. Our results suggest roles for gp16 and gp26 in DNA and E protein ejection. All four E proteins are possible candidates for roles in helping the phage DNA cross the plasma membrane. 相似文献
12.
13.
Post-transcriptional control of bacteriophage T4 gene 25 expression: mRNA secondary structure that enhances translational initiation. 总被引:1,自引:0,他引:1
R Nivinskas N Malys V Klausa R Vaiskunaite E Gineikiene 《Journal of molecular biology》1999,288(3):291-304
Secondary structure of the mRNA in the translational initiation region is an important determinant of translation efficiency. However, the secondary structures that enhance or facilitate translation initiation are rare. We have previously proposed that such structure may exist in the case of bacteriophage T4 gene 25 translational initiation region, which contains three potential Shine-Dalgarno sequences (SD1, SD2, and SD3) with a spacing of 8, 17, and 27 nucleotides from the initiation codon of this gene, respectively. We now present results that clearly demonstrate the existence of a hairpin structure that includes SD1 and SD2 sequences and brings the SD3, the most typical of these Shine-Dalgarno sequences, to a favourable spacing with the initiation codon of gene 25.Using a phage T7 expression system, we show that mutations that prevent the formation of hairpin structure or eliminate the SD3 sequence result in a decreased level of gp25 synthesis. Double mutation in base-pair V restores the level of gene 25 expression that was decreased by either of the two mutations (C-to-G and G-to-C) alone, as predicted by an effect attributable to mRNA secondary structure. We introduced the mutations into the bacteriophage T4 by plasmid-phage recombination. Changes in the plaque and burst sizes of T4 mutants, carrying single and double mutations in the translational initiation region of gene 25, strongly suggest that the predicted mRNA secondary structure controls (enhances) the level of gene 25 expression in vivo. Hybridization of total cellular RNA with a gene 25 specific probe indicated that secondary structure or mutations in the translational initiation region do not notably affect the 25 mRNA stability. Immunoblot analysis of gp25 in Escherichia coli cells infected by T4 mutants showed that mRNA secondary structure increases the level of gp25 synthesis by three- to fourfold. Since the secondary structure increases the level of gp25 synthesis and does not affect mRNA stability, we conclude that this structure enhances translation initiation. We discuss some features of two secondary structures in the translational initiation regions of T4 genes 25 and 38. 相似文献
14.
15.
RNase P, an enzyme essential for tRNA biosynthesis, can be directed to cleave any RNA when the target RNA is in a complex with a short, complementary oligonucleotide called an external guide sequence (EGS). RNase P from Escherichia coli can cleave phage lambda N mRNA in vitro or in vivo when the mRNA is in a complex with an EGS. The EGS can either be separate from or covalently linked to M1 RNA, the catalytic RNA subunit of RNase P. The requirement for Mg2+ in the reaction in vitro is lower when the EGS is covalently linked to M1 RNA. Substrates made of DNA can also be cleaved by RNase P in vitro in complexes with RNA EGSs. When either kind of EGS construct is used in vivo, burst size of phage lambda is reduced by > or = 40%. Reduction in burst size depends on efficient expression of the EGS constructs. The product of phage lambda gene N appears to function in a stoichiometric fashion. 相似文献
16.
Bacteriophage P22 serves as a model for the assembly and maturation of other icosahedral double-stranded DNA viruses. P22 coat and scaffolding proteins assemble in vitro into an icosahedral procapsid, which then expands during DNA packaging (maturation). Efficient in vitro assembly makes this system suitable for design and production of monodisperse spherical nanoparticles (diameter ≈ 50 nm). In this work, we explore the possibility of controlling the outcome of assembly by scaffolding protein engineering. The scaffolding protein exists in monomer-dimer-tetramer equilibrium. We address the role of monomers and dimers in assembly by using three different scaffolding proteins with altered monomer-dimer equilibrium (weak dimer, covalent dimer, monomer). The progress and outcome of assembly was monitored by time-resolved X-ray scattering, which allowed us to distinguish between closed shells and incomplete assembly intermediates. Binding of scaffolding monomer activates the coat protein for assembly. Excess dimeric scaffolding protein resulted in rapid nucleation and kinetic trapping yielding incomplete shells. Addition of monomeric wild-type scaffold with excess coat protein completed these metastable shells. Thus, the monomeric scaffolding protein plays an essential role in the elongation phase by activating the coat and effectively lowering its critical concentration for assembly. 相似文献
17.
Cloning and expression of the bacteriophage T3 RNA polymerase gene 总被引:11,自引:0,他引:11
18.
19.
Analysis of forward mutations induced by N-methyl-N''-nitro-N-nitrosoguanidine in the bacteriophage P22 mnt repressor gene. 总被引:6,自引:2,他引:4 下载免费PDF全文
We describe the isolation and genetic characterization of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced mutations in the phage P22 mnt repressor gene cloned in plasmid pBR322. Mutations in the mnt repressor gene or its operator on this plasmid, pPY98, confer a tetracycline resistance phenotype, whereas the wild-type plasmid confers tetracycline sensitivity. Cells carrying pPY98 were briefly exposed to MNNG to give 20 to 40% survival and a 50- to 100-fold increase in tetracycline-resistant cells. DNA sequence analysis showed that 29 of 30 MNNG-induced mutations were GC-to-AT transitions and one was an AT-to-GC transition. About 80% of the mutations are in three hotspots. This mutation spectrum is consistent with the proposed mechanism of mutagenic action of MNNG, which involves mispairing of an alkylated base, O6-methylguanine. The mnt gene may be a useful target for determining mutagenic specificity at the nucleotide level because forward mutations are easily isolated, the target size is small, and the DNA sequence changes of mutations can be determined rapidly. 相似文献
20.
Summary The kinetic study of the requirement for X gene product showed that the average burst size of the P22 phage depended on the length of the permissive interval in which the X function was expressed. Results of the temperature shift experiments with the clear plaque recombinants tsX c
2
5
and ts 25.1 c
2
5
gave a complicated pattern of the phage yield response.It is concluded that X gene product, besides the control function in the initiation of the phage development, is involved directly or indirectly in the control of late functions and is required throughout the entire period of the phage development. 相似文献