共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase 总被引:12,自引:0,他引:12 下载免费PDF全文
Körner C Knauer R Stephani U Marquardt T Lehle L von Figura K 《The EMBO journal》1999,18(23):6816-6822
Type IV of the carbohydrate deficient glycoprotein syndromes (CDGS) is characterized by microcephaly, severe epilepsy, minimal psychomotor development and partial deficiency of sialic acids in serum glycoproteins. Here we show that the molecular defect in the index patient is a missense mutation in the gene encoding the mannosyltransferase that transfers mannose from dolichyl-phosphate mannose on to the lipid-linked oligosaccharide (LLO) intermediate Man(5)GlcNAc(2)-PP-dolichol. The defect results in the accumulation of the LLO intermediate and, due to its leaky nature, a residual formation of full-length LLOs. N-glycosylation is abnormal because of the transfer of truncated oligosaccharides in addition to that of full-length oligosaccharides and because of the incomplete utilization of N-glycosylation sites. The mannosyltransferase is the structural and functional orthologue of the Saccharomyces cerevisiae ALG3 gene. 相似文献
2.
Purification and characterization of dolichyl-P-mannose:Man5(GlcNAc)2-PP-dolichol mannosyltransferase 总被引:2,自引:0,他引:2
The dolichyl-P-mannose:dolichyl-PP-heptasaccharide alpha-mannosyltransferase (2.4.1.130), which catalyzes the transfer of mannose from dolichyl-P-mannose to the Man5(GlcNAc)2-PP-dolichol acceptor glycolipid, was solubilized from pig aorta microsomes with 0.5% NP-40 and purified 985-fold by a variety of conventional methods. The partially purified enzyme had a pH optimum of 6.5 and required Ca2+, at an optimum concentration of 8-10 mM, for activity. Mn2+ was only 20% as effective as Ca2+, and Mg2+ was inhibitory. The mannosyltransferase activity was also inhibited by the addition of EDTA to the enzyme, but this inhibition was fully reversible by the addition of Ca2+. The enzyme was quite specific for dolichyl-P-mannose as the mannosyl donor and Man5(GlcNAc)2-PP-dolichol as the mannosyl acceptor. The Km values for dolichyl-P-mannose and the acceptor lipid Man5(GlcNAc)2-PP-dolichol were 1.8 and 1.6 microM. On Bio-Gel P-4 columns and by HPLC, the radiolabeled oligosaccharide formed during incubation of dolichyl-P-[14C]mannose and unlabeled Man5(GlcNAc)2-PP-dolichol with the purified enzyme behaved like Man6(GlcNAc)2. This octasaccharide was susceptible to digestion by endoglucosaminidase H, indicating that the newly added mannose was attached to the 6-linked mannose in an alpha 1,3-linkage. This linkage was further confirmed by acetolysis of the oligosaccharide product [i.e., Man6(GlcNAc)2], which gave a labeled disaccharide as the major product (greater than 90%). 相似文献
3.
4.
Deficiency of GDP-Man:GlcNAc2-PP-dolichol mannosyltransferase causes congenital disorder of glycosylation type Ik 下载免费PDF全文
Schwarz M Thiel C Lübbehusen J Dorland B de Koning T von Figura K Lehle L Körner C 《American journal of human genetics》2004,74(3):472-481
The molecular nature of a severe multisystemic disorder with a recurrent nonimmune hydrops fetalis was identified as deficiency of GDP-Man:GlcNAc(2)-PP-dolichol mannosyltransferase, the human orthologue of the yeast ALG1 gene (MIM 605907). The disease belongs to the group of congenital disorders of glycosylation (CDG) and is designated as subtype CDG-Ik. In patient-derived serum, the total amount of the glycoprotein transferrin was reduced. Moreover, a partial loss of N-glycan chains was observed, a characteristic feature of CDG type I forms. Metabolic labeling with [6-(3)H]glucosamine revealed an accumulation of GlcNAc(2)-PP-dolichol and GlcNAc(1)-PP-dolichol in skin fibroblasts of the patient. Incubation of fibroblast extracts with [(14)C]GlcNAc(2)-PP-dolichol and GDP-mannose indicated a severely reduced activity of the beta 1,4-mannosyltransferase, elongating GlcNAc(2)-PP-dolichol to Man(1)GlcNAc(2)-PP-dolichol at the cytosolic side of the endoplasmic reticulum. Genetic analysis of the patient's hALG1 gene identified a homozygous mutation leading to the exchange of a serine residue to leucine at position 258 in the hALG1 protein. The disease-causing nature of the hALG1 mutation for the glycosylation defect was verified by a retroviral complementation approach in patient-derived primary fibroblasts and was confirmed by the expression of wild-type and mutant hALG1 in the Saccharomyces cerevisiae alg1-1 strain. 相似文献
5.
Kranz C Denecke J Lehle L Sohlbach K Jeske S Meinhardt F Rossi R Gudowius S Marquardt T 《American journal of human genetics》2004,74(3):545-551
This study describes the discovery of a new inherited disorder of glycosylation named "CDG-Ik." CDG-Ik (congenital disorder of glycoslyation type Ik) is based on a defect of human mannosyltransferase I (MT-I [MIM 605907]), an enzyme necessary for the elongation of dolichol-linked chitobiose during N-glycan biosynthesis. Mutations in semiconserved regions in the corresponding gene, HMT-1 (yeast homologue, Alg1), in two patients caused drastically reduced enzyme activity, leading to a severe disease with death in early infancy. One patient had a homozygous point mutation (c.773C-->T, S258L), whereas the other patient was compound heterozygous for the mutations c.773C-->T and c.1025A-->C (E342P). Glycosylation and growth of Alg1-deficient PRY56 yeast cells, showing a temperature-sensitive phenotype, could be restored by the human wild-type allele, whereas only slight restoration was observed after transformation with the patients' alleles. 相似文献
6.
A J Parodi D H Mendelzon G Z Lederkremer J Martin-Barrientos 《The Journal of biological chemistry》1984,259(10):6351-6357
Formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 was detected in rat liver slices and Phaseolus vulgaris seeds incubated with [U-14C]glucose. Similar compounds were not synthesized in Saccharomyces cerevisiae cells incubated under similar conditions. Rat liver microsomes were incubated with [glucose-U-14C] Glc3Man9GlcNAc2-P-P-dolichol or UDP-[U-14C]Glc as glycosyl donors. Only in the latter condition protein-linked Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed. Addition of mannooligosaccharides that strongly inhibited alpha 1-2-mannosidases to incubation mixtures containing rat liver microsomes and UDP-[U-14C]Glc did not prevent formation of protein-bound Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 . Furthermore, the presence of amphomycin in reaction mixtures containing liver membranes and UDP-[U-14C]Glc completely abolished synthesis of glucosylated derivatives of dolichol without affecting formation of protein-linked Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 . The results reported above indicated that under the experimental conditions employed protein-bound Glc1Man9GlcNAc2 , Glc1Man8GlcNAc2 , and Glc1Man7GlcNAc2 were formed by glucosylation of unglucosylated oligosaccharides. Results obtained in pulse-chase experiments performed in vitro also supported this conclusion. UDP-Glc appeared to be the donor of the glucosyl residues. The rough endoplasmic reticulum was found to be the main subcellular site of protein glucosylation. It is tentatively suggested that this process could prevent extensive degradation of oligosaccharides by mannosidases during transit of glycoproteins through the endoplasmic reticulum. 相似文献
7.
Mora-Montes HM López-Romero E Zinker S Ponce-Noyola P Flores-Carreón A 《Glycobiology》2004,14(7):593-598
A soluble alpha-mannosidase from Candida albicans was purified to homogeneity by sequential size exclusion, ion exchange, and affinity chromatographies in columns of Sepharose CL6B, DEAE Bio-Gel A, and Concanavalin A Sepharose 4B, respectively. Analytical electrophoresis of the purified preparation in 10% SDS-polyacrylamide gels stained with Coomassie blue revealed a single polypeptide of 43 kDa that was responsible for enzyme activity. The purified enzyme primarily trimmed Man(9)GlcNAc(2) to produce Man(8)GlcNAc(2) isomer B and mannose as a function of time of incubation up to 12 h at 37 degrees C. Prolonged incubation with the enzyme resulted in the accumulation after 24 h of other oligosaccharides corresponding to Man(7)GlcNAc(2) and probably Man(6)GlcNAc(2). These two products were also observed when Man(8)GlcNAc(2) isomer B instead of Man(9)GlcNAc(2) was used as substrate. Other oligosaccharides, such as Man(6)GlcNAc(2)-Asn, Man(5)GlcNAc(2)-Asn, and the alpha1,3- and alpha1,6-linked mannobiosides, were not hydrolyzed at all. These properties are consistent with an alpha1,2-mannosidase that may represent a new member of the glycosylhydrolase family 47. 相似文献
8.
The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl pyrophosphate. Whereas early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9GlcNAc2-PP-Dol on the lumenal side use Dol-P-Man. We have investigated these later stages in vitro using a detergent-solubilized enzyme extract from yeast membranes. Mannosyltransfer from Dol-P-Man to [3H]Man5GlcNAc2-PP-Dol with formation of all intermediates up to Man9GlcNAc2-PP-Dol occured in a rapid, time- and protein-dependent fashion. We find that the initial reaction from Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol is independent of metal ions, but further elongations need Mn2+ that can be partly replaced by Mg2+ or Ca2+. Zn2+ or Cd2+ ions were found to inhibit formation of Man(7-9)GlcNAc2-PP-Dol, but do not affect synthesis of Man6GlcNAc2-PP-Dol. Extension did not occur when the acceptor was added as a free Man5GlcNAc2 oligosaccharide or when GDP-Man was used as mannosyl donor. The alg3 mutant was described to accumulate Man5GlcNAc2-PP-Dol. We expressed a functional active HA-epitope tagged ALG3 fusion and succeeded to selectively immunoprecipitate the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase activity from the other enzymes of the detergent extract involved in the subsequent mannosylation reactions. This demonstrates that Alg3p represents the mannosyltransferase itself and not an accessory protein involved in the reaction. 相似文献
9.
A J Parodi D H Mendelzon G Z Lederkremer 《The Journal of biological chemistry》1983,258(13):8260-8265
Calf thyroid slices incubated with [U-14C]glucose synthesized protein-bound Glc3Man9GlcNAc2, Glc2-Man9GlcNAc2, Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2. Although label in the glucose residues of the last three compounds could be detected within 5 min of incubation, appearance of radioactivity in the mannose residues of the alpha-mannosidase-resistant cores of Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 took more than 30 and 60 min, respectively, to appear after label was detected in the same mannose residues of Glc1Man9GlcNAc2. The glucose residues were removed upon chasing the slices with unlabeled glucose. The last compound to disappear was Glc1Man9GlcNAc2. Calf thyroid microsomes incubated with UDP-[U-14C]Glc synthesized the five protein-bound oligosaccharides mentioned above. Although addition to GDP-Man to the incubation mixtures greatly diminished the formation of Glc3Man9GlcNAc2 bound either to dolichol-P-P or to protein, labeling of Glc1Man9GlcNAc2, Glc1Man8GlcNAc2, and Glc1Man7GlcNAc2 was not affected. Addition of kojibiose prevented deglucosylation of protein-bound Glc3Man9GlcNAc2 without affecting the formation of Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 and only partially diminishing that of Glc1Man9GlcNAc2. These results indicate that Glc1Man8GlcNAc2 and Glc1Man7GlcNAc2 were formed by glucosylation of the unglucosylated species and not be demannosylation of Glc1Man9GlcNAc2 and that probably part of the latter compound was formed in the same way. 相似文献
10.
Davidson RC Nett JH Renfer E Li H Stadheim TA Miller BJ Miele RG Hamilton SR Choi BK Mitchell TI Wildt S 《Glycobiology》2004,14(5):399-407
N-glycans are synthesized in both yeast and mammals through the ordered assembly of a lipid-linked core Glc(3)Man(9)GlcNAc(2) structure that is subsequently transferred to a nascent protein in the endoplasmic reticulum. Once folded, glycoproteins are then shuttled to the Golgi, where additional but divergent processing occurs in mammals and fungi. We cloned the Pichia pastoris homolog of the ALG3 gene, which encodes the enzyme that converts Man(5)GlcNAc(2)-Dol-PP to Man(6)GlcNAc(2)-Dol-PP. Deletion of this gene in an och1 mutant background resulted in the secretion of glycoproteins with a predicted Man(5)GlcNAc(2) structure that could be trimmed to Man(3)GlcNAc(2) by in vitro alpha-1,2-mannosidase treatment. However, several larger glycans ranging from Hex(6)GlcNAc(2) to Hex(12)GlcNAc(2) were also observed that were recalcitrant to an array of mannosidase digests. These results contrast the far simpler glycan profile found in Saccharomyces cerevisiae alg3-1 och1, indicating diverging Golgi processing in these two closely related yeasts. Finally, analysis of the P. pastoris alg3 deletion mutant in the presence and absence of the outer chain initiating Och1p alpha-1,6-mannosyltransferase activity suggests that the PpOch1p has a broader substrate specificity compared to its S. cerevisiae counterpart. 相似文献
11.
12.
B J Jackson C D Warren B Bugge P W Robbins 《Archives of biochemistry and biophysics》1989,272(1):203-209
Transfer of truncated oligosaccharides to protein in vivo and the structure of Man2GlcNAc2 synthesized by intact yeast (Saccharomyces cerevisiae) were investigated in the alg2 mutant. At the nonpermissive temperature the alg2 mutant accumulates lipid-linked oligosaccharides that migrate on Bio-Gel P4 in the range expected for Man2GlcNAc2 and Man1GlcNAc2 (T.C. Huffaker and P.W. Robbins (1983) Proc. Natl. Acad. Sci. USA 80, 7466-7470). We characterized the oligosaccharides, derived from protein and lipid, by comigration with standards on HPLC and by Smith degradation followed by HPLC. Man2GlcNAc2 and Man1GlcNAc2 are found on protein in alg2, since their release from a protein-containing precipitate of alg2 cells is N-glycanase (peptide-N4[N-acetyl-beta-glucosaminyl]asparagine amidase) dependent. Transfer also occurred in alg2/pAC3 cells, which carry ALG2 on a multicopy plasmid that confers partial correction of the oligosaccharide phenotype. The alg2/pAC3 cells are viable at 36 degrees C. Two isomers of Man2GlcNAc2, Man1----3ManGlcNAc2 and Man1----6ManGlcNAc2, were present on lipid and protein. The transfer of Man2GlcNAc2 and Man1GlcNAc2 to protein by intact cells supports topological models that postulate access by early intermediates to the lumen of the endoplasmic reticulum. 相似文献
13.
Congenital disorders of glycosylation: glycosylation defects in man and biological models for their study 总被引:7,自引:0,他引:7
Several inherited disorders affecting the biosynthetic pathways of N-glycans have been discovered during the past years. This review summarizes the current knowledge in this rapidly expanding field and covers the molecular bases of these disorders as well as their phenotypical consequences. 相似文献
14.
N-linked glycosylation is the most frequent modification of secretory proteins in eukaryotic cells. The highly conserved glycosylation process is initiated in the endoplasmic reticulum (ER), where the Glc(3)Man(9)GlcNAc(2) oligosaccharide is assembled on the lipid carrier dolichylpyrophosphate and then transferred to selected asparagine residues of polypeptide chains. In recent years, several inherited human diseases, congenital disorders of glycosylation (CDG), have been associated with deficiencies in this pathway. The ER-associated glycosylation pathway has been studied in the budding yeast Saccharomyces cerevisiae, and this model system has been invaluable in elucidating the molecular basis of novel types of CDG. 相似文献
15.
16.
Expression of Glc3Man9GlcNAc2-PP-Dol is a prerequisite for capillary endothelial cell proliferation.
J A Martínez I Torres-Negrón L A Amigó D K Banerjee 《Cellular and molecular biology, including cyto-enzymology》1999,45(1):137-152
Protein N-glycosylation has been proposed to be intimately involved in the migration, proliferation and differentiation of endothelial cells. Using a synchronized, non-transformed capillary endothelial cell line from bovine adrenal medulla as a model, and the N-glycosylation inhibitor, tunicamycin, we have elucidated the molecular basis of the dolichol pathway in the angiogenic process. The synchronized culture required approximately 68 hrs. to complete one cell cycle, cells spending nearly 36 hrs. in G1 phase, 8 hrs. in S phase and 24 hrs. in G2 + M phase when maintained in 2% fetal bovine serum (heat-inactivated). The cell cycle however, was shortened due to a reduction of the G1 phase by 12-16 hrs. when the serum concentration was increased to 10%, or when beta FGF (1 or 10 nanogram) was added into the culture media containing 2% serum. Light microscopy and scanning electron microscopy both supported these proliferative responses. Serum concentration below 2% arrested cell proliferation and induced capillary lumen-like structure formation with 48 hrs. Expression of the blood clotting antigen factor VIII:C (a M(r) 270,000 dalton N-linked glycoprotein and a marker of our endothelial cells) preceded the endothelial cell proliferation and established a temporal relationship. Tunicamycin, an inhibitor of Glc3Man9GlcNAc2-PP-Dol biosynthesis, a prerequisite for N-linked protein glycosylation in the ER-inhibited the cell growth and proliferation in a time and dose-dependent manner with a concomitant accumulation of immunopositive, non-glycosylated factor VIII:C in the conditioned media. Tunicamycin also caused surface blebbing and induction of programmed cell death (PCD)(apoptosis) within 32 hrs. Absence of cellular growth and proliferation, surface blebbing and the induction of PCD in the presence of tunicamycin, provided conclusive evidence that normal expression of Glc3Man9GlcNAc2-PP-Dol is an essential event for capillary proliferation during angiogenesis. 相似文献
17.
Fran?ois Foulquier Sandrine Duvet André Klein Anne-Marie Mir Frédéric Chirat René Cacan 《European journal of biochemistry》2004,271(2):398-404
Endoplasmic reticulum-associated degradation of newly synthesized glycoproteins has been demonstrated previously using various mammalian cell lines. Depending on the cell type, glycoproteins bearing Man9 glycans and glycoproteins bearing Man5 glycans can be efficiently degraded. A wide variety of variables can lead to defective synthesis of lipid-linked oligosaccharides and, therefore, in mammalian cells, species derived from Man9GlcNAc2 or Man5GlcNAc2 are often recovered on newly synthesized glycoproteins. The degradation of glycoproteins bearing these two species has not been studied. We used a Chinese hamster ovary cell line lacking Glc-P-Dol-dependent glucosyltransferase I to generate various proportions of Man5GlcNAc2 and Man9GlcNAc2 on newly synthesized glycoproteins. By studying the structure of the soluble oligomannosides produced by degradation of these glycoproteins, we demonstrated the presence of a higher proportion of soluble oligomannosides originating from truncated glycans, showing that glycoproteins bearing Man5GlcNAc2 glycans are degraded preferentially. 相似文献
18.
《Biochimica et Biophysica Acta (BBA)/General Subjects》2020,1864(10):129674
About half of the eukaryotic proteins bind biometals that participate in their structure and functions in virtually all physiological processes, including glycosylation. After reviewing the biological roles and transport mechanisms of calcium, magnesium, manganese, zinc and cobalt acting as cofactors of the metalloproteins involved in sugar metabolism and/or glycosylation, the paper will outline the pathologies resulting from a dysregulation of these metals homeostasis and more particularly Congenital Disorders of Glycosylation (CDGs) caused by ion transporter defects. Highlighting of CDGs due to defects in SLC39A8 (ZIP8) and TMEM165, two proteins transporting manganese from the extracellular space to cytosol and from cytosol to the Golgi lumen, respectively, has emphasized the importance of manganese homeostasis for glycosylation. Based on our current knowledge of TMEM165 structure and functions, this review will draw a picture of known and putative mechanisms regulating manganese homeostasis in the secretory pathway. 相似文献
19.
The methylotrophic yeast Ogataea minuta IFO 10746 was selected as a suitable strain for producing human-compatible glycoproteins by means of analyses of its cell-wall mannoproteins. First, the OmURA3 gene encoding an orotidine-5'-phosphate decarboxylase was cloned and disrupted to generate a host strain with a uracil auxotrophic marker. Second, both the promoters and the terminators from the OmAOX1 gene encoding an alcohol oxidase for an inducible promoter, or those from the OmTDH1 gene encoding a glyceraldehyde-3-phosphate dehydrogenase for a constitutive promoter, were isolated to construct an expression vector system for heterologous genes. Next, the OmOCH1 gene encoding a starting enzyme with alpha-1,6-mannosyltransferase activity to form a backbone of the N-linked outer sugar chain peculiar to yeast was disrupted, and an alpha-1,2-mannosidase gene from Aspergillus saitoi with an endoplasmic reticulum retention signal (HDEL) under the control of the OmAOX1 promoter was introduced to convert the sugar chain to Man5GlcNAc2 in O. minuta. As a result, we succeeded in breeding a new methylotrophic yeast, O. minuta, producing a Man5GlcNAc2-high-mannose-type sugar chain as a prototype of a human-compatible sugar chain. We also elucidate here the usefulness of the strategy for producing human-compatible sugar chains in yeast. 相似文献
20.
Eva Richard Ana I. Vega Belén Pérez Ramón Velázquez Celia Pérez-Cerdá 《Biochemical and biophysical research communications》2009,379(2):267-374
Congenital disorders of glycosylation (CDG) comprise a family of inherited multisystemic disorders resulting from the deficiency of glycosylation pathways. N-glycosylation defects are classified as two biochemical and genetic established types, of which CDG-Ia is the most frequent. We performed 2-DE proteomic analysis on serum from two functional hemizygous CDG-Ia patients bearing T237M and D65Y missense changes. Comparative analysis of control/patient serum proteome allowed us to identify differential expression of 14 proteins. The most remarkable groups included proteins involved in immune response, coagulation mechanism and tissue protection against oxidative stress. The patient bearing D65Y mutation had less favourable clinical outcome and showed more abnormalities in the spot patterns, suggesting that the proteomic results might also be correlated with the phenotype of CDG patients. This study describes for the first time the differential expression of α2-macroglobulin, afamin, fibrin and fibrinogen in CDG disorder and shows how the proteomic approach might be useful for understanding its physiopathology. 相似文献