首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we examined the reproducibility of several stains used to measure nuclear DNA by image cytometry. The specimens were touch preparations of liver and testis from mouse and liver, intestine and brain from rat, fixed in either neutral formalin or Carnoy's solution. The tested stains included four Feulgen methods (pararosaniline, azure-A, thionin and acriflavine), the gallocyanine-chromalum stain and two fluorescent stains (acridine orange and propidium iodide). Absorbance measurements employed a video image analysis system; fluorescence measurements were from a scanning microspectrophotometer. The acriflavine-Feulgen stain was analyzed for both absorbance and fluorescence. All seven stains were quantitative for DNA and gave reproducible results. The absorbance measurements had a lower coefficient of variation (CV) than the fluorescence values. In a nested analysis of variance of the pararosaniline Feulgen stains, cell-to-cell variability accounted for 67% of the total variance; slide-to-slide, 9%; and batch-to-batch, 24%. These values did not change significantly when the staining was performed in an automatic staining machine. For DNA analysis using image cytometry, we conclude that the Feulgen staining technique is the most useful. In particular, acriflavine-Feulgen-stained cells fixed in Carnoy's fluid give the least variation between measurement values and the most accurate ratios between the separate ploidy groups. For fluorescence cytometry we recommend Carnoy's fixation and the acriflavine-Feulgen stain because of its narrow CV as compared to acridine orange and propidium iodide.  相似文献   

2.
Five distinct nuclear stains and staining procedures which utilize basic fuchsin as the dye have been studied, compared and tested on a Feulgen-weak fungus, Blastomyces dermatitidis, and other fungi.

Aqueous basic fuchsin has been shown to be an excellent, though impermanent, stain with which to study the nuclei of this and other fungi. The conditions under which formaldehyde acts as a mordant for basic fuchsin and produces a permanent nuclear stain have been established.

Comparison of crystal violet and basic fuchsin suggests that the mordanting action of the aldehyde operates through the para-amino groups of the dye. Certain other basic dyes were not mordanted by formaldehyde.

Gentle acid hydrolysis of the tissues has been found to be essential both to the specificity of the dye as a nuclear stain and to the mordanting effect of the aldehyde.

The possible relationship of these observations to the Feulgen reaction is discussed. A protocol for the method developed is presented.  相似文献   

3.
Comparative measurements of nuclei or chromosomes following different treatments are seldom made on squash preparations, since variations which arise during preparation of the slides may easily mask genuine treatment differences. This drawback may be overcome by making use of dyes which, when substituted for basic fuchsin in Schiff's reagent, will give a Feulgen-type reaction with chromatin. By selecting dyes of contrasting colours, it is possible to intermingle cells from different treatments in the same squash preparation, and to perform comparative measurements on adjacent cells.

Suitable dyes which contrast well with basic fuchsin are toluidine blue, or azure A (which stain chromatin blue) and chrysoidin yellow (which stains chromatin yellow). These dyes are made up and used in the same manner as ordinary Feulgen reagent.

Samples of cells from the two treatments to be compared are fixed, washed and hydrolysed in 1 N HCl at 60 C. One sample is stained in regular Feulgen reagent, the other in the contrast dye, then both are macerated and thoroughly mixed on the same slide in a single drop of 45% acetic acid. A coverslip is added, and the preparation flattened to the required amount and made permanent after dry-ice removal of the cover. This technique may also be utilised for comparative grain counts in autoradiography, provided that the contrast dye does not cause chemical fogging of the film.  相似文献   

4.
The possibility of using the Feulgen nucleal reaction for a quantitative cytochemical estimation of desoxyribonucleic acid (DNA) was investigated. The intensity of the reaction in nuclei was determined by absorption measurements with the microscope. The accuracy of such measurements was tested by comparison with measurements on the same material with a Beckman spectrophotometer. The values obtained with the microscope agreed within a few per cent with those obtained with the Beckman spectrophotometer. Furthermore, the errors introduced by uneven distribution of absorbing material, by variations in the numerical aperture of the system, and by variation in the area used on the phototube were investigated empirically. The following variables were studied with regard to their effect on the intensity of the Feulgen reaction: type of fixation, time of hydrolysis after acetic acid-alcohol and formalin fixation, time of staining in leucobasic fuchsin, method of preparation of leucobasic fuchsin. The intensity of the Feulgen reaction in liver and erythrocyte nuclei of various vertebrates, fixed in acetic acid-alcohol, was then compared with the DNA content of these nuclei as determined by chemical analysis on a known number of nuclei. The intensity of the reaction was found to be proportional to the DNA content of the nuclei, if nuclei of similar structure and DNA concentration were compared. In nuclei of different structure and DNA concentration (i.e. liver and erythrocyte nuclei), fixed in acetic acid-alcohol, the intensity of the Feulgen reaction was, however, not proportional to the DNA content. This difficulty was overcome by isolating nuclei in sucrose and by fixing them in formalin. Uniform distribution of DNA and therefore uniform coloring after the Feulgen reaction were thus obtained. In such nuclei with uniform distribution of absorbing material the Feulgen reaction was found to be proportional to the DNA content of nuclei, even if they differed greatly in their DNA concentration. The Feulgen nucleal reaction is not quantitative in an absolute sense. For absolute determinations nuclei of known DNA content must be treated together with the unknown material to serve as standard. From these data it therefore appears possible to determine cytochemically relative amounts of DNA in cellular structures by measuring their absorption after treatment with the Feulgen nucleal reaction.  相似文献   

5.
A previous treatment with 10% HC1 in tetrahydrofuran for 2-3 min at 37° C hydrolyses DNA while substantially preserving RNA in formol-fixed paraffin sections. If this treatment is followed by dyeing with basic fuchsin-thiazine or oxazine mixtures, the basic fuchsin stains DNA, the blue dye cytoplasmic RNA, though nucleolar RNA is not well preserved. A specimen sequence is to treat the hydrolysed section with a mixture of 1% aqueous trimethylthionin (Chroma), 15 ml; 0.1% basic fuchsin (G. T. Gurr), 4 ml; and glacial acetic acid, 1 ml. Stain for 15-30 min, dehydrate in acetone, then pass sections through xylene to polystyrene. The specificity of this stain for cytoplasmic RNA is sharper than that of methyl green-pyronin; hence the technic given can be a useful addition to the standard Unna-Pappenheim procedure.  相似文献   

6.
By comparing spectral absorption curves of representative staining solutions and of substances stained with these solutions it is shown that information may be obtained regarding chemical changes associated with the staining process. The stains used in these determinations were acid fuchsin, anilin blue, azo-carmine G, basic fuchsin, eosin Y, orange G, picric acid and Sudan IV. The substrates stained were gelatin, tendon, blood plasma, thymus gland and fat.

Aqueous basic fuchsin and fuchsin-sulfurous reagent to which formalin was added (Setoff reaction) are different stains. The spectral absorption curves for staining solutions and substances stained with the solutions were comparable. Within the limitations of the spectrophotometry methods and stains employed, there was no evidence of significant chemical alteration in the chromophore radicals of the stains associated with the process of tissue staining.  相似文献   

7.
Some of the factors affecting the recoloration of Schiff's Reagent (fuchsin sulfurous acid or FSA) by formaldehyde have been studied spectrophotometrically to determine the optimal conditions for the reaction of this reagent with aldehydes.

Of the various reducing agents utilized in the preparation of the leuco dye from basic fuchsin, sodium sulfite and bisulfite proved to be the most satisfactory for obtaining in the reagent maximal sensitivity to recoloration with minimal quantitative variation of results.

The relative proportions of reducing agent and basic fuchsin present in die leuco dye determine its sensitivity to recoloration. Under the conditions of the present experiments, greatest reagent recoloration was obtained when the leuco dye contained 0.01 mole of sodium bisulfite and 0.001 mole of basic fuchsin per 100 ml., a ratio of 10/1.

The recoloration of a given amount of FSA is related to the amount of aldehyde and the temperature of the reaction.

The present experiments indicate the desirability of standardizing the composition of FSA and the conditions under which it is used, if the results of different investigators are to be readily reproduced or compared.  相似文献   

8.
Preliminary studies have been made of some of the new dye compounds described in the preceding paper.1 The results have apparently shown that they may have some practical application in staining procedures. In general all act similarly to the customary phenol mixtures employed—for instance an aqueous solution of new fuchsin hydroquinone was found to stain the tubercle bacilli very well and similarly to the usually employed Ziehl-Nielson carbol-fuchsin. The resorcinolate and phenolate preparations also acted in a similar manner. In general the compounds, when sufficiently soluble, appear to afford very intense stains, which, however, are difficult to differentiate. In fact, to date, this has precluded their practical application in tissue studies.  相似文献   

9.
Summary A technique is described for the production of detailed and richly contrasting G-band patterns in human prometaphase chromosomes with the aid of the triphenylmethane dye basic fuchsin. The usefulness of this method is illustrated by its application for the precise analysis of two chromosome 11 rearrangements. It is also demonstrated that high-resolution banding with basic fuchsin can reveal bands not present in the international standard idiogram of human prophase chromosomes (ISCN 1981). The technique described can also be used for easy recognition of the late replicating X chromosome, which stains darker than its early replicating homologue. A preliminary analysis of the late replicating X chromosomes in a 49,XXXXY individual suggests that the three supernumerary X chromosomes do not necessarily replicate synchronously.  相似文献   

10.
The most distinctive property of aldehyde fuchsin is its staining of certain nonionic proteins and peptides in unoxidized cells and tissues. These substances include granules of pancreatic islet B cells, elastic fibers and hepatitis B surface antigen. Aldehyde fuchsin made from two different basic fuchsins, each certified by the Biological Stain Commission and labelled C.I. (Colour Index) No. 42500 (pararosanilin), did not stain pancreatic B cells at all. Stain Commission's records and retesting showed that each of the "faulty" basic fuchsins was not pararosanilin, but rosanilin, whose Colour Index number is 42510. These basic fuchsins were labelled with the wrong Colour Index number when packaged. Additional basic fuchsins were coded by V.M.E. and tested by R.W.M. for their capacity to make satisfactory aldehyde fuchsins. Only certain of these aldehyde fuchsins stained unoxidized pancreatic islet B cells. The same aldehyde fuchsins stained elastic fibers strongly. Each basic fuchsin whose aldehyde fuchsin was judged satisfactory proved to be pararosanilin. Aldehyde fuchsin solutions made from other basic fuchsins stained elastic fibers only weakly and did not stain pancreatic B cells at all in unoxidized sections. Each basic fuchsin whose aldehyde fuchsin was unsatisfactory proved to be rosanilin. It appears that only aldehyde fuchsin made from pararosanilin stains unoxidized pancreatic B cell granules dependably. We found that basic fuchsins from additional lots of Commission-certified pararosanilin and rosanilin were also labelled with incorrect Colour Index numbers when packaged. Steps were taken to prevent recurrences of such mislabelling which has made it difficult until now to correlate differences in the properties of pararosanilin and rosanilin. A table is provided of all basic fuchsins that have been certified by the Biological Stain Commission since 1963 when they began the practice of subdesignating basic fuchsins according to whether they are pararosanilins or nonpararosanilins. The consumer can readily determine from the certification number on the label the correct subdesignation of any Commission-certified basic fuchsin listed here. Until now, mislabelling of some lots of pararosanilin as rosanilin and vice-versa has confused and frustrated the users of basic fuchsins in other applications such as the carbol fuchsin staining of tubercle bacilli and certain cytochemical tests, e.g. esterase and acid phosphatase, that utilize hexazotized pararosanilin as a coupling reagent. Consumers experiencing trouble with any Commission-certified dye should look to the Biological Stain Commission for help. This is an important reason for purchasing, whenever possible, only Biological Stain Commission certified dyes.  相似文献   

11.
Multiple skin sections from three nonhuman primates (Macaca mulatta) and three hairless guinea pigs (Cavia porcellus) were stained with 12 different histologic stains to determine whether mast cells could be selectively stained for morphometric analysis using an image analysis system (IAS). Sections were first evaluated with routine light microscopy for mast cell granule staining and the intensity of background staining. Methylene blue-basic fuchsin and Unna's method for mast cells (polychrome methylene blue with differentiation in glycerin-ether) stained mast cell granules more intensely than background in both species. Toluidine blue-stained sections in the guinea pig yielded similar results. Staining of the nuclei of dermal connective tissue was enhanced with the methylene blue-basic fuchsin and toluidine blue stains. These two stains, along with the Unna's stain, were further evaluated on an IAS with and without various interference filters (400.5-700.5 nm wavelengths). In both the methylene blue-basic fuchsin and toluidine blue stained sections, mast cell granules and other cell nuclei were detected together by the IAS. The use of interference filters with these two stains did not distinguish mast cell granules from stained nuclei. Unna's stain was the best of the 12 stains evaluated because mast cell granule staining was strong and background staining was faint. This contrast was further enhanced by interference filters (500.5-539.5 nm) and allowed morphometric measurements of mast cells to be taken on the IAS without background interference.  相似文献   

12.
Seventeen Grübler dyes produced in Germany between 1880 and 1939 were examined in this study. These dyes were: fuchsin-bacillus, diamond fuchsin, fuchsin S acid, rubin S, safranin O water soluble, safranin yellowish water soluble, methyl eosin, Sudan III, scarlet R, auramine, orange G, aniline blue, pyronin, carmine, lithium carmine, hematein and aurantia. Spectrophotometry and staining characteristics were used to determine the maximum absorbance and efficacy of each dye in common staining techniques. The spectral curves and staining characteristics of these dyes compared well with modern dyes used as controls. Fuchsin bacillus and diamond fuchsin are synonyms for basic fuchsin. Fuchsin S acid and rubin S are synonyms for acid fuchsin. The scarlet R sample was the same as the Sudan III. The two safranins were the same. The basic fuchsin samples were unsuitable for preparation of Schiff's reagent. Both basic fuchsin and pyronin samples were less concentrated than modern counterparts. It is noteworthy that the dyes worked well after up to 100 years in storage, and this observation indicates that dyes can have a long shelf life when stored in cool, dry, air-tight conditions.  相似文献   

13.
Four fuchsin analogues (Pararosaniline, Rosaniline. Magenta II and New Fuchsin) usually found in Basic Fuchsin have been applied as chemically pure dyes to the Feulgen-technique. Total nuclear absorption and wavelength of the absorption maximum were measured by microspectrophotometry in Feulgen stained cytological and plastic embedded histological liver samples, and in lymphocyte nuclei in human peripheral blood smears; absorption spectra of Feulgen stained DNA-polyacrylamide films were determined by spectrophotometry. The grey value distribution of tetraploid liver cell nuclei was calculated with an image analyzer. The staining characteristics of the pure dyes were compared to commercial fuchsin samples from various suppliers. Reverse phase thin layer chromatography was used for characterization and qualitative separation of commercial batches. Pure fuchsin analogues were all equally suitable for Feulgen staining: with respect of staining intensity all pure fuchsin dyes gave nearly identical results with a bathochromic shift of the absorption maximum from Pararosaniline to New Fuchsin of about 8 microns. Differences in staining results observed among the commercial dyes were due to varying dye content, contamination with an acridine-like fluorescent compound or simply mislabelling of samples. Pure Pararosaniline is recommended for a standard Feulgen technique.  相似文献   

14.
This is a brief overview of the goals, evolution, and present status of the Biological Stain Commission. The main function of the Commission is the testing and certification of dye batches intended for biological applications. The testing is supported by charges made for batch testing and by the sale of certification labels affixed to individual dye containers. Submission of dyes for testing is voluntary, depending on the cooperation of the companies who sell them and the consumers who buy them. The supportive role of the University of Rochester School of Medicine and Dentistry—both past and present—is not well known and should be. Increasingly federal regulations affect the production, availability, and cost of dyes. Commission income from the sale of labels has decreased in recent years. Continuation of its work requires changes that will produce more income. Much dye is now sold in solutions instead of dry powders. The value of using Stain Commission certified dyes whenever possible is illustrated by the case of basic fuchsin. Years ago this dye was a mixture. Most basic fuchsin now marketed consists mainly of either pararosanilin (Colour Index No. 42500) or rosanilin (C.I. No. 42510). The Biological Stain Commission discovered that some certified batches of both pararosanilin and rosanilin sold as “basic fuchsin” had incorrect C.I. numbers on the labels. Sometimes that caused failure of the aldehyde fuchsin stain. Unless made with pararosanilin, aldehyde fuchsin does not stain pancreatic islet B-cells, elastic fibers, and hepatitis B surface antigen in unoxidized sections. Mislabelling by packagers may interfere with other applications of pararosanilin and rosanilin. The Commission acted to publicize and correct this problem. Biological Stain Commission publications help educate microscopists and histotechnologists about dyes and their best use. Stain Commission representatives from member scientific societies provide valuable input about changes in the availability and quality of such dyes as hematoxylin and others; they also provide useful feedback to their societies about dye problems. Each new generation of biologists and histotechnologists should be taught the importance of using only Stain Commission certified stains when available. They should be taught also to notify the Stain Commission whenever they experience problems with any certified dye.  相似文献   

15.
Summary A dual laser beam excitation device for flow analysis of biological particles has been developed. The aid of this arrangement is to increase the range of fluorescent agents employed so far in quantitative and qualitative cytochemistry. Combining an argon ion and a helium-cadmium laser two color fluorescence measurements were performed employing propidium iodide as a DNA stain and fluorescamine which stains total protein in fixed cells. Energy transfer processes between the antibiotic and DNA specific dye mithramycin and propidium iodide both being bound to nuclear chromatin were analyzed. Utilization of energy transfer processes is generally discussed as a mean to extract information about the structure and conformation of nuclear chromatin in situ. The application of a crypton ion laser with three lines near 400 nm and a single line at 350 nm having a light output in each range of nearly one Watt gives the opportunity of utilizing DNA fluorochromes which have an excitation maximum in the deep blue region. DNA spectra are shown employing mithramycin, the benzimidazol derivative 33258 (Hoechst) and the indol compound DAPI which has a high DNA specifity combined with a great stability under UV illumination. By separating two focussed laser beams at their intereecting points with the liquid sample stream the trajectory of each flowing cell crosses the beams sequentially, which causes a solitary dual excitation of each cell. The advantages of a solitary excitation device compared with a simultaneous one is discussed.This work has been supported by the ministry of research and technology (FRG), contract No. 01VH015-B13MT 225a  相似文献   

16.
The results of experiments on the specificity of the Feulgen reaction for thymonucleic acid do not substantiate the observations of Carr. The staining is not localized in the nucleus because of the destruction of cytoplasmic constituents following acid hydrolysis or because of the absorbing power of chromatin, since the cytoplasm and nucleolus can still be stained by numerous dyes. The effects of factors such as the acid hydrolysis and sulfurous acid washing baths upon the cytologic distribution of dye were studied on tissues stained with (1) fuchsin-sulfurous-acid (Feulgen) reagent, (2) fuchsin-sulfurous-acid reagent colorized by the addition of formaldehyde, (3) basic fuchsin in one-tenth normal HCl, and (4) basic fuchsin in distilled water. Under comparable conditions, important differences between these stains were found in the effects of preliminary hydrolysis; rapidity of staining and destaining; extractability of dye from tissues by water, alcohol, and sulfurous acid solution; rate of fading from exposure to light; localization of stain in tissues; and differences in hue. After treating tissues with desoxyribonuclease, an enzyme which acts only upon thymonucleic acid, cells do not stain with the Feulgen technic. Following removal of nucleic acid from chromatin by hydrolysis, attempts to demonstrate an absorption of thymonucleic acid upon the residual nuclear protein were unsuccessful.

The evidence for and against the specificity is discussed. In agreement with most other investigators, on the basis of the evidence in the literature as well as these experiments, it is concluded that when properly controlled the Feulgen reaction is relatively specific for thymonucleic acid.  相似文献   

17.
A study has been made of the Feulgen stain, in which the staining fluid is a decolorized basic fuchsin. Particular attention has been given to the variation in behavior of different fuchsin samples, the reagent to be employed in decolorizing the dye, the acidity of solutions, and the value of several counter-stains. A modified procedure is suggested, the details of which are given in the paper. The principle modifications of earlier procedures which are recommended are as follows: the use of a specially purified pararosanilin as a dye; the employment of K2S2O5 instead of NaHSO3 as a decolorizing agent; and counterstaining with fast green in the case of plant tissue or with orange G for animal material.  相似文献   

18.
Summary Four fuchsin analogues (Pararosaniline, Rosaniline, Magenta II and New Fuchsin) usually found in Basic Fuchsin have been applied as chemically pure dyes to the Feulgen-technique. Total nuclear absorption and wavelength of the absorption maximum were measured by microspectrophotometry in Feulgen stained cytological and plastic embedded histological liver samples, and in lymphocyte nuclei in human peripheral blood smears; absorption spectra of Feulgen stained DNA-polyacrylamide films were determined by spectrophotometry. The grey value distribution of tetraploid liver cell nuclei was calculated with an image analyzer. The staining characteristics of the pure dyes were compared to commercial fuchsin samples from various suppliers. Reverse phase thin layer chromatography was used for characterization and qualitative separation of commercial batches.Pure fuchsin analogues were all equally suitable for Feulgen staining: with respect of staining intensity all pure fuchsin dyes gave nearly identical results with a bathochromic shift of the absorption maximum from Pararosaniline to New Fuchsin of about 8 m.Differences in staining results observed among the commercial dyes were due to varying dye content, contamination with an acridine-like fluorescent compound or simply mislabelling of samples. Pure Pararosaniline is recommended for a standard Feulgen technique.  相似文献   

19.
A dye mixture, consisting of a celestine blue B dispersion (prepared according to Gray et al. 1956), orange G, and acid fuchsin in one solution, simultaneously stains nuclear elements and gives double contrast staining of cytoplasmic elements. Orange G, 0.16 gm, and acid fuchsin, 0.04 gm, dissolved in 100 ml of celestine blue B dispersion and adjusted to pH 0.8 gives, when applied for 1.5 min, results comparable or superior to other “triple contrast” stains on a wide variety of tissues. No differentiation other than that which occurs during dehydration is necessary.  相似文献   

20.
One of the most important means of identifying a dye is by spectrophotometry. This method has been used as a criterion for judging the samples of stains submitted by manufacturers ever since the certification plan for biological stains was adopted. All specifications that have been drawn up for biological stains, such as those given in the 7th edition of the National Formulary, have included spectrophotometry requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号