首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) found in chewing tobacco, snuff, cigarettes, and cigars is a tobacco-specific nitrosamine and classified as a possible human carcinogen (Class 2B) by the International Agency for Research on Cancer (IARC). NNK given intraperitoneally was seen to induce lung and liver adenomas.To evaluate the genotoxicity of NNK in vivo, NNK was intraperitoneally administered to Muta™ Mouse at two concentrations (125 and 250 mg/kg, once a week for 4 weeks) followed by the measurement of mutant frequencies in the lacZ and cII genes from lung and liver in the same mice. Characterization of the types of the mutation was determined by sequencing the cII genes from mutant plaques. The mutant frequencies in both target genes from both organs dose-dependently increased up to 10 times compared to those of the control group. For the types of mutations, the ratio of the G:C to A:T mutation in the total number of mutants was less than the ratio of A:T to T:A and A:T to C:G transversion, contrary to a previous report [Cancer Res, 49 (1989) 5305]. The A:T to T:A transversion was the most highly induced mutation both in the lung and liver cII genes. The increasing rate of mutant frequencies in lung and liver over the vehicle control was 55 and 56 times, respectively, while the increasing rate of G:C to A:T transition was only 1.9 and 2.8 times, respectively.These observations show that NNK predominantly induces DNA adducts leading to A:T to T:A and/or A:T to C:G mutations in the transgene.  相似文献   

2.
Dinitropyrenes (DNPs), 1,3-, 1,6- and 1,8-dinitropyrene, are carcinogenic compounds found in diesel engine exhaust. DNPs are strongly mutagenic in the bacterial mutation assay (Ames test), mainly inducing frameshift type mutations. To assess mutagenicity of DNPs in vivo is important in evaluating their possible involvement in diesel exhaust-induced carcinogenesis in human. For this purpose, we used the lambda/lacZ transgenic mouse (Muta Mouse) to examine induction of mutations in multiple organs. A commercially available mixture of DNPs (1,3-, 1,6-, 1,8-, and unidentified isomer (s) with a content of 20.2, 30.4, 35.2, and 14.2%, respectively) was injected intragastrically at 200 and 400mg/kg once each week for 4 weeks. Seven days after the final treatment, liver, lung, colon, stomach, and bone marrow were collected for mutation analysis. The target transgene was recovered by the lambda packaging method and mutation of lacZ gene was analyzed by a positive selection with galE(-) E. coli. In order to determine the sequence alterations by DNPs, the mutagenicity of the lambda cII gene was also examined by the positive selection with hfl(-) E. coli. Since cII gene (294bp) is much smaller than the lacZ (3024bp), it facilitated the sequence analysis. Strongest increases in mutant frequencies (MFs) were observed in colon for both lacZ (7.5x10(-5) to 43.3x10(-5)) and cII (2.7x10(-5) to 22.5x10(-5)) gene. Three-four-fold increases were observed in stomach for both genes. A statistically significant increase in MFs was also evident in liver and lung for the lacZ gene, and in lung and bone marrow for the cII gene. The sequence alterations of the cII gene recovered from 37 mutants in the colon were compared with 50 mutants from untreated mice. Base substitution mutations predominated for both untreated (91%) and DNP-treated (84%) groups. The DNPs treatment increased the incidence of G:C to T:A transversion (2-43%) and decreased G:C to A:T transitions (70-22%). The G:C to T:A transversions, characteristic to DNPs treatment, is probably caused by the guanine-C8 adduct, which is known as a major DNA-adduct induced by DNPs, through an incorporation of adenine opposite the adduct ("A"-rule). The present study showed a relevant use of the cII gene as an additional target for mutagenesis in the Muta Mouse and revealed a mutagenic specificity of DNPs in vivo.  相似文献   

3.
Quinoline is carcinogenic to the liver in rodents, but it is not clear whether it acts by a genotoxic mechanism. We previously demonstrated that quinoline does induce gene mutation in the liver of lambda/lacZ transgenic mice. In the present report, we reveal the molecular nature of the mutations induced by quinoline in the lambda cII gene, which is also a phenotypically selectable marker in the lambda transgene. (The cII gene has 294bp, which enables much easier sequence analysis than the original lacZ gene (3kb)). The liver cII mutant frequency was nine times higher in quinoline-treated mice than in control mice. Sequence analysis revealed that quinoline induced primarily G:C to C:G transversions (25 of 34). Thus, we have confirmed that quinoline is genotoxic in its target organ, and the G:C to C:G transversion is the molecular signature of quinoline-induced mutations.  相似文献   

4.
The o-aminoazotoluene (AAT) has been evaluated as a possible human carcinogen by the International Agency for Research on Cancer. In rodents, it is carcinogenic mainly in the liver, and also in lung following long term administration. We previously examined in lambda/lacZ transgenic mice for the induction of lacZ mutations in liver, lung, urinary bladder, colon, kidney, bone marrow, and testis. AAT induced gene mutations strongly in the liver and colon. In the present report, we reveal the molecular nature of mutations induced by AAT in the lambda cII gene (the cII gene, a phenotypically selectable marker in the lambda transgene, has 294bp, which makes it easier to sequence than the original target, the 3kb lacZ gene). The cII mutant frequency in liver and colon was five and nine times higher, respectively, in AAT-treated mice than in control mice. Sequence analysis revealed that AAT induced G:C to T:A transversions, whereas spontaneous mutations consisted primarily of G:C to A:T transitions at CpG sites.  相似文献   

5.
Phenanthrene, a simplest angular polycyclic aromatic hydrocarbon with a bay-region in its molecule, is reported to be non-mutagenic, although most angular (non-linear) polycyclic aromatic hydrocarbons, such as benzo[a]pyrene and chrysene, are known to show genotoxicity after metabolic transformation into a bay-region diol epoxide. On the other hand, benzo[f]quinoline (BfQ), benzo[h]quinoline (BhQ), and 1,7-phenanthroline (1,7-Phe), which are all aza-analogs of phenanthrene, are mutagenic in the Ames test using Salmonella typhimurium TA100 in the presence of a rat liver S9 fraction. In this report, we undertook to investigate the in vivo mutagenicity of BfQ, BhQ and 1,7-Phe by an in vivo mutation assay system using the lacZ transgenic mouse (Muta Mouse). BfQ and BhQ only slightly induced mutation in the liver and lung, respectively. BfQ- and BhQ-induced cII mutant spectra showed no characteristics compared with that of the control. These results suggest that the in vivo mutagenicities of BfQ and BhQ were equivocal. On the other hand, 1,7-Phe induced a potent mutation in the liver and a weak mutation in the lung. Furthermore 1,7-Phe depressed the G:C to A:T transition and increased the G:C to C:G transversion in the liver like quinoline, a hepatomutagen possessing the partial structure of 1,7-Phe, compared with the spontaneous mutation spectrum. These results suggest that the in vivo mutagenicity of 1,7-Phe might be caused by the same mechanism as that of quinoline, which induced the same mutational spectrum change (G:C to C:G transversion).  相似文献   

6.
The incidence of childhood cancer is increasing and recent evidence suggests an association between childhood cancer and environmental exposure to genotoxins. In the present study, the Big Blue transgenic mouse model was used to determine whether specific periods in early life represent windows of vulnerability to mutation induction by genotoxins in mouse liver. Groups of mice were treated with single doses of 120 mg N-ethyl-N-nitrosourea (ENU)/kg body weight or the vehicle either transplacentally to the 18-day-old fetus or at postnatal days (PNDs) 1, 8, 15, 42 or 126; the animals were sacrificed 6 weeks after their treatment. The cII mutation assay was performed to determine the mutant frequencies (MFs) in the livers of the mice. Liver cII MFs for both sexes were dependent on the age at which the animals were treated. Perinatal treatment with ENU (either transplacental treatment to the 18-day-old fetus or i.p. injection at PND 1) induced relatively high MFs. However, ENU treatment at PNDs 8 and 15 resulted in the highest mutation induction. The lowest mutation induction occurred in those animals treated as adults (PND 126). For instance, the cII MF for the PND 8 female group was 646 x 10(-6) while the MF for female adults was only 145 x 10(-6), a more than 4-fold difference. Molecular analysis of the mutants found that A:T-->T:A transversions and A:T-->G:C transitions characterized the pattern of mutations induced by ENU in both the neonate and adult mice, while the predominate type of mutation in the controls was G:C-->A:T. The results indicate that mouse liver is most sensitive to ENU-induced mutation during infancy. This period correlates well with the age-dependent sensitivity to carcinogenicity in mouse liver, suggesting that mutation is an important rate-limiting factor for age-related carcinogenesis.  相似文献   

7.
We have previously reported the in vivo mutagenicity of aza-polycyclic aromatic hydrocarbons (azaPAHs), such as quinoline, benzo[f]quinoline, benzo[h]quinoline, 1,7-phenanthroline and 10-azabenzo[a]pyrene. The 1,10-diazachrysene (1,10-DAC) and 4,10-DAC, nitrogen-substituted analogs of chrysene, were shown to exhibit mutagenicity in Salmonella typhimurium TA100 in the presence of rat liver S9 and human liver microsomes in our previous report, although DACs could not be converted to a bay-region diol epoxide, the ultimate active form of chrysene, because of their nitrogen atoms. In the present study, we tested in vivo mutagenicity of DACs compared with chrysene using the lacZ transgenic mouse (Mutatrade markMouse) to evaluate the effect of the nitrogen substitution. DACs- and chrysene-induced mutation in all of the six organs examined (liver, spleen, lung, kidney, bone marrow and colon). The mutant frequencies obtained with chrysene showed only small differences between the organs examined and ranged from 1.5 to 3 times the spontaneous frequency. The 4,10-DAC was more mutagenic than chrysene in all the organs tested. The highest lacZ mutation frequency was observed in the lung of 4,10-DAC-treated mice and it was 19 and 6 times the spontaneous frequency and the frequency induced by chrysene, respectively. The 1,10-DAC induced lacZ mutation in the lung with a frequency 4.3- and 1.5-fold higher than in the control and chrysene-treated mice, respectively, although the mutant frequencies in the other organs of 1,10-DAC-treated mice were almost equivalent to those of chrysene-treated mice. Not only chrysene but also DACs depressed the G:C to A:T transition and increased the G:C to T:A transversion in the liver and lung. These results suggest that the two types of nitrogen substitutions in the chrysene structure may enhance mutagenicity in the mouse lung, although they showed no difference in the target-organ specificity and the mutation spectrum.  相似文献   

8.
Dimethylarsinic acid (DMA) induces DNA damage in the lung by formation of various peroxyl radical species. The present study was conducted to evaluate whether arsenite or its metabolite, DMA, could initiate carcinogenesis via mutagenic DNA lesions in vivo that can be attributed to oxidative damage. A transgenic mouse model, MutaMouse, was used in this study and mutations in the lacZ transgene and in the endogenous cII gene were assessed. When DMA was intraperitoneally injected into MutaMice at a dose of 10.6 mg/kg per day for 5 consecutive days, it caused only a weak increase in the mutant frequency (MF) of the lacZ gene in the lung, which was at most 1.3-fold higher than in the untreated control animals. DMA did not appreciably raise the MF in the bladder or bone marrow. Further analysis of the cII gene in the lung, the organ in which DMA induced the DNA damage, revealed only a marginal increase in the MF. Following DMA administration, no change in the cII mutation spectra was observed, except for a slight increase in the G:C to T:A transversion. Administration of arsenic trioxide (arsenite) at a dose of 7.6 mg/kg per day did not result in any increase in the MF of the lacZ gene in the lung, kidney, bone marrow, or bladder. Micronucleus formation was also evaluated in peripheral blood reticulocytes (RETs). The assay for micronuclei gave marginally positive results with arsenite, but not with DMA. These results suggest that the mutagenicity of DMA and arsenite might be too low to be detected in the MutaMouse.  相似文献   

9.
Metabolism of the tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in rats was compared to metabolism in primary lung and liver cells. Untreated rats and rats pretreated with phenobarbital, acetone or phenethyl isothiocyanate (PEITC) were used for all experiments. Also the influence of [-]-1-methyl-2-[3-pyridyl]-pyrrolidine (nicotine) administered concomitantly with NNK, or incubated with isolated cells, upon NNK metabolism was investigated and found to be only marginal upon alpha-hydroxylation and pyridine N-oxidation in vivo. In hepatocytes nicotine inhibited NNK pyridine N-oxidation, alpha-hydroxylation and glucuronidation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), whereas in lung cells the influence of nicotine was not as pronounced. In vivo phenobarbital induced alpha-hydroxylation and pyridine N-oxidation. In vitro the effects of the modulators were most pronounced upon hepatocytes, where phenobarbital greatly induced pyridine N-oxidation and PEITC inhibited alpha-hydroxylation. NNAL was conjugated to its beta-glucuronide in lung cells at four times higher rates than in hepatocytes. The ratios of the sum of N-oxides to the sum of alpha-hydroxylation products in vivo were similar to those in lung cells, especially at low NNK concentrations (1 microM), while in hepatocytes alpha-hydroxylation was more pronounced. The same correlation of metabolism in isolated lung cells with whole rats was observed if oxidative NNAL metabolism was related to oxidative NNK metabolism. Here hepatocytes showed a much higher formation of NNAL oxidation products than either lung cells formed, or rats excreted in urine. This was true despite a lower rate of metabolism in the lung than in liver if based on cell number, the rate based on mg protein was four times higher in lung than liver. Only after phenobarbital treatment was the contribution of hepatic metabolism to excreted metabolites important. In conclusion the lung which is also the target of NNK carcinogenesis, and not the liver, is the organ with the most important contribution to NNK and NNAL metabolism at concentrations relevant to human exposure.  相似文献   

10.
In the current studies, we investigated base substitutions in the Bacillus subtilis mutT, mutM, and mutY DNA error-prevention system. In the wild type strain, spontaneous mutations were mainly transitions, either G:C --> A:T or A:T --> G:C. Although both transitions and transversions were observed in mutY and mutM mutants, mutM/mutY double mutants contain strictly G:C --> T:A transversions. In the mutT strain, A:T --> C:G transversion was not observed, and over-expression of the B. subtilis mutT gene had no effect on the mutation rate in the Escherichia coli mutT strain. Using 8-oxo-dGTP-induced mutagenesis, transitions especially A:T --> G:C were predominant in the wild type and mutY strains. In contrary, transversion was high on mutY and double mutant (mutM mutY). Finally, the opuBC and yitG genes were identified from the B. subtilis chromosome as mutator genes that prevented the transition base substitutions.  相似文献   

11.
The lacI gene in Big Blue transgenic rodents has traditionally been used as a surrogate gene for in vivo mutations. Recently, a more efficient and less expensive assay involving direct selection in the smaller lambda cII gene has been developed. Little is known, however, about the comparative sensitivity of the two loci or their influence on the recovered mutation spectrum following mutagen treatment. We have compared the mutation frequency (MF) and mutational spectrum (MS) of lacI and cII from the same DNA samples isolated from the liver of control and dimethylnitrosamine (DMN)-treated mice. A three-fold (p<0.01) increase in the MF was observed at both loci in the DMN-treated group compared to the corresponding control groups. While the DMN-induced mutation spectrum at lacI was significantly different from its corresponding spontaneous mutation spectrum (p<0.001), the mutation spectrum at cII (p>0.28) was not. The mutation spectra at the two loci from the DMN-treated mice resembled each other but the 4, 2.5 and 12-fold increase in the mutation frequency of A:T>T:A transversions, single base deletions and deletions of more than four base pairs, respectively, at lacI, altered the spectra significantly (p<0.007). The number of mutations of these classes at cII was also increased, but the fractions were lower than at lacI. The spontaneous mutation spectra at the cII and lacI loci resembled each other except for the seven-fold increase in G:C相似文献   

12.
An improved high-performance liquid chromatographic system was developed for separation of 11 metabolites of the nicotine-derived nitrosamines N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). The new system employed a 5-microns octadecylsilane bonded column eluted with aqueous sodium acetate-methanol gradients of varying pH. Analysis times were typically 30 min for NNN metabolites and 50 min for NNK metabolites, compared to 80 and 90 min, respectively, when 10-microns columns were used. The E and Z isomers of all nitrosamine-containing metabolites of NNK were separated. The chromatographic behavior of the 11 metabolites as well as NNN and NNK was studied between pH 4.0 and 7.5. The retention times of several metabolites were altered significantly as a function of pH. The results of the pH study provide valuable additional criteria for metabolite identification as well as optimized conditions for their separation. Applications of the system to the metabolism of [2'-14C]NNN in cultured rat esophagus and [carbonyl-14C]NNK in rat liver slices are presented.  相似文献   

13.
Genotoxic effects of bitumen fumes in Big Blue transgenic rat lung   总被引:1,自引:0,他引:1  
Road paving workers are exposed to bitumen fumes (CAS No. 8052-42-4), a complex mixture of volatile compounds and particles containing carcinogenic and non-carcinogenic polycyclic aromatic hydrocarbons. However, epidemiological and experimental animal studies failed to draw unambiguous conclusions concerning their toxicity. In order to gain better insights on their genotoxic potential, we used an experimental design able to generate bitumen fumes at road paving temperature (temperature: 170 degrees C, total particulate matter: 100mg/m3) and perform a nose-only exposure of Big Blue transgenic rodents 6h/day for five consecutive days. The mutagenic properties of bitumen fumes were determined by analyzing the mutation frequency and spectrum of the neutral reporter gene cII inserted into the rodent genome. We previously observed in mouse lung, that bitumen fumes did not induce an increase of cII mutants, a modification of the mutation spectrum, nor the formation of DNA adducts. Since DNA adducts were found in the lungs of rats exposed to asphalt fumes in similar conditions, we decided to carry out an analogous experiment with Big Blue rats. A DNA adduct was detected 3 and 30 days after the end of treatment suggesting that these genetic alterations were quite steady. Thirty days after exposure, the cII mutant frequency was similar in control and exposed rats. In addition, a slight but not significant modification of the mutation spectrum associated with an increase of G:C to T:A and A:T to C:G transversions was noticeable in the treated animals. Then, these data failed to demonstrate a pulmonary mutagenic potential for bitumen fumes generated at road paving temperature in our experimental conditions despite the presence of a DNA adduct. These results may provide information concerning the pulmonary mechanism of action of this aerosol and may contribute to the occupational health hazard assessment.  相似文献   

14.
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a tobacco-specific nitrosamine, induces lung adenomas in A/J mice following a single intraperitoneal (i.p.) injection. However, inhalation of mainstream cigarette smoke does not induce or promote NNK-induced lung tumors in this mouse strain purported to be sensitive to chemically-induced lung tumorigenesis. The critical events for NNK-induced lung tumorigenesis in A/J mice is thought to involve O(6)-methylguanine (O(6)MeG) adduct formation, GC-->AT transitional mispairing, and activation of the K-ras proto-oncogene. The objective of this study was to test the hypothesis that a smoke-induced shift in NNK metabolism led to the observed decrease in O(6)MeG adducts in the lung and liver of A/J mice co-administered NNK with a concomitant 2-h exposure to cigarette smoke as observed in previous studies. Following 2 h nose-only exposure to mainstream cigarette smoke (600 mg total suspended particulates/m(3) of air), mice (n=12) were administered 7.5 micromol NNK (10 microCi [5-3H]NNK) by i.p. injection. A control group of 12 mice was sham-exposed to HEPA-filtered air for 2 h prior to i.p. administration of 7.5 micromol NNK (10 microCi [5-3H]NNK). Exposure to mainstream cigarette smoke had no effect on total excretion of NNK metabolites in 24 h urine; however, the metabolite pattern was significantly changed. Mice exposed to mainstream cigarette smoke excreted 25% more 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) than control mice, a statistically significant increase (P<0.0001). Cigarette smoke exposure significantly reduced alpha-hydroxylation of NNK to potential methylating species; this is based on the 15% reduction in excretion of the 4-(3-pyridyl)-4-hydroxybutanoic acid and 42% reduction in excretion of 4-(3-pyridyl)-4-oxobutanoic acid versus control. Detoxication of NNK and NNAL by pyridine-N-oxidation, and glucuronidation of NNAL were not significantly different in the two groups of mice. The observed reduction in alpha-hydroxylation of NNK to potential methylating species in mainstream cigarette smoke-exposed A/J mice provides further mechanistic support for earlier studies demonstrating that concurrent inhalation of mainstream cigarette smoke results in a significant reduction of NNK-induced O(6)MeG adduct formation in lung and liver of A/J mice compared to mice treated only with NNK.  相似文献   

15.
The tobacco-specific nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) induces tumor formation in the liver, lung, nasal cavity, and pancreas of rats. Metabolic activation is required for the tumorigenicity of this compound. The involvement of cytochrome P450 enzymes in NNK bioactivation was investigated in rats by studies with chemical inducers and antibodies against P450s. Liver microsomal enzymes catalyzed the formation of 4-oxo-1-(3-pyridyl)-1-butanone (keto aldehyde), 4-hydroxy-1-(3-pyridyl)-1-butanone (keto alcohol), 4-(methylnitrosamino)-1-(3-pyridyl-N-oxide)-1-butanone (NNK-N-oxide), and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) from NNK. When the activity was expressed on a per nanomole P450 basis, treatments of rats with 3-methylcholanthrene (MC), phenobarbital (PB), pregnenolone 16-alpha-carbonitrile (PCN), Aroclor 1254 (AR), safrole (SA), and isosafrole (ISA) increased the keto aldehyde formation in liver microsomes 2.0-, 2.4-, 3.8-, 2.5-, 2.1-, and 1.8-fold, respectively; PB, AR, SA, and ISA increased the keto alcohol formation 1.7-, 1.3-, 2.0-, and 1.3-fold, respectively. The extents of induction were more pronounced when expressed on a per milligram protein basis, due to the higher microsomal P450 contents in the induced microsomes. The formation of NNK-N-oxide was markedly increased by PB and PCN and slightly increased by AR, SA, and ISA. However, the formation of NNAL, the major metabolite due to carbonyl reduction, was not increased by the treatments but was decreased by AR, ISA, and acetone (AC). The kinetic parameters of NNK metabolism by control, MC-, PB-, and PCN-induced liver microsomes were obtained. A panel of monoclonal (anti-1A1, -2B1, -2C11, and -2E1) and polyclonal (anti-1A2, -2A1, and -3A) antibodies were used to assess the involvement of constitutive hepatic P450 enzymes in NNK metabolism. Keto aldehyde formation was inhibited by anti-1A2 and anti-3A (about 15%) but not by others; the formation of keto alcohol was inhibited by anti-1A2, anti-2A1, and anti-3A (by 13-26%). In incubations with lung microsomes, the formation of keto aldehyde, keto alcohol, NNK-N-oxide, and NNAL were observed. With nasal mucosa microsomes, however, only keto aldehyde and keto alcohol formation were appreciable. SA and AC significantly decreased NNK metabolism in lung and nasal mucosa microsomes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Besaratinia A  Pfeifer GP 《Biochemistry》2005,44(23):8418-8427
Tamoxifen is a widely used drug for chemotherapy and chemoprevention of breast cancer worldwide. Tamoxifen therapy is, however, associated with an increased incidence of endometrial cancer. The carcinogenicity of tamoxifen is ascribed to its genotoxic and estrogen agonist effects. We investigated DNA adduct-targeted mutagenicity of tamoxifen as a function of its genotoxicity in the cII transgene in Big Blue mouse embryonic fibroblasts and mapped the formation of tamoxifen-induced DNA adducts in the p53 tumor suppressor gene in SV40 immortalized human hepatocytes and human endometrial carcinoma cells. We used the terminal transferase-dependent polymerase chain reaction for mapping of DNA adducts in the cII and p53 genes. We utilized a lambda phage-based assay and DNA sequencing for determining cII mutant frequency and mutation spectrum, respectively. Tamoxifen treatment yielded polymerase-blocking DNA adducts at multiple nucleotide positions along the cII transgene. The treatment significantly and dose-dependently increased the cII mutant frequency (p < 0.01), leaving a unique mutation spectrum (p < 0.0001) and a signature mutation of G:C --> T:A transversions (p < 0.03), relative to the control. Tamoxifen treatment of the immortalized human hepatocytes but not endometrial carcinoma cells, even in the presence of an external activation system, i.e., rat liver S9 mix, induced DNA adducts at specific codons along exons 6 and 8 of the p53 gene. These data suggest a proficient metabolic activation of tamoxifen in human liver and an inefficient activation and/or efficient detoxification of tamoxifen in human endometrium. Because the liver is essentially a mitotically quiescent organ, tamoxifen-DNA adduction in the liver may, at least partially, prevent its reactants from reaching highly proliferative organs via, e.g., circulating blood. Thus, tamoxifen-DNA adduction in the liver may not have as significant biological consequences as it might have in highly proliferative organs. Our findings favor an involvement of a nongenotoxic mechanism in tamoxifen-associated human endometrial cancer.  相似文献   

17.
Northern blot analysis of mRNA prepared from the lung of Suncus murinus (suncus), which was classified as an ancestor of primates, revealed that the expression level of cytochrome P450 2A (CYP2A) mRNA was about 100-fold higher than in the lung from rats and mice. To confirm that the pulmonary CYP2A of the suncus had a catalytic activity, the metabolism of a specific substrate for CYP2A6, (+)-cis-3,5-dimethyl-2-(3-pyridyl) thiazolidin-4-one hydrochloride (SM-12502), was determined. The intrinsic clearance for SM-12502 S-oxidation by the suncus lung microsomes was calculated to be 99-fold higher than that by rat liver microsomes. The mutagen-producing activity of a 9,000 g supernatant fraction prepared from suncus lung was examined using 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) as a promutagen. The results showed that the suncus lung possessed 82-fold higher mutagen-producing activity than the rat lung, indicating that NNK was efficiently activated by the CYP2A isoform expressed in the suncus lung and that the suncus was a sensitive animal species to the genotoxicity of NNK contained in tobacco smoke.  相似文献   

18.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11ß-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

19.
4-Methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK) has been identified as one of the strongest nitrosamine carcinogens in tobacco products in all species tested. Carbonyl reduction to 4-methylnitrosamino-1-(3-pyridyl)-1-butanol (NNAL) followed by glucuronosylation is considered to be the main detoxification pathway in humans. In previous investigations, we have identified a microsomal NNK carbonyl reductase as being identical to 11beta-hydroxysteroid dehydrogenase 1, a member of the short-chain dehydrogenase/reductase (SDR) superfamily. Recently, we provided evidence that carbonyl reduction of NNK does also take place in cytosol from mouse and human liver and lung. In human liver cytosol, carbonyl reductase, a SDR enzyme, and AKR1C1, AKR1C2 and AKR1C4 from the aldo-keto reductase (AKR) superfamily were demonstrated to be responsible for NNK reduction. Since NNK and/or its metabolites can diffuse through the placenta and reach fetal tissues, we now investigated NNK carbonyl reduction in the cytosolic fraction of human placenta in addition to that in microsomes. Concluding from the sensitivity to menadione, ethacrynic acid, rutin and quercitrin as specific inhibitors, mainly carbonyl reductase (EC 1.1.1.184) seems to perform this reaction in human placenta cytosol. The presence of carbonyl reductase was confirmed by RT-PCR. This is the first report to provide evidence that NNAL formation in placenta is mediated by carbonyl reductase.  相似文献   

20.
An in vitro study of effects of vitamin C-palmitate on the metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in rat microsomes was performed. A sensitive assay method has been developed for the detection of metabolites of NNK in microsomes. Only the reduced metabolite of NNK, 4-(methylnitrosamino)-1-(3-pyridyl)-butanol (NNAL), was detected and measured in a time-course study. Vitamin C-palmitate enhanced the reduction of NNK in a concentration-dependent manner. The results indicate a significant increase in Vmax and Km in the presence of vitamin C. However, the rate of formation of NNAL at low substrate concentration varied. The ratio of Vmax to Km decreases. The results suggest that the kinetics are accounted for best by an uncompetitive activator binding model at low concentration of vitamin C. The uncompetitive binding model becomes sketchy at higher concentration of vitamin C. These observations infer that vitamin C loosely binds to the substrate-enzyme complex. Furthermore, the nature of the binding would facilitate the modulation of NNK biotransformation leading to the formation of NNAL. The results also show that vitamin C-palmitate is a potent activator of NNK reduction in rat liver microsomes. Thus, vitamin C-palmitate would mediate the metabolism of NNK through reduction. The resulting NNAL-glucuronide is more readily eliminated in urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号