共查询到20条相似文献,搜索用时 15 毫秒
1.
Calcium ions are accumulated by intact mitochondria isolated from Ehrlich ascites tumour cells in a buffered system supplemented with ATP or succinate. In the ATP-supplemented system, the tumour mitochondria, in contrast to rat liver mitochondria, retain the accumulated Ca2+, do not exhibit a marked “irreversible” ATPase and do not swell. In the succinate-supplemented system, added Ca2+ stimulates respiration in either the absence or presence of added inorganic phosphate. Whereas respiration by rat liver mitochondria, measured in the presence of added phosphate, remains continuously activated after the addition of only a small amount of Ca2+, that by the tumour mitochondria can be stimulated by several successive additions of 100 μM Ca2+ and at all times exhibit appreciable activation ratios. 相似文献
2.
Tightly coupled mitochondria isolated from Ehrlich ascites tumor cells accumulate and retain high concentrations of Ca2+ in the presence of ATP for periods up to at least 20 min at 25 °C. The presence of inorganic phosphate up to 20 mm does not prevent such Ca2+ retention. The tumor mitochondria accumulate Ca2+ in the presence of succinate as an energy source but lose the Ca2+ after 1–2 min. Addition of ATP (Km approx 1 mm) to the incubation medium after Ca2+ release, induces reaccumulation of the ion. Thus, the ability of the tumor mitochondria to retain Ca2+ differs markedly from that of rat liver mitochondria and is seen as being of potential biological significance to the unique metabolic behavior of the ascites tumor cells. 相似文献
3.
We have investigated the effect of varying La+3 concentrations (0.01 mM to 2.0 mM) on membrane potential and electrolyte composition of Ehrlich ascites tumor cells. La+3 concentrations less than 0.02 mM had no effect. Above 0.02 mM, La+3 induced concentration-dependent loss of electrolytes and water from the cells. At 1.0 mM the effect was maximal and resulted in an 87% reduction in cellular K+, 79% in Cl? and 21% in Na+ within 4.8 minutes. The Na+ loss occurred even in the face of an electrochemical potential gradient favoring Na+ entry. La+3 increased the recorded values of membrane potential; the magnitude of the effect was related to the external La+3 concentration, and was maximal at 1.0 mM. Studies using 140La showed that La+3 binds rapidly to the cell surface and does not enter the cells. The amount of La+3 bound to the cells was related to the external La+3 concentration by a sigmoidal curve and was maximal at about 1.0 mM. The bound La+3 could not be displaced by either added La+3 or Ca+2. Agents known to effect the integrity of the cell membrane, such as phospholipase C, neuraminidase, pronase and Hg+2 were tested for their ability to displace bound La+3. Only pronase displaced bound La+3, indicating that La+3 associates with cell protein. It is hypothesized that La+3 rapidly interacts with membrane protein causing alterations in membrane permeability and capacity to actively transport ions. 相似文献
4.
U. V. Lassen A. -M. T. Nielsen L. Pape L. O. Simonsen 《The Journal of membrane biology》1971,6(4):269-288
Summary Intracellular potentials were measured, using a piezoelectric electromechanical transducer to impale Ehrlich ascites tumor cells with capillary microelectrodes. In sodium Ringer's, the potential immediately after the penetration was –24±7 mV, and decayed to a stable value of about –8 mV within a few msec. The peak potentials disappeared in potassium Ringer's and reappeared immediately after resuspension in sodium. Ringer's, whereas the stable potentials were only slightly influenced by the change of medium. The peak potential is in good agreement with the Nernst potential for chloride. This is also the case when cell sodium and potassium have been changed by addition of ouabain. It is concluded that the peak potentials represent the membrane potential of the unperturbed cell, and that chloride is in electrochemical equilibrium across the cell membrane.The membrane potential of about –11 mV previously reported corresponds to the stable potential in this study, and is considered as a junction potential between damaged cells and their environment. Similar potential differences were recorded between a homogenate of cells and Ringer's.The apparent membrane resistance of Ehrlich cells was about 70 cm2. This is two orders of magnitude less than the value calculated from36Cl fluxes, and may, in part, represent a leak in the cell membrane.For comparison, the influence of an eventual leak on measurements in red cells and mitochondria is discussed. 相似文献
5.
The synthesis of polyadenylic acid-containing ribonucleic acid by isolated mitochondria from Ehrlich ascites cells. 下载免费PDF全文
The synthesis of poly(A)-containing RNA by isolated mitochondria from Ehrlich ascites cells was studied. Isolated mitochondria incorporate [3H]AMP or [3H]UTP into an RNA species that adsorbs on oligo (dT)-cellulose columns or Millipore filters. Hydrolysis of the poly(A)-containing RNA with pancreatic and T1 ribonucleases released a poly(A) sequence that had an electrophoretic mobility slightly faster than 4SE. In comparison, ascites-cell cytosolic poly(A)-containing RNA had a poly(A) tail that had an electrophoretic mobility of about 7SE. Sensitivity of the incorporation of [3H]AMP into poly(A)-containing RNA to ethidium bromide and to atractyloside and lack of sensitivity to immobilized ribonuclease added to the mitochondria after incubation indicated that the site of incorporation was mitochondrial. The poly(A)-containing RNA sedimented with a peak of about 18S, with much material of higher s value. After denaturation at 70 degrees C for 5 min the poly(A)-containing RNA separated into two components of 12S and 16S on a 5-20% (w/v) sucrose density gradient at 4 degrees C, or at 4 degrees and 25 degrees C in the presence of formaldehyde. Poly(A)-containing RNA synthesized in the presence of ethidium bromide sedimented at 5-10S in a 15-33% (w/v) sucrose density gradient at 24 degrees C. The poly(A) tail of this RNA was smaller than that synthesized in the absence of ethidium bromide. The size of the poly(A)-containing RNA (approx. 1300 nucleotides) is about the length necessary for that of mRNA species for the products of mitochondrial protein synthesis observed by ourselves and others. 相似文献
6.
7.
J Sánchez Olavarría C Galindo M Montero Y Baquero J Victorica J Satrústegui 《Biochimica et biophysica acta》1988,935(3):322-332
(1) A method is presented for continuous and simultaneous monitoring of the 'in situ' mitochondrial membrane potential (delta psi m) and respiration rate of Ehrlich ascites tumor cells. The method involves permeabilization of the plasma membrane, achieved by treatment with low digitonin concentration, and the use of a TPP+ selective electrode attached to an oxygraph vessel. Binding of the probe inside the cells was analyzed assuming a proportional relationship between the amount of bound TPP+ and the free concentration of the lipophilic cation. (2) Evidence is reported that the addition of glucose to digitonin-permeabilized Ehrlich ascites tumor cells causes a decrease of mitochondrial membrane potential that coincided with a transient enhancement of the respiration rate and remained unchanged during the subsequent Crabtree effect. We have characterized the effect of glucose on delta psi m by determining its dependent on the glycolytic pathway and its sensitivity towards oligomycin. The mutual relationships between glucose and ADP effects on the mitochondrial membrane potential were also studied. A plausible mechanism underlying the depolarization of mitochondrial membrane induced by glucose is presented. 相似文献
8.
Nuclear enzymatic activities incorporating amino acids into acid-insoluble material were investigated with respect to their differentiation from protein biosynthesis, reaction optima, requisites and localization. The product of the reaction was analyzed with respect to its localization and nature. The nuclear activities are not inhibited by a number of inhibitors for protein biosynthesis. The reaction optima found are similar to those of other residual nuclear syntheses including the stringent dependence on ATP. All naturally occurring amino acids are utilized with different efficiencies. Their incorporation is neither cooperative nor competitive which points to individual incorporation mechanisms. Aminoacylation of tRNA may be involved because the incorporation is RNase-sensitive and aminoacylation of tRNA can be shown under the reaction conditions. The enzymatic activities are exclusively nuclear. Significant activity with unchanged characteristics is released by sonication. 70% of the radiolabel incorporated is exported across the nuclear envelope during the incubation. The residual 30% of the radiolabel is distributed without enrichment in any nuclear subfraction. The products are exclusively of polypeptide nature. Since distinct nuclear proteins (e.g. histones) which are definitely preformed in the cytoplasm by protein biosynthesis become radiolabelled by the incorporation of radiolabelled amino acids, it is evident that the incorporation takes place at preformed polypeptides. This is unequivocally proven by the incorporation of radiolabelled amino acids into exogenous proteins by means of the solubilized nuclear activities. The results indicate that the nuclear activity under investigation reflects a nuclear modification system for polypeptides which may be of similar importance as other post-translational modification systems. 相似文献
9.
Isolated nuclei from Ehrlich ascites tumor cells continue a replicative-like in vitro DNA synthesis. Polymerase alpha is the major dNTP polymerizing enzyme in nuclei. Following complete achromatinization dNTP polymerizing activities are still associated with the residual structure termed 'nuclear matrix'. In contrast to DNA synthesis in native nuclei, 'nuclear matrix' DNA synthesis is mainly due to polymerase beta-like activity. 相似文献
10.
11.
Hideyasu Hirano Ken Higashi Yukiya Sakamoto 《Biochemical and biophysical research communications》1975,67(2):518-524
DNA replication was investigated in nucleoli isolated from Ehrlich ascites tumor cells. DNA synthesis was dependent on the presence of the four deoxynucleoside triphosphates and magnesium, but was reduced in the presence of ATP. The pH optimum for DNA replication was 8.5 to 9.0 N-Ethyl-maleimide reduced the reaction significantly. DNA synthesis occurred on nucleolar chromatin and was stimulated by treatment of the nucleoli with a small amount of DNase I. Addition of exogenous DNA to the reaction mixture significantly stimulated [3H]dTMP incorporation. 相似文献
12.
The membrane potential of Ehrlich ascites tumor cells and the effects of valinomycin and ouabain upon it have been determined. The membrane potential in control cells was 12.0 mV, inside negative. Neither valinomycin nor ouabain alone affected this value. However, valinomycin and ouabain in combination resulted in a slight hyperpolarization of the membrane. Concomitant determinations of cellular Na+, K+ and Cl- showed that valinomycin induced net losses of K+ and Cl- and a net gain in Na+ when compared to ouabain-inhibited cells. K+ permeability was increased by approximately 30% in the presence of valinomycin. In addition, valinomycin caused a rapid depletion of cellular ATP. Inhibition of Na/K transport by ouabain was without sparing effect on the rate of ATP depletion. Possible mechanisms for the electroneutral increase in K+ permeability induced by valinomycin are discussed. 相似文献
13.
14.
The molecular size and poly-A content of RNA synthesized in isolated nuclei of Ehrlich ascites tumor cells were measured. KCl was found to be essential for synthesis of high molecular weight RNA: when 0.4 M KCl was added to the reaction mixture, the average molecular size of the RNA formed was 14S; without KCl the average molecular size was 5S. A significant amount of poly-A sequences was found in RNA synthesized in the presence of alpha-amanitin, suggesting that RNA polymerase I and/or III may synthesized some RNA containing poly-A in isolated nuclei. 相似文献
15.
16.
Purification of phosphate-dependent glutaminase from isolated mitochondria of Ehrlich ascites-tumour cells. 下载免费PDF全文
A R Quesada F Sanchez-Jimenez J Perez-Rodriguez J Marquez M A Medina I Nu?ez de Castro 《The Biochemical journal》1988,255(3):1031-1035
Phosphate-dependent glutaminase was purified to homogeneity from isolated mitochondria of Ehrlich ascites-tumour cells. The enzyme had an Mr of 135,000 as judged by chromatography on Sephacryl S-300. SDS/polyacrylamide-gel electrophoresis displayed two protein bands, with Mr values of 64,000 and 56,000. Two major immunoreactive peptides of Mr values of 65,000 and 57,000 were found by immunoblot analysis using anti-(rat kidney glutaminase) antibodies. The concentration-dependences for both glutamine and phosphate were sigmoidal, with S0.5 values of 7.6 mM and 48 mM, and Hill coefficients of 1.5 and 1.6, respectively. The glutaminase pH optimum was 9. The activation energy of the enzymic reaction was 58 kJ/mol. The enzyme showed a high specificity towards glutamine. A possible explanation for the different kinetic behaviour found for purified enzyme and for isolated mitochondria [Kovacević (1974) Cancer Res. 34, 3403-3407] should be that a conformational change occurs when the enzyme is extracted from the mitochondrial inner membrane. 相似文献
17.
18.
R S Tobin 《Life sciences》1974,14(5):957-965
Isolated nuclei of Ehrlich ascites tumor cells synthesize DNA in vitro using endogenous template and enzymes. Deoxycytidine nucleoside triphosphate (dCTP) is incorporated into acid-insoluble material to a much greater extent than the other substrates, even in the absence of the other triphosphates. Much of the [3H] dCTP is converted to [3H]CTP, some of which is incorporated into RNA, as evidenced by alkali-lability and density on cesium sulfate gradients. 相似文献
19.
20.