首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathways by which chondrocytes of articular cartilage sense their mechanical environment are unclear. Compelling structural evidence suggests that chondrocyte primary cilia are mechanosensory organelles. This study used a 3D agarose culture model to examine the effect of compressive strain on chondrocyte cilia. Chondrocyte/agarose constructs were subjected to cyclic compression (0–15%; 1 Hz) for 0.5–48 h. Additional constructs were compressed for 48 h and allowed to recover for 72 h in uncompressed free‐swelling conditions. Incidence and length of cilia labelled with anti‐acetylated α‐tubulin were examined using confocal microscopy. In free‐swelling chondrocytes, these parameters increased progressively, but showed a significant decrease following 24 or 48 h compression. A 72 h recovery partially reversed this effect. The reduced cilia incidence and length were not due to increased cell division. We therefore propose that control of primary cilia length is an adaptive signalling mechanism in response to varying levels and duration of mechanical loads during joint activity.  相似文献   

2.
《Matrix biology》2007,26(4):234-246
Primary cilia are highly conserved organelles found on almost all eukaryotic cells. Tg737orpk (orpk) mice carry a hypomorphic mutation in the Tg737 gene resulting in the loss of polaris, a protein essential for ciliogenesis. Orpk mice have an array of skeletal patterning defects and show stunted growth after birth, suggesting defects in appositional and endochondral development. This study investigated the association between orpk tibial long bone growth and chondrocyte primary cilia expression using histomorphometric and immunohistochemical analysis. Wild-type chondrocytes throughout the developing epiphysis and growth plate expressed primary cilia, which showed a specific orientation away from the articular surface in the first 7–10 cell layers. In orpk mice, primary cilia were identified on very few cells and were significantly shorter. Orpk chondrocytes also showed significant increases in cytoplasmic tubulin, a likely result of failed ciliary assembly. The growth plates of orpk mice were significantly smaller in length and width, with marked changes in cellular organization in the presumptive articular cartilage, proliferative and hypertrophic zones. Cell density at the articular surface and in the hypertrophic zone was significantly altered, suggesting defects in both appositional and endochondral growth. In addition, orpk hypertrophic chondrocytes showed re-organization of the F-actin network into stress fibres and failed to fully undergo hypertrophy, while there was a marked reduction in type X collagen sequestration. These data suggest that failure to form a functional primary cilium affects chondrocyte differentiation and results in delayed chondrocyte hypertrophy within the orpk growth plate.  相似文献   

3.
Objective  To investigate the effect of experimentally created disordered occlusion (ECDO) on cell death and proliferation in rat mandibular condylar cartilage. Methods  Sprague–Dawley rats were randomly assigned to experimental and control groups. In the experimental groups, ECDO was created by the dental orthodontic method. By means of histological evaluation, immunohistochemistry and TUNEL staining, we studied the histomorphological changes, the death and proliferation of chondrocytes. Results  Time- and sex-related progressive histologic degradation was observed in the condylar cartilage of ECDO rats, accompanied with diminished chondrocyte proliferation in the female 12-week ECDO subgroup (< 0.05). An increase in the number of apoptotic chondrocytes was seen in both the female 8- and 12-week ECDO subgroups and in the male ECDO 12-week subgroup (all < 0.05), but not in the male ECDO 8-week subgroup (> 0.05). Conclusion  ECDO induces degradation in the rat condylar cartilage accompanied by an increase in chondrocyte death.  相似文献   

4.
We measured the reduction in locomotion of unrestrained pond snails, Lymnaea stagnalis, subsequent to transdermal application of two selective octopamine antagonists, epinastine and phentolamine. After 3 h in fresh standard snail water following treatment with 4 mM epinastine or 3.5 mM phentolamine, the snails’ speed was reduced to 25 and 56% of the controls (P < 0.001 and P = 0.02, respectively). The snails’ speed decreased as the drug concentration increased. In the isolated CNS, 0.5 mM octopamine increased the firing rate of the pedal A cluster motoneurons, which innervate the cilia of the foot. In normal saline the increase was 26% and in a high magnesium/low calcium saline 22% (P < 0.05 and 0.01, respectively). We conclude that octopamine is likely to modulate snail locomotion, partially through effects on pedal motoneurons.  相似文献   

5.
Alkaptonuria (AKU) is a rare inherited disease resulting from a deficiency of the enzyme homogentisate 1,2‐dioxygenase which leads to the accumulation of homogentisic acid (HGA). AKU is characterized by severe cartilage degeneration, similar to that observed in osteoarthritis. Previous studies suggest that AKU is associated with alterations in cytoskeletal organization which could modulate primary cilia structure/function. This study investigated whether AKU is associated with changes in chondrocyte primary cilia and associated Hedgehog signaling which mediates cartilage degradation in osteoarthritis. Human articular chondrocytes were obtained from healthy and AKU donors. Additionally, healthy chondrocytes were treated with HGA to replicate AKU pathology (+HGA). Diseased cells exhibited shorter cilia with length reductions of 36% and 16% in AKU and +HGA chondrocytes respectively, when compared to healthy controls. Both AKU and +HGA chondrocytes demonstrated disruption of the usual cilia length regulation by actin contractility. Furthermore, the proportion of cilia with axoneme breaks and bulbous tips was increased in AKU chondrocytes consistent with defective regulation of ciliary trafficking. Distribution of the Hedgehog‐related protein Arl13b along the ciliary axoneme was altered such that its localization was increased at the distal tip in AKU and +HGA chondrocytes. These changes in cilia structure/trafficking in AKU and +HGA chondrocytes were associated with a complete inability to activate Hedgehog signaling in response to exogenous ligand. Thus, we suggest that altered responsiveness to Hedgehog, as a consequence of cilia dysfunction, may be a contributing factor in the development of arthropathy highlighting the cilium as a novel target in AKU.  相似文献   

6.
Bone lengthening during skeletal growth is driven primarily by the controlled enlargement of growth plate (GP) chondrocytes. The cellular mechanisms are unclear but membrane transporters are probably involved. We investigated the role of the Na+/H+ antiporter (NHE1) and anion exchanger (AE2) in bone lengthening and GP chondrocyte hypertrophy in Sprague–Dawley 7‐day‐old rat (P7) bone rudiments using the inhibitors EIPA (5‐(N‐ethyl‐N‐isopropyl)amiloride) and DIDS (4,4‐diidothiocyano‐2,2‐stilbenedisulphonate), respectively. We have also determined cell‐associated levels of these transporters along the GP using fluorescent immunohistochemistry (FIHC). Culture of bones with EIPA or DIDS inhibited rudiment growth (50% at approx. 250 and 25 µM, respectively). Both decreased the size of the hypertrophic zone (P < 0.05) but had no effect on overall length or cell density of the GP. In situ chondrocyte volume in proliferative and hypertrophic zones was decreased (P < 0.01) with EIPA but not DIDS. FIHC labeling of NHE1 was relatively high and constant along the GP but declined steeply in the late hypertrophic zone. In contrast, AE2 labeling was relatively low in proliferative zone cells but increased (P < 0.05) reaching a maximum in the early hypertrophic zone, before falling rapidly in the late hypertrophic zone suggesting AE2 might regulate the transition phase of chondrocytes between proliferative and hypertrophic zones. The inhibition of bone growth by EIPA may be due to a reduction to chondrocyte volume set‐point. However the effect of DIDS was unclear but could result from inhibition of AE2 and blocking of the transition phase. These results demonstrate that NHE1 and AE2 are important regulators of bone growth. J. Cell. Biochem. 114: 658–668, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
Adenylate cyclase regulates elongation of mammalian primary cilia   总被引:2,自引:0,他引:2  
The primary cilium is a non-motile microtubule-based structure that shares many similarities with the structures of flagella and motile cilia. It is well known that the length of flagella is under stringent control, but it is not known whether this is true for primary cilia. In this study, we found that the length of primary cilia in fibroblast-like synoviocytes, either in log phase culture or in quiescent state, was confined within a range. However, when lithium was added to the culture to a final concentration of 100 mM, primary cilia of synoviocytes grew beyond this range, elongating to a length that was on average approximately 3 times the length of untreated cilia. Lithium is a drug approved for treating bipolar disorder. We dissected the molecular targets of this drug, and observed that inhibition of adenylate cyclase III (ACIII) by specific inhibitors mimicked the effects of lithium on primary cilium elongation. Inhibition of GSK-3β by four different inhibitors did not induce primary cilia elongation. ACIII was found in primary cilia of a variety of cell types, and lithium treatment of these cell types led to their cilium elongation. Further, we demonstrate that different cell types displayed distinct sensitivities to the lithium treatment. However, in all cases examined primary cilia elongated as a result of lithium treatment. In particular, two neuronal cell types, rat PC-12 adrenal medulla cells and human astrocytes, developed long primary cilia when lithium was used at or close to the therapeutic relevant concentration (1–2 mM). These results suggest that the length of primary cilia is controlled, at least in part, by the ACIII–cAMP signaling pathway.  相似文献   

10.
A single primary cilium is found in chondrocytes and other connective tissue cells. We have previously shown that extracellular matrix (ECM) macromolecules such as collagen fibers closely associate with chondrocyte primary cilia, and their points of contact are characterized by electron-opaque plaques suggesting a direct link between the ECM and the cilium. This study examines the expression of receptors for ECM molecules on chondrocyte primary cilia. Embryonic chick sterna were fluorescently labeled with antibodies against alpha and beta integrins, NG2, CD44, and annexin V. Primary cilia were labeled using acetylated alpha-tubulin antibody. Expression of ECM receptors was examined on chondrocyte plasma membranes and their primary cilia using immunofluorescence and confocal microscopy. All receptors examined showed a punctate distribution on the plasma membrane. alpha2, alpha3, and beta1 integrins and NG2 were also present on primary cilia, whereas annexin V and CD44 were excluded. The number of receptor-positive cilia varied from 8/50 for NG2 to 43/50 for beta1 integrin. This is the first study to demonstrate the expression of integrins and NG2 on chondrocyte primary cilia. The data strongly suggest that chondrocyte primary cilia have the necessary machinery to act as mechanosensors, linking the ECM to cytoplasmic organelles responsible for matrix production and secretion.  相似文献   

11.
12.
Jobgen  Wenjuan S.  Wu  Guoyao 《Amino acids》2022,54(12):1553-1568

Previous work has shown that dietary l-arginine (Arg) supplementation reduced white fat mass in obese rats. The present study was conducted with cell models to define direct effects of Arg on energy-substrate oxidation in hepatocytes, skeletal muscle cells, and adipocytes. BNL CL.2 mouse hepatocytes, C2C12 mouse myotubes, and 3T3-L1 mouse adipocytes were treated with different extracellular concentrations of Arg (0, 15, 50, 100 and 400 µM) or 400 µM Arg?+?0.5 mM NG-nitro-l-arginine methyl ester (L-NAME; an NOS inhibitor) for 48 h. Increasing Arg concentrations in culture medium dose-dependently enhanced (P?<?0.05) the oxidation of glucose and oleic acid to CO2 in all three cell types, lactate release from C2C12 cells, and the incorporation of oleic acid into esterified lipids in BNL CL.2 and 3T3-L1 cells. Arg at 400 µM also stimulated (P?<?0.05) the phosphorylation of AMP-activated protein kinase (AMPK) in all three cell types and increased (P?<?0.05) NO production in C2C12 and BNL CL.2 cells. The inhibition of NOS by L-NAME moderately reduced (P?<?0.05) glucose and oleic acid oxidation, lactate release, and the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC) in BNL CL.2 cells, but had no effect (P?>?0.05) on these variables in C2C12 or 3T3-L1 cells. Collectively, these results indicate that Arg increased AMPK activity and energy-substrate oxidation in BNL CL.2, C2C12, and 3T3-L1 cells through both NO-dependent and NO-independent mechanisms.

  相似文献   

13.
This study aimed to characterize the activity of ectonucleoside triphosphate diphosphohydrolase (E‐NTPDase; EC 3.6.1.5) in peritoneal cavity cells from BALB/c mice. E‐NTPDase was activated in the presence of both calcium (1.5mM) and magnesium (1.5mM) ions. However, the activity was higher in the presence of Ca2+. A pH of 8.5 and temperature of 37°C were the optimum conditions for catalysis. The apparent Km values were 0.51mM and 0.66mM for the hydrolysis of adenosine triphosphate (ATP) and adenosine diphosphate (ADP), respectively. The Vmax values were 136.4 and 120.8 nmol Pi/min/mg of protein for ATPase and ADPase activity, respectively. Nucleotide hydrolysis was inhibited in the presence of sodium azide (20mM, ATP: P < .05; ADP: P < .001), sodium fluoride (20mM; ATP and ADP: P < .001), and suramin (0.3mM; ATP: P < .01; ADP: P < .05), which is a known profile for NTPDase inhibition. Although all of the diphosphate and triphosphate nucleotides that were tested were hydrolyzed, enzyme activity was increased when adenine nucleotides were used as substrates. Finally, we stress that knowledge of the E‐NTPDase catalytic biochemical properties in mouse peritoneal cavity cells is indispensable for properly determining its activity, as well as to fully understand the immune response profile in both healthy and sick cells.  相似文献   

14.
Cartilage and chondrocytes experience loading that causes alterations in chondrocyte biological activity. In vivo chondrocytes are surrounded by a pericellular matrix with a stiffness of ~25–200 kPa. Understanding the mechanical loading environment of the chondrocyte is of substantial interest for understanding chondrocyte mechanotransduction. The first objective of this study was to analyze the spatial variability of applied mechanical deformations in physiologically stiff agarose on cellular and sub-cellular length scales. Fluorescent microspheres were embedded in physiologically stiff agarose hydrogels. Microsphere positions were measured via confocal microscopy and used to calculate displacement and strain fields as a function of spatial position. The second objective was to assess the feasibility of encapsulating primary human chondrocytes in physiologically stiff agarose. The third objective was to determine if primary human chondrocytes could deform in high-stiffness agarose gels. Primary human chondrocyte viability was assessed using live–dead imaging following 24 and 72 h in tissue culture. Chondrocyte shape was measured before and after application of 10% compression. These data indicate that (1) displacement and strain precision are ~1% and 6.5% respectively, (2) high-stiffness agarose gels can maintain primary human chondrocyte viability of >95%, and (3) compression of chondrocytes in 4.5% agarose can induce shape changes indicative of cellular compression. Overall, these results demonstrate the feasibility of using high-concentration agarose for applying in vitro compression to chondrocytes as a model for understanding how chondrocytes respond to in vivo loading.  相似文献   

15.
16.
Gonadal steroids stimulate both sexual motivation and performance. However, steroid facilitation of appetitive sexual behavior is poorly understood. The present study determined if castration impairs chemosensory detection in male hamsters. Chemosensory cues are the principal sensory modality to initiate mating in this species. We compared LiCl-induced conditioned taste avoidance to female hamster vaginal secretion (FHVS) in gonad-intact and castrated males. Following overnight water deprivation, males received FHVS for 15 min, followed by LiCl (2 ml of 0.15 M) or saline ip. The next day, fluid consumption in a two-bottle choice test was recorded for 5.5 h. Pairings were repeated 4×. Initially, discrimination of FHVS from estrous females (10 or 100 μg/ml) was compared with plain water. Subsequently, we determined if males could distinguish FHVS from Syrian vs. Djungarian females or from estrous vs. anestrous females. When 100 μg/ml FHVS was paired with saline, all gonad-intact and 86% of castrated males preferred FHVS over water. However, when 100 μg/ml FHVS was paired with LiCl, the preference was reversed: 12.5% of intact males and 25% of castrates preferred FHVS (P < 0.05 vs. saline pairing). When exposed to 10 μg/ml FHVS, neither gonad-intact nor castrated males expressed conditioned taste avoidance, suggesting that 10 μg/ml FHVS is below the threshold for detection. Comparing discrimination of FHVS from Syrian and Djungarian females, only castrated males developed a significant conditioned taste avoidance to Syrian FHVS paired with LiCl. While 71% of castrated males preferred Syrian FHVS after saline pairing, only 12.5% of castrates preferred Syrian FHVS after pairing with LiCl (P < 0.05). In gonad-intact males, 57% preferred Syrian FHVS after saline pairing, while 14% preferred Syrian FHVS following LiCl pairing (P > 0.05). Neither gonad-intact nor castrated males successfully discriminated between FHVS from estrous and anestrous females. These data demonstrate that castrated males perform as well as gonad-intact males in a test of LiCl-induced conditioned taste avoidance. Therefore, it is unlikely that steroids enhance detection of sexually relevant chemosensory cues.  相似文献   

17.
In the post-natal growth plate, chondrocytes are arranged in columns parallel to the long axis of the bone. Chondrocytes divide perpendicular to this axis and then move into position one on top of another in a process called "rotation" that maintains columnar organization. Primary cilia are non-motile microtubule base appendages extending from the surface of almost all vertebrate cells. Primary cilia were described on chondrocytes almost 40 years ago but the function of these structures in cartilage biology is not known. Intraflagellar transport (IFT) is the process by which primary cilia are generated and maintained. This study tested the hypothesis that IFT plays an important role in post-natal skeletal development. Kif3a, a subunit of the Kinesin II motor complex, that is required for intraflagellar transport and the formation of cilia, was deleted in mouse chondrocytes via Col2a-Cre-mediated recombination. Disruption of IFT resulted in subsequent depletion of cilia and post-natal dwarfism due to premature loss of the growth plate likely a result of reduced proliferation and accelerated hypertrophic differentiation of chondrocytes. Cell shape and columnar orientation in the growth plate were also disrupted suggesting a defect in the process of rotation. Alterations in chondrocyte rotation were accompanied by disruption of the actin cytoskeleton and alterations in the localization of activated FAK to focal adhesion-like structures on chondrocytes. This is the first report indicating a role for IFT and primary cilia in the development of the post-natal growth plate. The results suggest a model in which IFT/cilia act to maintain the columnar organization of the growth plate via the process of chondrocyte rotation.  相似文献   

18.
To clarify how tributyltin (TBT) and triphenyltin (TPT) interact with the retinoid X receptor (RXR) to induce growth of male sex organs in female gastropods, we treated female rock shells (Thais clavigera) with three different concentrations (0.1, 1, or 5 μg/g wet wt) of 9-cis-retinoic acid (9CRA) or with a single concentration (1 μg/g wet wt) of TBT, TPT, or fetal bovine serum (as a control). The effects of each treatment were measured as the incidence of imposex, the length of the penis-like structure, and the vas deferens sequence (VDS) index. 9CRA induced imposex in a dose-dependent manner; imposex incidence was significantly higher in the rock shells that received 1 (P < 0.05) or 5 μg (P < 0.001) 9CRA than in the controls. After 1 month, the rock shells treated with 5 μg 9CRA exhibited substantial growth of the penis-like structure that was not as evident in the other treated shells. The length of the structure differed between the 0.1- and 5-μg 9CRA treatment groups (P < 0.05) but not between the 1- and 5-μg 9CRA treatment groups (P > 0.05). Compared with the control, the VDS index increased significantly in the 1- (P < 0.05) and 5-μg (P < 0.001) 9CRA groups. The penis-like structures behind the right tentacle in female rock shells treated with 5 μg 9CRA were essentially the same as the penises and vasa deferentia of normal males and of TBT-treated or TPT-treated imposexed females. These results further support the hypothesis that imposex in gastropods could be mediated by RXR.  相似文献   

19.
20.
The primary cilium is considered as a key component of morphological cellular stability. However, cancer cells are notorious for lacking primary cilia in most cases, depending upon the tumour type. Previous reports have shown the effect of starvation and cytostatics on ciliogenesis in normal and cancer cells although with limited success, especially when concerning the latter. In this study, we evaluated the presence and frequency of primary cilia in breast fibroblasts and in triple‐negative breast cancer cells after treatment with cytostatics finding that, in the case of breast fibroblasts, primary cilia were detected at their highest incidence 72 hours after treatment with 120 nM doxorubicin. Further, multiciliated cells were also detected after treatment with 80 nM doxorubicin. On the other hand, treatment with taxol increased the number of ciliated cells only at low concentrations (1.25 and 3.25 nM) and did not induce multiciliation. Interestingly, triple‐negative breast cancer cells did not present primary cilia after treatment with either doxorubicin or taxol. This is the first study reporting the presence of multiple primary cilia in breast fibroblasts induced by doxorubicin. However, the null effect of these cytostatics on primary cilia incidence in the evaluated triple negative breast carcinomas cell lines requires further research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号