首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular biomolecular complexes including protein–protein, protein–RNA, and protein–DNA interactions regulate and execute most biological functions. In particular in brain, protein–protein interactions (PPIs) mediate or regulate virtually all nerve cell functions, such as neurotransmission, cell–cell communication, neurogenesis, synaptogenesis, and synaptic plasticity. Perturbations of PPIs in specific subsets of neurons and glia are thought to underly a majority of neurobiological disorders. Therefore, understanding biological functions at a cellular level requires a reasonably complete catalog of all physical interactions between proteins. An enzyme-catalyzed method to biotinylate proximal interacting proteins within 10 to 300 nm of each other is being increasingly used to characterize the spatiotemporal features of complex PPIs in brain. Thus, proximity labeling has emerged recently as a powerful tool to identify proteomes in distinct cell types in brain as well as proteomes and PPIs in structures difficult to isolate, such as the synaptic cleft, axonal projections, or astrocyte–neuron junctions. In this review, we summarize recent advances in proximity labeling methods and their application to neurobiology.  相似文献   

2.
3.
Comprehensive proteome analysis of rare cell phenotypes remains a significant challenge. We report a method for low cell number MS-based proteomics using protease digestion of mildly formaldehyde-fixed cells in cellulo, which we call the “in-cell digest.” We combined this with averaged MS1 precursor library matching to quantitatively characterize proteomes from low cell numbers of human lymphoblasts. About 4500 proteins were detected from 2000 cells, and 2500 proteins were quantitated from 200 lymphoblasts. The ease of sample processing and high sensitivity makes this method exceptionally suited for the proteomic analysis of rare cell states, including immune cell subsets and cell cycle subphases. To demonstrate the method, we characterized the proteome changes across 16 cell cycle states (CCSs) isolated from an asynchronous TK6 cells, avoiding synchronization. States included late mitotic cells present at extremely low frequency. We identified 119 pseudoperiodic proteins that vary across the cell cycle. Clustering of the pseudoperiodic proteins showed abundance patterns consistent with “waves” of protein degradation in late S, at the G2&M border, midmitosis, and at mitotic exit. These clusters were distinguished by significant differences in predicted nuclear localization and interaction with the anaphase-promoting complex/cyclosome. The dataset also identifies putative anaphase-promoting complex/cyclosome substrates in mitosis and the temporal order in which they are targeted for degradation. We demonstrate that a protein signature made of these 119 high-confidence cell cycle–regulated proteins can be used to perform unbiased classification of proteomes into CCSs. We applied this signature to 296 proteomes that encompass a range of quantitation methods, cell types, and experimental conditions. The analysis confidently assigns a CCS for 49 proteomes, including correct classification for proteomes from synchronized cells. We anticipate that this robust cell cycle protein signature will be crucial for classifying cell states in single-cell proteomes.  相似文献   

4.
In Birt–Hogg–Dubé (BHD) syndrome, germline loss-of-function mutations in the Folliculin (FLCN) gene lead to an increased risk of renal cancer. To address how FLCN inactivation affects cellular kinase signaling pathways, we analyzed comprehensive phosphoproteomic profiles of FLCNPOS and FLCNNEG human renal tubular epithelial cells (RPTEC/TERT1). In total, 15,744 phosphorylated peptides were identified from 4329 phosphorylated proteins. INKA analysis revealed that FLCN loss alters the activity of numerous kinases, including tyrosine kinases EGFR, MET, and the Ephrin receptor subfamily (EPHA2 and EPHB1), as well their downstream targets MAPK1/3. Validation experiments in the BHD renal tumor cell line UOK257 confirmed that FLCN loss contributes to enhanced MAPK1/3 and downstream RPS6K1/3 signaling. The clinically available MAPK inhibitor Ulixertinib showed enhanced toxicity in FLCNNEG cells. Interestingly, FLCN inactivation induced the phosphorylation of PIK3CD (Tyr524) without altering the phosphorylation of canonical Akt1/Akt2/mTOR/EIF4EBP1 phosphosites. Also, we identified that FLCN inactivation resulted in dephosphorylation of TFEB Ser109, Ser114, and Ser122, which may be linked to increased oxidative stress levels in FLCNNEG cells. Together, our study highlights differential phosphorylation of specific kinases and substrates in FLCNNEG renal cells. This provides insight into BHD-associated renal tumorigenesis and may point to several novel candidates for targeted therapies.  相似文献   

5.
Rescoring of mass spectrometry (MS) search results using spectral predictors can strongly increase peptide spectrum match (PSM) identification rates. This approach is particularly effective when aiming to search MS data against large databases, for example, when dealing with nonspecific cleavage in immunopeptidomics or inflation of the reference database for noncanonical peptide identification. Here, we present inSPIRE (in silico Spectral Predictor Informed REscoring), a flexible and performant open-source rescoring pipeline built on Prosit MS spectral prediction, which is compatible with common database search engines. inSPIRE allows large-scale rescoring with data from multiple MS search files, increases sensitivity to minor differences in amino acid residue position, and can be applied to various MS sample types, including tryptic proteome digestions and immunopeptidomes. inSPIRE boosts PSM identification rates in immunopeptidomics, leading to better performance than the original Prosit rescoring pipeline, as confirmed by benchmarking of inSPIRE performance on ground truth datasets. The integration of various features in the inSPIRE backbone further boosts the PSM identification in immunopeptidomics, with a potential benefit for the identification of noncanonical peptides.  相似文献   

6.
  1. Download : Download high-res image (178KB)
  2. Download : Download full-size image
  相似文献   

7.
The identification of clinically relevant biomarkers represents an important challenge in oncology. This problem can be addressed with biomarker discovery and verification studies performed directly in tumor samples using formalin-fixed paraffin-embedded (FFPE) tissues. However, reliably measuring proteins in FFPE samples remains challenging. Here, we demonstrate the use of liquid chromatography coupled to multiple reaction monitoring mass spectrometry (LC-MRM/MS) as an effective technique for such applications. An LC-MRM/MS method was developed to simultaneously quantify hundreds of peptides extracted from FFPE samples and was applied to the targeted measurement of 200 proteins in 48 triple-negative, 19 HER2-overexpressing, and 20 luminal A breast tumors. Quantitative information was obtained for 185 proteins, including known markers of breast cancer such as HER2, hormone receptors, Ki-67, or inflammation-related proteins. LC-MRM/MS results for these proteins matched immunohistochemistry or chromogenic in situ hybridization data. In addition, comparison of our results with data from the literature showed that several proteins representing potential biomarkers were identified as differentially expressed in triple-negative breast cancer samples. These results indicate that LC-MRM/MS assays can reliably measure large sets of proteins using the analysis of surrogate peptides extracted from FFPE samples. This approach allows to simultaneously quantify the expression of target proteins from various pathways in tumor samples. LC-MRM/MS is thus a powerful tool for the relative quantification of proteins in FFPE tissues and for biomarker discovery.  相似文献   

8.
The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted β-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.  相似文献   

9.
  1. Download : Download high-res image (231KB)
  2. Download : Download full-size image
  相似文献   

10.
Meiotic maturation is an intricate and precisely regulated process orchestrated by various pathways and numerous proteins. However, little is known about the proteome landscape during oocytes maturation. Here, we obtained the temporal proteomic profiles of mouse oocytes during in vivo maturation. We successfully quantified 4694 proteins from 4500 oocytes in three key stages (germinal vesicle, germinal vesicle breakdown, and metaphase II). In particular, we discovered the novel proteomic features during oocyte maturation, such as the active Skp1–Cullin–Fbox pathway and an increase in mRNA decay–related proteins. Using functional approaches, we further identified the key factors controlling the histone acetylation state in oocytes and the vital proteins modulating meiotic cell cycle. Taken together, our data serve as a broad resource on the dynamics occurring in oocyte proteome and provide important knowledge to better understand the molecular mechanisms during germ cell development.  相似文献   

11.
12.
Amino acid sequences of immunodominant domains of hemagglutinin (HA) on the surface of influenza A virus (IAV) evolve rapidly, producing viral variants. HA mediates receptor recognition, binding and cell entry, and serves as the target for IAV vaccines. Glycosylation, a post-translational modification that places large branched polysaccharide molecules on proteins, can modulate the function of HA and shield antigenic regions allowing for viral evasion from immune responses. Our previous work showed that subtle changes in the HA protein sequence can have a measurable change in glycosylation. Thus, being able to quantitatively measure glycosylation changes in variants is critical for understanding how HA function may change throughout viral evolution. Moreover, understanding quantitatively how the choice of viral expression systems affects glycosylation can help in the process of vaccine design and manufacture. Although IAV vaccines are most commonly expressed in chicken eggs, cell-based vaccines have many advantages, and the adoption of more cell-based vaccines would be an important step in mitigating seasonal influenza and protecting against future pandemics. Here, we have investigated the use of data-independent acquisition (DIA) mass spectrometry for quantitative glycoproteomics. We found that DIA improved the sensitivity of glycopeptide detection for four variants of A/Switzerland/9715293/2013 (H3N2): WT and mutant, each expressed in embryonated chicken eggs and Madin–Darby canine kidney cells. We used the Tanimoto similarity metric to quantify changes in glycosylation between WT and mutant and between egg-expressed and cell-expressed virus. Our DIA site-specific glycosylation similarity comparison of WT and mutant expressed in eggs confirmed our previous analysis while achieving greater depth of coverage. We found that sequence variations and changing viral expression systems affected distinct glycosylation sites of HA. Our methods can be applied to track glycosylation changes in circulating IAV variants to bolster genomic surveillance already being done, for a more complete understanding of IAV evolution.  相似文献   

13.
Pancreatic adenocarcinoma (PDAC) is highly refractory to treatment. Standard-of-care gemcitabine (Gem) provides only modest survival benefits, and development of Gem resistance (GemR) compromises its efficacy. Highly GemR clones of Gem-sensitive MIAPaCa-2 cells were developed to investigate the molecular mechanisms of GemR and implemented global quantitative differential proteomics analysis with a comprehensive, reproducible ion-current–based MS1 workflow to quantify ~6000 proteins in all samples. In GemR clone MIA-GR8, cellular metabolism, proliferation, migration, and ‘drug response’ mechanisms were the predominant biological processes altered, consistent with cell phenotypic alterations in cell cycle and motility. S100 calcium binding protein A4 was the most downregulated protein, as were proteins associated with glycolytic and oxidative energy production. Both responses would reduce tumor proliferation. Upregulation of mesenchymal markers was prominent, and cellular invasiveness increased. Key enzymes in Gem metabolism pathways were altered such that intracellular utilization of Gem would decrease. Ribonucleoside-diphosphate reductase large subunit was the most elevated Gem metabolizing protein, supporting its critical role in GemR. Lower Ribonucleoside-diphosphate reductase large subunit expression is associated with better clinical outcomes in PDAC, and its downregulation paralleled reduced MIAPaCa-2 proliferation and migration and increased Gem sensitivity. Temporal protein-level Gem responses of MIAPaCa-2 versus GemR cell lines (intrinsically GemR PANC-1 and acquired GemR MIA-GR8) implicate adaptive changes in cellular response systems for cell proliferation and drug transport and metabolism, which reduce cytotoxic Gem metabolites, in DNA repair, and additional responses, as key contributors to the complexity of GemR in PDAC. These findings additionally suggest targetable therapeutic vulnerabilities for GemR PDAC patients.  相似文献   

14.
DEP domain containing mTOR-interacting protein (DEPTOR) plays pivotal roles in regulating metabolism, growth, autophagy and apoptosis by functions as an endogenous inhibitor of mTOR signaling pathway. Activated by phosphatidic acid, a second messenger in mTOR signaling, DEPTOR dissociates from mTORC1 complex with unknown mechanism. Here, we present a 1.5 Å resolution crystal structure, which shows that the N-terminal two tandem DEP domains of hDEPTOR fold into a dumbbell-shaped structure, protruding the characteristic β-hairpin arms of DEP domains on each side. An 18 amino acids DDEX motif at the end of DEP2 interacts with DEP1 and stabilizes the structure. Biochemical studies showed that the tandem DEP domains directly interact with phosphatidic acid using two distinct positively charged patches. These results provide insights into mTOR activation upon phosphatidic acid stimulation.  相似文献   

15.
AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid β-oxidation, especially β-hydroxybutyrate, are fatty energy–supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine β-hydroxybutyrylation (Kbhb) is a β-hydroxybutyrate–mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.  相似文献   

16.
Gut microbiota of the gastrointestinal tract provide health benefits to the human host via bacterial metabolites. Bacterial butyrate has beneficial effects on intestinal homeostasis and is the preferred energy source of intestinal epithelial cells, capable of inducing differentiation. It was previously observed that changes in the expression of specific proteins as well as protein glycosylation occur with differentiation. In this study, specific mucin O-glycans were identified that mark butyrate-induced epithelial differentiation of the intestinal cell line CaCo-2 (Cancer Coli-2), by applying porous graphitized carbon nano–liquid chromatography with electrospray ionization tandem mass spectrometry. Moreover, a quantitative proteomic approach was used to decipher changes in the cell proteome. It was found that the fully differentiated butyrate-stimulated cells are characterized by a higher expression of sialylated O-glycan structures, whereas fucosylation is downregulated with differentiation. By performing an integrative approach, we generated hypotheses about the origin of the observed O-glycome changes. These insights pave the way for future endeavors to study the dynamic O-glycosylation patterns in the gut, either produced via cellular biosynthesis or through the action of bacterial glycosidases as well as the functional role of these patterns in homeostasis and dysbiosis at the gut–microbiota interface.  相似文献   

17.
《Endocrine practice》2021,27(11):1082-1092
ObjectiveAntiosteoporotic drug (AOD) trials have variabilities in duration and fracture risks. This study evaluated AOD’s versus controls regarding reduction in relative rates and rate differences in vertebral and hip fractures and comparative costs.MethodsPrimary randomized controlled trials of antiosteoporotic drugs in postmenopausal women with documentation of vertebral fracture rates or hip fracture rates were extracted from meta-analyses and PubMed through February 2021. Direct and indirect meta-analyses and meta-regressions analyzed the fracture reductions.ResultsThere were 24 randomized controlled trials of drug versus placebo (73 862 women) and 10 randomized controlled trials of drug versus drug. The reductions in the relative rates of vertebral fractures were significant for antiresorptive (alendronate, risedronate, zoledronate, denosumab, and raloxifene) and anabolic (teriparatide, abaloparatide, and romosozumab) drugs. Denosumab, teriparatide, and abaloparatide were more effective in reducing vertebral fracture rates than oral bisphosphates (all P < .05) but were not more effective in reducing vertebral fracture rates than zoledronate. The reductions in hip fracture rates were significant for alendronate, denosumab, and zoledronate (all P < .05), without significant differences among drugs. Anabolic drugs did not show significant hip fracture rate reduction. Meta-regression of rate differences enabled the calculation of costs per vertebral fracture prevented, which were estimated at >$100 000 for anabolic drugs and between $2289 and $28 947 for antiresorptive drugs. Many direct drug versus drug trials were underpowered to demonstrate benefits of one drug over another.ConclusionThis study suggests goal-directed, cost-effective therapies relative to patient risk for vertebral and hip fractures. Anabolic drugs are better at preventing vertebral fractures than oral bisphosphonates. Anabolic drugs are not superior to zoledronate or denosumab and are substantially more expensive. When comparing drugs that prevented hip fractures, there was no statistical benefit of any drug.  相似文献   

18.
Inflammatory bowel disease (IBD) is an immune-mediated chronic inflammation of the intestine, which can present in the form of ulcerative colitis (UC) or as Crohn’s disease (CD). Biomarkers are needed for reliable diagnosis and disease monitoring in IBD, especially in pediatric patients. Plasma samples from a pediatric IBD cohort were interrogated using an aptamer-based screen of 1322 proteins. The elevated biomarkers identified using the aptamer screen were further validated by ELISA using an independent cohort of 76 pediatric plasma samples, drawn from 30 CD, 30 UC, and 16 healthy controls. Of the 1322 proteins screened in plasma from IBD patients, 129 proteins were significantly elevated when compared with healthy controls. Of these 15 proteins had a fold change greater than 2 and 28 proteins had a fold change >1.5. Neutrophil and extracellular vesicle signatures were detected among the elevated plasma biomarkers. When seven of these proteins were validated by ELISA, resistin was the only protein that was significantly higher in both UC and CD (p < 0.01), with receiver operating characteristic area under the curve value of 0.82 and 0.77, respectively, and the only protein that exhibited high sensitivity and specificity for both CD and UC. The next most discriminatory plasma proteins were elastase and lactoferrin, particularly for UC, with receiver operating characteristic area under the curve values of 0.74 and 0.69, respectively. We have identified circulating resistin, elastase, and lactoferrin as potential plasma biomarkers of IBD in pediatric patients using two independent diagnostic platforms and two independent patient cohorts.  相似文献   

19.
The cumulative exposure to apolipoprotein B (apoB)-containing lipoproteins in the blood during early adult life is a central determinant of atherosclerotic cardiovascular disease risk. To date, the patterns and rates of change in apoB through early adult life have not been described. Here, we used NMR to measure apoB concentrations in up to 3055 Coronary Artery Risk Development in Young Adults (CARDIA) Study participants who attended the years 2 (Y2), 7 (Y7), 15 (Y15), 20 (Y20), and 30 (Y30) exams. We examined individual-level spaghetti plots of apoB change, and we calculated average annualized rate of apoB concentration change during follow-up. We used multivariable linear regression models to assess the associations between CARDIA participant characteristics and annualized rates of apoB change. Male sex, higher measures of adiposity, lower HDL-C, lower Healthy Eating Index, and higher blood pressures were observed more commonly in individuals with higher apoB level at Y2 and Y20. Inter- and intra-individual variation in apoB concentration over time was substantial—while the mean (SD) rate of change was 0.52 (1.0) mg/dl/year, the range of annualized rates of change was ?6.26 to +9.21 mg/dl/year. At baseline, lower first apoB measurement, female sex, White race, lower BMI, and current tobacco use were associated with apoB increase. We conclude that the significant variance in apoB level over time and the modest association between baseline measures and rates of apoB change suggest that the ability to predict an individual’s future apoB serum concentrations, and thus their cumulative apoB exposure, after a one-time assessment in young adulthood is low.  相似文献   

20.
Fusarium oxysporum is one of the most abundant and diverse fungal species found in soils and includes nonpathogenic, endophytic, and pathogenic strains affecting a broad range of plant and animal hosts. Conidiation is the major mode of reproduction in many filamentous fungi, but the regulation of this process is largely unknown. Lysine acetylation (Kac) is an evolutionarily conserved and widespread posttranslational modification implicated in regulation of multiple metabolic processes. A total of 62 upregulated and 49 downregulated Kac proteins were identified in sporulating mycelia versus nonsporulating mycelia of F. oxysporum. Diverse cellular proteins, including glycolytic enzymes, ribosomal proteins, and endoplasmic reticulum–resident molecular chaperones, were differentially acetylated in the sporulation process. Altered Kac levels of three endoplasmic reticulum–resident molecular chaperones, PDIK70, HSP70K604, and HSP40K32 were identified that with important roles in F. oxysporum conidiation. Specifically, K70 acetylation (K70ac) was found to be crucial for maintaining stability and activity of protein disulphide isomerase and the K604ac of HSP70 and K32ac of HSP40 suppressed the detoxification ability of these heat shock proteins, resulting in higher levels of protein aggregation. During conidial formation, an increased level of PDIK70ac and decreased levels of HSP70K604ac and HSP40K32ac contributed to the proper processing of unfolded proteins and eliminated protein aggregation, which is beneficial for dramatic cell biological remodeling during conidiation in F. oxysporum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号