首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysosome represents a central degradative compartment of eukaryote cells, yet little is known about the biogenesis and function of this organelle in parasitic protists. Whereas the mannose 6-phosphate (M6P)-dependent system is dominant for lysosomal targeting in metazoans, oligosaccharide-independent sorting has been reported in other eukaryotes. In this study, we investigated the phagolysosomal proteome of the human parasite Trichomonas vaginalis, its protein targeting and the involvement of lysosomes in hydrolase secretion. The organelles were purified using Percoll and OptiPrep gradient centrifugation and a novel purification protocol based on the phagocytosis of lactoferrin-covered magnetic nanoparticles. The analysis resulted in a lysosomal proteome of 462 proteins, which were sorted into 21 classes. Hydrolases represented the largest functional class and included proteases, lipases, phosphatases, and glycosidases. Identification of a large set of proteins involved in vesicular trafficking (80) and turnover of actin cytoskeleton rearrangement (29) indicate a dynamic phagolysosomal compartment. Several cysteine proteases such as TvCP2 were previously shown to be secreted. Our experiments showed that secretion of TvCP2 was strongly inhibited by chloroquine, which increases intralysosomal pH, thus indicating that TvCP2 secretion occurs through lysosomes rather than the classical secretory pathway. Unexpectedly, we identified divergent homologues of the M6P receptor TvMPR in the phagolysosomal proteome, although T. vaginalis lacks enzymes for M6P formation. To test whether oligosaccharides are involved in lysosomal targeting, we selected the lysosome-resident cysteine protease CLCP, which possesses two glycosylation sites. Mutation of any of the sites redirected CLCP to the secretory pathway. Similarly, the introduction of glycosylation sites to secreted β-amylase redirected this protein to lysosomes. Thus, unlike other parasitic protists, T. vaginalis seems to utilize glycosylation as a recognition marker for lysosomal hydrolases. Our findings provide the first insight into the complexity of T. vaginalis phagolysosomes, their biogenesis, and role in the unconventional secretion of cysteine peptidases.  相似文献   

2.
Inflammatory bowel disease (IBD) is an immune-mediated chronic inflammation of the intestine, which can present in the form of ulcerative colitis (UC) or as Crohn’s disease (CD). Biomarkers are needed for reliable diagnosis and disease monitoring in IBD, especially in pediatric patients. Plasma samples from a pediatric IBD cohort were interrogated using an aptamer-based screen of 1322 proteins. The elevated biomarkers identified using the aptamer screen were further validated by ELISA using an independent cohort of 76 pediatric plasma samples, drawn from 30 CD, 30 UC, and 16 healthy controls. Of the 1322 proteins screened in plasma from IBD patients, 129 proteins were significantly elevated when compared with healthy controls. Of these 15 proteins had a fold change greater than 2 and 28 proteins had a fold change >1.5. Neutrophil and extracellular vesicle signatures were detected among the elevated plasma biomarkers. When seven of these proteins were validated by ELISA, resistin was the only protein that was significantly higher in both UC and CD (p < 0.01), with receiver operating characteristic area under the curve value of 0.82 and 0.77, respectively, and the only protein that exhibited high sensitivity and specificity for both CD and UC. The next most discriminatory plasma proteins were elastase and lactoferrin, particularly for UC, with receiver operating characteristic area under the curve values of 0.74 and 0.69, respectively. We have identified circulating resistin, elastase, and lactoferrin as potential plasma biomarkers of IBD in pediatric patients using two independent diagnostic platforms and two independent patient cohorts.  相似文献   

3.
Helicobacter pylori colonizes the stomach of half of the human population. Most H. pylori are located in the mucus layer, which is mainly comprised by glycosylated mucins. Using mass spectrometry, we identified 631 glycans (whereof 145 were fully characterized and the remainder assigned as compositions) on mucins isolated from 14 Helicobacter spp.-infected and 14 Helicobacter spp.-noninfected stomachs. Only six identified glycans were common to all individuals, from a total of 60 to 189 glycans in each individual. An increased number of unique glycan structures together with an increased intraindividual diversity and larger interindividual variation were identified among O-glycans from Helicobacter spp.-infected stomachs compared with noninfected stomachs. H. pylori strain J99, which carries the blood group antigen–binding adhesin (BabA), the sialic acid–binding adhesin (SabA), and the LacdiNAc-binding adhesin, bound both to Lewis b (Leb)-positive and Leb-negative mucins. Among Leb-positive mucins, H. pylori J99 binding was higher to mucins from Helicobacter spp.-infected individuals than noninfected individuals. Statistical correlation analysis, binding experiments with J99 wt, and J99ΔbabAΔsabA and inhibition experiments using synthetic glycoconjugates demonstrated that the differences in H. pylori-binding ability among these four groups were governed by BabA-dependent binding to fucosylated structures. LacdiNAc levels were lower in mucins that bound to J99 lacking BabA and SabA than in mucins that did not, suggesting that LacdiNAc did not significantly contribute to the binding. We identified 24 O-glycans from Leb-negative mucins that correlated well with H. pylori binding whereof 23 contained α1,2-linked fucosylation. The large and diverse gastric glycan library identified, including structures that correlated with H. pylori binding, could be used to select glycodeterminants to experimentally investigate further for their importance in host–pathogen interactions and as candidates to develop glycan-based therapies.  相似文献   

4.
《Endocrine practice》2021,27(5):471-477
ObjectiveTo examine demographic, clinical, and biochemical differences in patients with adrenocorticotropin (ACTH)-dependent Cushing syndrome (CS) based on etiology, sex, and tumor size.MethodsThis was a single-center study of 211 patients with ACTH-dependent CS followed for 35 years. Patients were stratified into 3 groups based on etiology: Cushing disease (CD)/transsphenoidal surgery, Cushing disease/total bilateral adrenalectomy (CD/TBA), and ectopic ACTH secretion (EAS). Patients were also stratified based on sex and tumor size (nonvisualized, microadenoma, and macroadenoma).ResultsCD was the commonest cause of ACTH-dependent CS (190; 90%). Most patients presented in the third decade (median age, 29 years). Clinical features, cortisol, and ACTH were significantly greater in the EAS group. The CD/TBA group had more nonvisualized tumors (22% vs 8%; P = .000) and smaller tumor size (4 vs 6 mm; P = .001) compared with the CD/transsphenoidal surgery group. There was female predominance in CD (2.06:1) and male predominance in EAS (2:1). Men had shorter duration of symptoms (2 years; P = .014), were younger (23 years; P = .001), had lower body mass index (25.1 kg/m2; P = .000), and had more severe disease (low bone mineral density, hypokalemia). Macroadenomas were frequent (46; 24.2%), and ACTH correlated with tumor size in CD (r = 0.226; P = .005).ConclusionOur cohort presented at an earlier age than the Western population with a distinct, but slightly lower, female predilection. Patients with CD undergoing TBA had frequent negative imaging. Men had a clinical profile suggesting aggressive disease. Microadenoma and macroadenoma were difficult to distinguish on a clinicobiochemical basis.  相似文献   

5.
《Endocrine practice》2022,28(9):859-866
Objective5α-Reductase type 2 (5α-RD2) deficiency causes variable degrees of undervirilization in patients. The correlation between its genotype and phenotype is unclear.MethodsWe retrospectively evaluated 103 patients with 46,XY disorders of sex development who were diagnosed with 5α-RD2 deficiency.ResultsThe prevalence of female sex assignment (P = .008) and the incidences of cryptorchidism (P = .0003) and bifid scrotum (P = .0002) in the non-p.R227Q variant group were higher, but there were no significant differences in the incidences of hypospadias and isolated microphallus. The external masculinization score in the non-p.R227Q variant group was lower than that in the homozygous p.R227Q variant (P = .019) and compound heterozygous p.R227Q variant groups (P = .013). The level of anti-Mullerian hormone in the non-p.R227Q variant group was lower than that in the homozygous p.R227Q variant (P < .001) and compound heterozygous p.R227Q variant groups (P = .006). The testosterone-to-dihydrotestosterone ratio of the homozygous p.R227Q variant group was higher than that of the non-p.R227Q variant (P = .018) and compound heterozygous p.R227Q variant groups (P = .029). Twenty-three reportedly pathogenic variants and 11 novel steroid 5α-reductase 2 (SRD5A2) variants were identified.ConclusionCompared with patients without p.R227Q, patients with p.R227Q exhibited higher external masculinization scores and anti-Mullerian hormone expression, a lower prevalence of female sex assignment, and lower incidences of cryptorchidism and bifid scrotum. We identified 23 reportedly pathogenic SRD5A2 variants and 11 novel SRD5A2 variants that led to 5α-RD2 deficiency. We established a genotype-phenotype correlation, and patients with p.R227Q showed a relatively mild phenotype.  相似文献   

6.
Phosphatidic acid (PA) is the simplest phospholipid and is involved in the regulation of various cellular events. Recently, we developed a new PA sensor, the N-terminal region of α-synuclein (α-Syn-N). However, whether α-Syn-N can sense physiologically produced, endogenous PA remains unclear. We first established an inactive PA sensor (α-Syn-N-KQ) as a negative control by replacing all eleven lysine residues with glutamine residues. Using confocal microscopy, we next verified that α-Syn-N, but not α-Syn-N-KQ, detected PA in macrophagic phagosomes in which PA is known to be enriched, further indicating that α-Syn-N can be used as a reliable PA sensor in cells. Finally, because PA generated during neuronal differentiation is critical for neurite outgrowth, we investigated the subcellular distribution of PA using α-Syn-N. We found that α-Syn-N, but not α-Syn-N-KQ, accumulated at the peripheral regions (close to the plasma membrane) of neuronal growth cones. Experiments using a phospholipase D (PLD) inhibitor strongly suggested that PA in the peripheral regions of the growth cone was primarily produced by PLD. Our findings provide a reliable sensor of endogenous PA and novel insights into the distribution of PA during neuronal differentiation.  相似文献   

7.
《Endocrine practice》2023,29(2):135-140
ObjectiveTo assess the effect of Nordic walking (NW) on cardiometabolic health, physical performance, and well-being in sedentary older adults with type 2 diabetes (T2D).MethodsFifteen subjects with T2D (female, 5; male, 10; age, 65 ± 6.2 years [mean ± standard deviation]; body mass index, 27.3 ± 4.9 kg/m2 [mean ± standard deviation]) were enrolled in a 6-month NW training program. The fasting glucose and glycosylated hemoglobin levels, lipid profile (total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides), systolic blood pressure (SBP), and diastolic blood pressures were measured before and after the intervention. Participants’ quality of life (Short-Form Health Survey) and physical fitness (6-minute walking test) were also evaluated.ResultsCompared with baseline, NW significantly improved the fasting glucose level (103.5 ± 18.5 vs 168.7 ± 37.7 mg/dL, P = .01), SBP (121.8 ± 12.2 vs 133 ± 14.4 mm Hg, P = .02), physical fitness (759.88 ± 69 vs 615.5 ± 62.6 m, P < .001), and both mental health (54.5 ± 4.4 vs 45.7 ± 5.6, P < .01) and physical health (49.8 ± 4.7 vs 40.3 ± 5.9, P < .01). The levels of glycosylated hemoglobin (6.15% ± 0.8% vs 6.4% ± 1%, P = .46), total cholesterol (162.2 ± 31.2 vs 175.5 ± 28.8 mg/dL, P = .13), low-density lipoprotein cholesterol (95.2 ± 24.2 vs 106.3 ± 32.3 mg/dL, P = .43), and triglycerides (135.5 ± 60.8 vs 127.6 ± 57.4 mg/dL, P = 0.26) improved without reaching significance.ConclusionNW training improved the glycemic levels, SBP, physical fitness, and perception of quality of life in older adults with T2D. NW represents a suitable complementary strategy to improve the global health status in this population.  相似文献   

8.
Geranylgeranoic acid (GGA) was first reported in 1983 as one of the mevalonic acid metabolites, but its biological significance was not studied for a long time. Our research on the antitumor effects of retinoids led us to GGA, one of the acyclic retinoids that induce cell death in human hepatoma-derived cell lines. We were able to demonstrate the presence of endogenous GGA in various tissues of male rats, including the liver, testis, and cerebrum, by LC-MS/MS. Furthermore, the biosynthesis of GGA from mevalonic acid in mammals including humans was confirmed by isotopomer spectral analysis using 13C-labeled mevalonolactone and cultured hepatoma cells, and the involvement of hepatic monoamine oxidase B in the biosynthesis of GGA was also demonstrated. The biological activity of GGA was analyzed from the retinoid (differentiation induction) and nonretinoid (cell death induction) aspects, and in particular, the nonretinoid mechanism by which GGA induces cell death in hepatoma cells was found to involve pyroptosis via ER stress responses initiated by TLR4 signaling. In addition to these effects of GGA, we also describe the in vivo effects of GGA on reproduction. In this review, based mainly on our published papers, we have shown that hepatic monoamine oxidase B is involved in the biosynthesis of GGA and that GGA induces cell death in human hepatoma-derived cell lines by noncanonical pyroptosis, one of the mechanisms of sterile inflammatory cell death.  相似文献   

9.
Biogenesis of lipid droplets (LDs) in various cells plays an important role in various physiological and pathological processes. However, the function of LDs in endothelial physiology and pathology is not well understood. In the present work, we investigated the formation of LDs and prostacyclin (PGI2) generation in the vascular tissue of isolated murine aortas following activation by proinflammatory factors: tumor necrosis factor (TNF), lipopolysaccharides (LPS), angiotensin II (AngII), hypoxic conditions, or oleic acid (OA). The abundance, size, and biochemical composition of LDs were characterized based on Raman spectroscopy and fluorescence imaging. We found that blockade of lipolysis by the adipose triglyceride lipase (ATGL) delayed LDs degradation and simultaneously blunted PGI2 generation in aorta treated with all tested proinflammatory stimuli. Furthermore, the analysis of Raman spectra of LDs in the isolated vessels stimulated by TNF, LPS, AngII, or hypoxia uncovered that these LDs were all rich in highly unsaturated lipids and had a negligible content of phospholipids and cholesterols. Additionally, by comparing the Raman signature of endothelial LDs under hypoxic or OA-overload conditions in the presence or absence of ATGL inhibitor, atglistatin (Atgl), we show that Atgl does not affect the biochemical composition of LDs. Altogether, independent of whether LDs were induced by pro-inflammatory stimuli, hypoxia, or OA and of whether they were composed of highly unsaturated or less unsaturated lipids, we observed LDs formation invariably associated with ATGL-dependent PGI2 generation. In conclusion, vascular LDs formation and ATGL-dependent PGI2 generation represent a universal response to vascular proinflammatory insult.  相似文献   

10.
Estimating false discovery rates (FDRs) of protein identification continues to be an important topic in mass spectrometry–based proteomics, particularly when analyzing very large datasets. One performant method for this purpose is the Picked Protein FDR approach which is based on a target-decoy competition strategy on the protein level that ensures that FDRs scale to large datasets. Here, we present an extension to this method that can also deal with protein groups, that is, proteins that share common peptides such as protein isoforms of the same gene. To obtain well-calibrated FDR estimates that preserve protein identification sensitivity, we introduce two novel ideas. First, the picked group target-decoy and second, the rescued subset grouping strategies. Using entrapment searches and simulated data for validation, we demonstrate that the new Picked Protein Group FDR method produces accurate protein group-level FDR estimates regardless of the size of the data set. The validation analysis also uncovered that applying the commonly used Occam’s razor principle leads to anticonservative FDR estimates for large datasets. This is not the case for the Picked Protein Group FDR method. Reanalysis of deep proteomes of 29 human tissues showed that the new method identified up to 4% more protein groups than MaxQuant. Applying the method to the reanalysis of the entire human section of ProteomicsDB led to the identification of 18,000 protein groups at 1% protein group-level FDR. The analysis also showed that about 1250 genes were represented by ≥2 identified protein groups. To make the method accessible to the proteomics community, we provide a software tool including a graphical user interface that enables merging results from multiple MaxQuant searches into a single list of identified and quantified protein groups.  相似文献   

11.
Liquid–liquid phase separation (LLPS) and phase transitions (PT) of proteins, which include the formation of gel- and solid-like species, have been characterized as physical processes related to the pathology of conformational diseases. Nucleic acid (NA)-binding proteins related to neurodegenerative disorders and cancer were shown by us and others to experience PT modulated by different NAs. Herein, we discuss recent work on phase separation and phase transitions of two amyloidogenic proteins, i.e. the prion protein (PrP) and p53, which undergo conformational changes and aggregate upon NA interaction. The role of different NAs in these processes is discussed to shed light on the relevance of PSs and PTs for both the functional and pathological roles of these mammalian proteins.  相似文献   

12.
The choice of where to look next is determined by both exogenous (bottom-up) and endogenous (top-down) factors, but details of their interaction and distinct contributions to target selection have remained elusive. Recent experiments with urgent choice tasks, in which stimuli are evaluated while motor plans are already advancing, have greatly clarified these contributions. Specifically, exogenous modulations associated with stimulus detection act rapidly and briefly (∼25 ms) to automatically halt and/or boost ongoing motor plans as per spatial congruence rules. These stereotypical modulations explain, in quantitative detail, characteristic features of many saccadic tasks (e.g. antisaccade, countermanding, saccadic-inhibition, gap, and double-step). Thus, the same low-level visuomotor interactions contribute to diverse oculomotor phenomena traditionally attributed to different neural mechanisms.  相似文献   

13.
14.
Mass-spectrometry-enabled ADP-ribosylation workflows are developing rapidly, providing researchers a variety of ADP-ribosylome enrichment strategies and mass spectrometric acquisition options. Despite the growth spurt in upstream technologies, systematic ADP-ribosyl (ADPr) peptide mass spectral annotation methods are lacking. HCD-dependent ADP-ribosylome studies are common, but the resulting MS2 spectra are complex, owing to a mixture of b/y-ions and the m/p-ion peaks representing one or more dissociation events of the ADPr moiety (m-ion) and peptide (p-ion). In particular, p-ions that dissociate further into one or more fragment ions can dominate HCD spectra but are not recognized by standard spectral annotation workflows. As a result, annotation strategies that are solely reliant upon the b/y-ions result in lower spectral scores that in turn reduce the number of reportable ADPr peptides. To improve the confidence of spectral assignments, we implemented an ADPr peptide annotation and scoring strategy. All MS2 spectra are scored for the ADPr m-ions, but once spectra are assigned as an ADPr peptide, they are further annotated and scored for the p-ions. We implemented this novel workflow to ADPr peptides enriched from the liver and spleen isolated from mice post 4 h exposure to systemic IFN-γ. HCD collision energy experiments were first performed on the Orbitrap Fusion Lumos and the Q Exactive, with notable ADPr peptide dissociation properties verified with CID (Lumos). The m-ion and p-ion series score distributions revealed that ADPr peptide dissociation properties vary markedly between instruments and within instrument collision energy settings, with consequences on ADPr peptide reporting and amino acid localization. Consequentially, we increased the number of reportable ADPr peptides by 25% (liver) and 17% (spleen) by validation and the inclusion of lower confidence ADPr peptide spectra. This systematic annotation strategy will streamline future reporting of ADPr peptides that have been sequenced using any HCD/CID-based method.  相似文献   

15.
ObjectiveCardiovascular complications such as cardiomyopathy and endothelial dysfunction, which are frequently seen in patients with acromegaly, are among the most important causes of morbidity and mortality. In this study, we aimed to investigate arterial stiffness, carotid intima-media thickness, endocan level, and A disintegrin and metalloproteinase with thrombospondin type I motif 9 level and their relationship with disease activity in patients with acromegaly with and without cardiovascular risk factors.MethodsA total of 60 patients with acromegaly—25 with active disease, 26 with well-controlled disease, and 9 with newly diagnosed disease—and 60 age-, sex-, and body mass index (BMI)-matched healthy control subjects were enrolled in this study. All the subjects’ height, weight, BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG) level, insulin, hemoglobin A1C (HbA1C), C-reactive protein , lipid, endocan, A disintegrin and metalloproteinase with thrombospondin type I motif 9 levels, pulse wave velocity (PWV), and carotid intima-media thickness were measured.ResultsThe SBP, DBP, FPG level, HbA1C level, and PWV of the acromegaly group were higher than those of the control group. In patients with acromegaly with cardiovascular disease (CVD) risk factors, the PWV was higher than that in the control group, and in patients with acromegaly without CVD risk factors, the PWV was similar to that in the control group. In a correlation analysis, a positive correlation was found between PWV and age, BMI, SBP, DBP, FPG level, and HbA1C level in the acromegaly group.ConclusionIn our study, we found that arterial stiffness increased in patients with acromegaly with CVD risk factors and that increased arterial stiffness was associated with hemodynamic (SBP and DBP) and metabolic (BMI, FPG level, and HbA1C level) parameters.  相似文献   

16.
The actinomycete Amycolatopsis japonicum is the producer of the chelating compound [S,S]-ethylenediamine-disuccinc acid (EDDS). [S,S]-EDDS is an isomer of ethylenediamine-tetraacetic acid (EDTA), an economically important chelating compound that suffers from an extremely poor degradability. Frequent use of the persistent EDTA in various industrial and domestic applications has caused an accumulation of EDTA in soil as well as in aqueous environments. As a consequence, EDTA is the highest concentrated anthropogenic compound present in water reservoirs. The [S,S]-form of EDDS has chelating properties similar to EDTA, however, in contrast to EDTA it is readily biodegradable. In order to compete with the cost-effective chemical synthesis of EDTA, we aimed to optimize the biotechnological production of [S,S]-EDDS in A. japonicum by using metabolic engineering approaches. Firstly, we integrated several copies of the [S,S]-EDDS biosynthetic genes into the chromosome of A. japonicum and replaced the native zinc responsive promoter with the strong synthetic constitutive promoter SP44*. Secondly, we increased the supply of O-phospho-serine, the direct precursor of [S,S]-EDDS. The combination of these approaches together with the optimized fermentation process led to a significant improvement in [S,S]-EDDS up to 9.8 g/L with a production rate of 4.3 mg/h/g DCW.  相似文献   

17.
《Endocrine practice》2021,27(2):124-130
ObjectiveTo explore the influence of desmopressin on gonadotropin-induced spermatogenesis in patients with pituitary stalk interruption syndrome (PSIS).MethodsA single-center retrospective cohort study was conducted. All patients with PSIS had both gonadotropin and growth hormone (GH) deficiency. Patients were divided into desmopressin and nondesmopressin groups. The desmopressin and nondesmopressin groups were defined by the presence or absence of central diabetes insipidus, which determined whether the patient received desmopressin or not.ResultsThe average age of gonadotropin therapy was 24.3 and 26.1 in the desmopressin and nondesmopressin groups, respectively. The rate of successful spermatogenesis in the 2 groups was 31.58% and 77.27%, respectively. The period for first sperm appearance was 13.62 ± 5.95 and 13.48 ± 6.69 months, respectively. A multivariable Cox proportional hazards model found that the adjusted hazard ratio for desmopressin was 0.260, indicating a “possible” detrimental effect of desmopressin on spermatogenesis. Central diabetes insipidus would be expected to show a similar detrimental effect. The spermatogenesis rate decreased with increased dosage of desmopressin. In the nondesmopressin group, the rate of spermatogenesis was similar between the GH group and the non-GH subgroup. The GH group had higher sperm count and concentration than the non-GH group.ConclusionA minority of patients with PSIS had mild diabetes insipidus and received desmopressin therapy. The spermatogenesis rate decreased with increasing desmopressin dosage. In addition, GH supplementation did not affect the spermatogenesis rate.  相似文献   

18.
Proteinaceous cysteine residues act as privileged sensors of oxidative stress. As reactive oxygen and nitrogen species have been implicated in numerous pathophysiological processes, deciphering which cysteines are sensitive to oxidative modification and the specific nature of these modifications is essential to understanding protein and cellular function in health and disease. While established mass spectrometry-based proteomic platforms have improved our understanding of the redox proteome, the widespread adoption of these methods is often hindered by complex sample preparation workflows, prohibitive cost of isotopic labeling reagents, and requirements for custom data analysis workflows. Here, we present the SP3-Rox redox proteomics method that combines tailored low cost isotopically labeled capture reagents with SP3 sample cleanup to achieve high throughput and high coverage proteome-wide identification of redox-sensitive cysteines. By implementing a customized workflow in the free FragPipe computational pipeline, we achieve accurate MS1-based quantitation, including for peptides containing multiple cysteine residues. Application of the SP3-Rox method to cellular proteomes identified cysteines sensitive to the oxidative stressor GSNO and cysteine oxidation state changes that occur during T cell activation.  相似文献   

19.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

20.
Colorectal cancer is the second leading cause of cancer death worldwide, and the incidence of this disease is expected to increase as global socioeconomic changes occur. Immune checkpoint inhibition therapy is effective in treating a minority of colorectal cancer tumors; however, microsatellite stable tumors do not respond well to this treatment. Emerging cancer immunotherapeutic strategies aim to activate a cytotoxic T cell response against tumor-specific antigens, presented exclusively at the cell surface of cancer cells. These antigens are rare and are most effectively identified with a mass spectrometry–based approach, which allows the direct sampling and sequencing of these peptides. Although the few tumor-specific antigens identified to date are derived from coding regions of the genome, recent findings indicate that a large proportion of tumor-specific antigens originate from allegedly noncoding regions. Here, we employed a novel proteogenomic approach to identify tumor antigens in a collection of colorectal cancer–derived cell lines and biopsy samples consisting of matched tumor and normal adjacent tissue. The generation of personalized cancer databases paired with mass spectrometry analyses permitted the identification of more than 30,000 unique MHC I–associated peptides. We identified 19 tumor-specific antigens in both microsatellite stable and unstable tumors, over two-thirds of which were derived from noncoding regions. Many of these peptides were derived from source genes known to be involved in colorectal cancer progression, suggesting that antigens from these genes could have therapeutic potential in a wide range of tumors. These findings could benefit the development of T cell–based vaccines, in which T cells are primed against these antigens to target and eradicate tumors. Such a vaccine could be used in tandem with existing immune checkpoint inhibition therapies, to bridge the gap in treatment efficacy across subtypes of colorectal cancer with varying prognoses. Data are available via ProteomeXchange with identifier PXD028309.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号