首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA末端的转录后修饰对其稳定性影响较大.最近研究发现,3'-末端无需模板的添加尿苷酸(尿苷酸化),可能是真核生物RNA的一种普遍存在的转录后修饰方式.借此形成的1个RNA降解的分子标记,引发多种RNA降解,如小RNA或其前体、mRNA或mRNA被RNA诱导沉默复合体内切后的上游片段及其组蛋白mRNA等.某些情况下,尿苷酸化的RNA被1种新发现的外切核酸酶Dis3L2特异降解,推测Dis3L2可能代表了真核生物RNA 3'→5'方向独立于外切体之外的一种新的降解途径.此外,尿苷酸化在RNA代谢中可能具有重要的功能,如果发生异常会导致多种人类疾病,如癌症和Perlman综合征等.本文综述了尿苷酸化引发RNA降解的几种方式,有助于进一步了解RNA降解的机制及其生物学意义.  相似文献   

2.
真核细胞中,RNA 3’端poly(A)或oligo(A)的特异性水解被称为脱腺苷酸化(deadenylation)。脱腺苷酸化的执行者被称为脱腺苷酸酶(deadenylase)。绝大多数真核细胞中都存在多种脱腺苷酸酶,其中CCR4-NOT复合体和PAN2-PAN3复合体负责细胞中大多数mRNA的非特异性降解,PARN和PNLDC1等参与了特定子集mRNA的降解和多种非编码RNA的生物合成。作为RNA水平的重要调控者之一,脱腺苷酸酶参与了几乎所有细胞生命活动和多种重要生理和病理过程。在真核细胞中,脱腺苷酸酶的分子调控机制可能是:细胞中的大量RNA结合蛋白是RNA命运调控的中心分子,一方面根据RNA的状态或细胞需求识别特定的靶标RNA子集,另一方面招募特定脱腺苷酸酶,对特定子集RNA的3’端进行降解或修剪,从而调控RNA的最终命运。细胞中十余种脱腺苷酸酶同工酶、上千种RNA结合蛋白以及多种多样的翻译后修饰构成了复杂的动态分子调控网络,帮助细胞在生长、增殖、分化、应激、死亡等重要生命活动中精确维持RNA稳态或快速转换基因表达谱。  相似文献   

3.
RNA的尿苷化     
很多RNA分子可以进行转录后修饰.最近的研究发现,末端无需模板的尿苷酸添加(尿苷化)可能就是一种广泛存在且保守,但以前了解甚少的RNA转录后修饰方式.这种修饰可以发生在从藻类到人类的很多RNA上,如多聚腺苷化的mRNA、siRNAs或miRNAs内切mRNA得到的上游片段、组蛋白mRNA、目前发现的大多数小调节RNAs、U6小核RNA(snRNA)、转录起点相关的小RNA和剪切的内含子等.这种修饰不仅具有重要的功能,如增强RNA的降解、促进或抑制RNA的加工形成、改变RNA的活性或作为mRNA的一种质量控制机制,而且还与人类的一些致病机制有关,如癌症.本文主要综述了小RNA、mRNA及其内切片段、组蛋白mRNA和U6 snRNA等RNA尿苷化的研究进展,并对相关研究的应用前景做了展望.  相似文献   

4.
环形RNA是一种广泛存在于真核细胞的内源性RNA,由前体RNA反向剪接而成,不具有5’末端帽子和3’末端poly(A)尾巴,呈封闭环状结构。环形RNA通过miRNA海绵结合等方式参与基因表达调控等许多重要的生物学过程。环形RNA可以通过可变剪接产生不同的环形RNA转录本,因此获取环形RNA转录本内部全长序列信息以及对环形RNA内部可变剪接产物进行精确定量是揭示环形RNA调控功能的前提。生物信息学工具能够高效便捷的处理高通量测序数据,被普遍用来鉴别和分析环形RNA。本文介绍了环形RNA的产生机制以及功能特性,对环形RNA检测、全长序列组装以及定量相关计算工具进行综述。  相似文献   

5.
RNA降解体(细菌RNA降解的主要执行者)是一种多亚基的蛋白质复合物,主要由RNA解螺旋酶、聚核苷酸磷酸化酶(polynucleotide phosphorylase,PNPase)、内切核酸酶(ribonuclease E,RNase E)以及糖酵解途径中的烯醇化酶、磷酸果糖激酶等组成,参与核糖体RNA(ribosome RNA,rRNA)的加工以及信使RNA(messenger RNA,mRNA)的降解。此外,RNA分子伴侣Hfq和调控小RNA(small RNA,sRNA)在RNA稳定性调控中也发挥着重要作用。综述了细菌RNA稳定性调控相关功能元件,特别是降解体蛋白及RNA分子伴侣Hfq的最新进展,以期为研究细菌RNA稳定性及其参与的代谢调控提供理论参考。  相似文献   

6.
RNA降解是基因表达调节的重要途径,影响很多生命活动。近来,m RNA降解机制有了很多新发现,如真核生物中发现了一种m RNA末端尿苷化介导的脱帽机制,和一条不依赖exosome的3′→5′的m RNA降解途径。虽然真核生物与原核生物m RNA降解途径非常相似,通常都有3种:内切降解、5′→3′外切降解和3′→5′外切降解等,但两者m RNA降解途径之间也存在很多差异,如5′→3′方向的外切降解是真核生物m RNA最重要的降解途径之一,但其在细菌中作用非常弱,且只在革兰氏阳性菌中发现。m RNA降解的研究不仅深化了人们对这一过程的认识,而且有助于新型药物的研发,以防御寄生虫、病毒或治疗人类疾病(如癌症)等。文章主要综述了真核生物和原核生物m RNA 5′→3′方向的降解机制,并对其应用前景进行了展望。  相似文献   

7.
竞争内源性RNA (competing endogenous RNA, ceRNA)理论是解释基因表达调控和生物功能的关键线索之一。这种机制联合了不同的RNA分子,为RNA之间相互作用和RNA调控网络提供了新的见解。最近的研究证实了ceRNA调控在肿瘤发生发展中的作用,其中大多以lncRNA-miRNA-mRNA和circRNA-miRNA-mRNA调控网络为主。研究表明,多种ceRNA调控网络参与肿瘤细胞增殖、侵袭和迁移、药物抗性、血管生成以及肿瘤免疫等,影响肿瘤发展进程。该文搜集了最新的ceRNA调控肿瘤发生发展过程的研究进展,讨论在此过程中发挥关键作用的ceRNA调控网络。  相似文献   

8.
环形RNA(circular RNA circRNA)是由前体RNA的3'末端和5'末端首尾相连形成的环状非编码RNA,可竞争内源性RNA,调节基因的表达。环形RNA在发现之初,被认为是由于错误剪接产生的,未引起重视,随着RNA测序和生物信息等技术的发展大量的环形RNA被发现,并逐渐成为非编码RNA的研究热点。虽然目前对其功能了解甚少,但已有的研究表明环形RNA可以对基因转录后进行调控。本文将从环形RNA的发现过程、形成机制、生物学功能、与疾病的关系以及研究中存在的问题进行综述,有助于进一步研究中心法则,同时为疾病诊治提供新的方向。  相似文献   

9.
10.
肝细胞癌(hepatocellular carcinoma, HCC,下称肝癌)是一种全球高发的恶性肿瘤,其生长快、易转移、死亡率高.非编码RNA(non-coding RNA, ncRNA)是指由基因组转录的不编码蛋白质的RNA.它们数量巨大,占人类基因组转录产物的90%以上.近年研究发现, ncRNA可以在表观遗传、转录和转录后水平调控基因表达,或者调控蛋白质的定位及活性,进而影响细胞的分化、增殖、死亡、运动等重要活动; ncRNA的失调与疾病的发生发展密切相关.发现肝癌相关的ncRNA并深入研究其调控网络及作用机制将为肝癌的诊断和治疗提供新策略.本文介绍了ncRNA的分类, ncRNA的生成、加工和降解机制, ncRNA的功能网络,并总结了ncRNA在肝癌细胞恶性表型调控中的功能及机制,最后讨论了ncRNA作为诊断标志物和治疗靶点的潜在应用.  相似文献   

11.
RNA结合蛋白(RNA binding protein, RBP)是基因表达调控的关键因子,参与包括蛋白质复合物的协调与稳定、RNA的加工与成熟以及mRNA的转运、稳定、翻译和降解等重要的细胞生物学过程。而RBP和RNA之间的相互作用可以在它们各自的生物学过程中起到重要作用。因此,快速、准确检测RBP-RNA相互作用的技术对研究RBP和RNA的功能至关重要。对近些年发展起来的RNA纯化的染色质分离(chromatin isolation by RNA purification,ChIRP)、RNA靶标的捕获杂交分析(capture hybridization analysis of RNA targets,CHART)、三分子荧光互补技术(trimolecular fluorescence complementation,TriFC)、RNA免疫共沉淀(RNA immunoprecipitation, RIP)、紫外交联免疫沉淀(UV-crosslinking and immunoprecipitation,CLIP)、RNA Pull-down和RNA电泳迁移分析等主要RBP-RNA相互作用鉴定技术的基本原理和优缺点以及应用进行了综述,旨在为新型技术的发现提供新的思路。  相似文献   

12.
MicmRNA(miRNA)是指一组由多细胞生物产生的小片段非编码RNA,是真核生物基因调控重要的组成成分。近些年来有研究者在病毒中也同样发现编码产生的miRNA,其可通过RNA干扰途径参与调节感染过程以及促进癌症的发生。因此阻止病毒小RNA生成有望成为治疗病毒相关疾病的新方法。  相似文献   

13.
RNA病毒的多个生命过程如基因组复制、蛋白翻译等均需要特定RNA元件的调控,RNA结构是其发挥调控作用的分子基础,研究这些RNA元件结构及其在调控过程中的动态变化,将有助于深度解析相应过程的调控机制。RNA结构分析技术可以解析RNA元件的结构(二级结构和三级结构)。目前,RNA结构体分析技术主要有以下几种:Rnase酶法、In-line probing技术、SHAPE技术(Selective 2’-hydroxyl acylation analyzed by primer extension)、核磁共振技术、RNA结晶以及体内分析技术。本文将对RNA结构分析技术的发展历程、具体技术原理和操作细节、未来发展进行叙述,为相关科研工作提供技术参考。  相似文献   

14.
微小RNA(MicroRNA,miRNA)是一类由18–25个核苷酸组成的高度保守的核苷酸序列,它可以特异性结合信使RNA (mRNA)的3′-非编码区域,进而发挥降解mRNA或阻遏mRNA翻译的负调控作用。长链非编码RNA (Long non-coding RNA,lncRNA)是一类长度超过200个核苷酸、不能编码蛋白质或只能编码蛋白质微肽的核苷酸序列,它可以在表观遗传、转录水平和转录后水平调控基因表达。脂肪作为一种重要的储能物质,在调节动物体能量平衡过程中发挥着重要的作用,并与动物产肉量、肉品质等产肉性状密切相关。而脂肪功能的紊乱可导致高血脂、Ⅱ型糖尿病以及一系列心血管疾病发生,因此动物脂肪沉积的分子调控机制备受人们关注。近年来,越来越多的研究发现miRNA和lncRNA在动物脂肪沉积中发挥重要作用。文中就现阶段miRNA和lncRNA在动物脂肪沉积中的研究进展进行综述,以期为进一步揭示动物脂肪沉积的分子调控机制提供理论指导和新思路。  相似文献   

15.
环状RNA(circular RNA,circRNA)是真核细胞中广泛存在的一类由3′末端和5′末端共价结合形成的环状非编码RNA(non-coding RNA,ncRNA)。越来越多的研究表明,circRNA具有种类丰富、结构稳定、序列保守以及细胞或组织特异性表达等特点。circRNA具有很多潜在的功能,例如作为天然小RNA(microRNA,miRNA)海绵体吸附并调控miRNA的活性,与转录调控元件结合或与蛋白互作调控基因的转录等。目前关于circRNA的研究多集中在动物和人体中,在植物中的研究还较少,仅在水稻(Oryza sativa)、拟南芥(Arabidopsis thaliana)、小麦(Triticum aestivum)、猕猴桃(Actinidia chinensis)、番茄(Solanum lycopersicum)和大豆(Glycine max)等中鉴定到了circRNA的存在,并且其作用机理尚不清楚。该文主要针对circRNA的分类、形成机制、分子特征、相关研究方法以及在植物中的主要研究进展进行综述,并对目前植物circRNA研究中存在的问题进行了分析总结。  相似文献   

16.
小RNA长度在20~32 nt之间,通过染色质修饰、mRNA降解和翻译抑制来调控基因表达。小RNA可以分为三类:小干扰RNA、微小RNA和piRNAs。小干扰RNA主要抵御转座子和病毒的侵袭。微小RNA的表达受发育水平调控且有组织特异性,在发育和细胞分化中起作用。piRNAs在生殖细胞和干细胞中表达,可使反转座子沉默。综述了这几种小RNA的定义与分类、生成机制、功能及其研究方法。  相似文献   

17.
18.
长链非编码RNA(long non-coding RNA,lncRNA),是一种长度大于200个核苷酸的调控性非编码RNA,能在转录水平、转录后水平及表观遗传水平等多个层面影响基因的表达。脂肪生成是一个复杂而有序的过程。大量研究表明,lncRNA在脂肪生成过程中扮演着重要角色,它可以影响脂质代谢及成脂分化等多种生物过程,从而间接影响肉品质。这对于提高畜禽肉品质、避免养殖业饲料过多转化成脂肪所导致的浪费以及对预防和治疗与脂肪代谢相关的疾病都具有重要意义。对lncRNA的基本特征、在动物脂肪沉积中的作用进展进行了综述,以期为培育优质畜禽,预防和治疗与脂肪代谢相关的疾病提供理论依据。  相似文献   

19.
反义RNA技术   总被引:1,自引:0,他引:1  
反义RNA(antisence RNA)是一种与特异mRNA互补的RNA分子,它通过配对碱基间氢键作用与对应的RNA形成双链复合物,抑制RNA的翻译过程。利用人工合成或生物体合成特定互补RNA片段(或其化学修辞产物)抑制或封闭基因表达技术,称为反义RNA技术。本文综述了反义RNA作用机理,合成途径,并展示了该技术在研究基因功能,防治肿瘤、遗传病以及人工免疫等方面广阔的应用前景。一、反义RNA抑制基因表达机理许多实验证明,原核类生物如细菌、粘菌,  相似文献   

20.
P小体的研究进展   总被引:2,自引:0,他引:2  
P小体(processing bodies)即mRNA处理小体,它是一种富含了多种功能相关蛋白以及RNA的胞浆集合体(cytoplasmic foci)。研究表明这种胞浆结构与mRNA的降解过程以及RNA干扰介导的转录后基因沉默效应有关,另外,它还参与了细胞增殖和细胞周期以及宿主的抗病毒感染能力的调控。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号