首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sphingolipids like sphingosine-1-phosphate (S1P) have been implicated in the pathophysiology of pre-eclampsia. We hypothesized that plasma S1P would be increased in women at high risk of developing pre-eclampsia who subsequently develop the disease. Low circulating placental growth factor (PlGF) is known to be associated with development of pre-eclampsia; so further, we hypothesized that increased S1P would be associated with concurrently low PlGF. This was a case-control study using stored maternal blood samples from 14 to 24 weeks of pregnancy, collected from 95 women at increased risk of pre-eclampsia. Pregnancy outcome was classified as uncomplicated, preterm pre-eclampsia (<37 weeks), or term pre-eclampsia. Plasma lipids were extracted and analyzed by ultraperformance liquid chromatography coupled to electrospray ionization MS/MS to determine concentrations of S1P and sphingosine. Median plasma S1P was 0.339 nmol/ml, and median sphingosine was 6.77 nmol/l. There were no differences in the plasma concentrations of S1P or sphingosine in women who subsequently developed pre-eclampsia, no effect of gestational age, fetal sex, ethnicity, or the presence of pre-existing hypertension. There was a correlation between S1P and sphingosine plasma concentration (P < 0.0001). There was no relationship between S1P or sphingosine with PlGF. Previous studies have suggested that plasma S1P may be a biomarker of pre-eclampsia. In our larger study, we failed to demonstrate there are women at high risk of developing the disease. We did not show a relationship with known biomarkers of the disease, suggesting that S1P is unlikely to be a useful predictor of the development of pre-eclampsia later in pregnancy.  相似文献   

3.
Bacterial sphingolipid synthesis is important for the fitness of gut commensal bacteria with an implied potential for regulating mammalian host physiology. Multiple steps in bacterial sphingolipid synthesis pathways have been characterized previously, with the first step of de novo sphingolipid synthesis being well conserved between bacteria and eukaryotes. In mammals, the subsequent step of de novo sphingolipid synthesis is catalyzed by 3-ketosphinganine reductase, but the protein responsible for this activity in bacteria has remained elusive. In this study, we analyzed the 3-ketosphinganine reductase activity of several candidate proteins in Bacteroides thetaiotaomicron chosen based on sequence similarity to the yeast 3-ketosphinganine reductase gene. We further developed a metabolomics-based 3-ketosphinganine reductase activity assay, which revealed that a gene at the locus BT_0972 encodes a protein capable of converting 3-ketosphinganine to sphinganine. Taken together, these results provide greater insight into pathways for bacterial sphingolipid synthesis that can aid in future efforts to understand how microbial sphingolipid synthesis modulates host-microbe interactions.  相似文献   

4.
Cancer cells may depend on exogenous serine, depletion of which results in slower growth and activation of adaptive metabolic changes. We previously demonstrated that serine and glycine (SG) deprivation causes loss of sphingosine kinase 1 (SK1) in cancer cells, thereby increasing the levels of its lipid substrate, sphingosine (Sph), which mediates several adaptive biological responses. However, the signaling molecules regulating SK1 and Sph levels in response to SG deprivation have yet to be defined. Here, we identify 1-deoxysphinganine (dSA), a noncanonical sphingoid base generated in the absence of serine from the alternative condensation of alanine and palmitoyl CoA by serine palmitoyl transferase, as a proximal mediator of SG deprivation in SK1 loss and Sph level elevation upon SG deprivation in cancer cells. SG starvation increased dSA levels in vitro and in vivo and in turn induced SK1 degradation through a serine palmitoyl transferase-dependent mechanism, thereby increasing Sph levels. Addition of exogenous dSA caused a moderate increase in intracellular reactive oxygen species, which in turn decreased pyruvate kinase PKM2 activity while increasing phosphoglycerate dehydrogenase levels, and thereby promoted serine synthesis. We further showed that increased dSA induces the adaptive cellular and metabolic functions in the response of cells to decreased availability of serine likely by increasing Sph levels. Thus, we conclude that dSA functions as an initial sensor of serine loss, SK1 functions as its direct target, and Sph functions as a downstream effector of cellular and metabolic adaptations. These studies define a previously unrecognized “physiological” nontoxic function for dSA.  相似文献   

5.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   

6.
7.
The role of ceramide in biological functions is typically based on the elevation of cellular ceramide, measured by LC-MS in the total cell lysate. However, it has become increasingly appreciated that ceramide in different subcellular organelles regulates specific functions. In the plasma membrane, changes in ceramide levels might represent a small percentage of the total cellular ceramide, evading MS detection but playing a critical role in cell signaling. Importantly, there are currently no efficient techniques to quantify ceramide in the plasma membrane. Here, we developed a method to measure the mass of ceramide in the plasma membrane using a short protocol that is based on the hydrolysis of plasma membrane ceramide into sphingosine by the action of exogenously applied bacterial recombinant neutral ceramidase. Plasma membrane ceramide content can then be determined by measuring the newly generated sphingosine at a stoichiometry of 1:1. A key step of this protocol is the chemical fixation of cells to block cellular sphingolipid metabolism, especially of sphingosine to sphingosine 1-phosphate. We confirmed that chemical fixation does not disrupt the lipid composition at the plasma membrane, which remains intact during the time of the assay. We illustrate the power of the approach by applying this protocol to interrogate the effects of the chemotherapeutic compound doxorubicin. Here we distinguished two pools of ceramide, depending on the doxorubicin concentration, consolidating different reports. In summary, we have developed the first approach to quantify ceramide in the plasma membrane, allowing the study of new avenues in sphingolipid compartmentalization and function.  相似文献   

8.
The low-density lipoprotein receptor (LDLR) mediates the hepatic uptake of circulating low-density lipoproteins (LDLs), a process that modulates the development of atherosclerotic cardiovascular disease. We recently identified RAB10, encoding a small GTPase, as a positive regulator of LDL uptake in hepatocellular carcinoma cells (HuH7) in a genome-wide CRISPR screen, though the underlying molecular mechanism for this effect was unknown. We now report that RAB10 regulates hepatocyte LDL uptake by promoting the recycling of endocytosed LDLR from RAB11-positive endosomes to the plasma membrane. We also show that RAB10 similarly promotes the recycling of the transferrin receptor, which binds the transferrin protein that mediates the transport of iron in the blood, albeit from a distinct RAB4-positive compartment. Taken together, our findings suggest a model in which RAB10 regulates LDL and transferrin uptake by promoting both slow and rapid recycling routes for their respective receptor proteins.  相似文献   

9.
Second messengers are small rapidly diffusing molecules or ions that relay signals between receptors and effector proteins to produce a physiological effect. Lipid messengers constitute one of the four major classes of second messengers. The hydrolysis of two main classes of lipids, glycerophospholipids and sphingolipids, generate parallel profiles of lipid second messengers: phosphatidic acid (PA), diacylglycerol (DAG), and lysophosphatidic acid versus ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-1-phosphate, respectively. In this review, we examine the mechanisms by which these lipid second messengers modulate aldosterone production at multiple levels. Aldosterone is a mineralocorticoid hormone responsible for maintaining fluid volume, electrolyte balance, and blood pressure homeostasis. Primary aldosteronism is a frequent endocrine cause of secondary hypertension. A thorough understanding of the signaling events regulating aldosterone biosynthesis may lead to the identification of novel therapeutic targets. The cumulative evidence in this literature emphasizes the critical roles of PA, DAG, and sphingolipid metabolites in aldosterone synthesis and secretion. However, it also highlights the gaps in our knowledge, such as the preference for phospholipase D-generated PA or DAG, as well as the need for further investigation to elucidate the precise mechanisms by which these lipid second messengers regulate optimal aldosterone production.  相似文献   

10.
11.
12.
Omega-O-acyl ceramides such as 32-linoleoyloxydotriacontanoyl sphingosine (Cer[EOS]) are essential components of the lipid skin barrier, which protects our body from excessive water loss and the penetration of unwanted substances. These ceramides drive the lipid assembly to epidermal-specific long periodicity phase (LPP), structurally much different than conventional lipid bilayers. Here, we synthesized Cer[EOS] with selectively deuterated segments of the ultralong N-acyl chain or deuterated or 13C-labeled linoleic acid and studied their molecular behavior in a skin lipid model. Solid-state 2H NMR data revealed surprising molecular dynamics for the ultralong N-acyl chain of Cer[EOS] with increased isotropic motion toward the isotropic ester-bound linoleate. The sphingosine moiety of Cer[EOS] is also highly mobile at skin temperature, in stark contrast to the other LPP components, N-lignoceroyl sphingosine acyl, lignoceric acid, and cholesterol, which are predominantly rigid. The dynamics of the linoleic chain is quantitatively described by distributions of correlation times and using dynamic detector analysis. These NMR results along with neutron diffraction data suggest an LPP structure with alternating fluid (sphingosine chain-rich), rigid (acyl chain-rich), isotropic (linoleate-rich), rigid (acyl-chain rich), and fluid layers (sphingosine chain-rich). Such an arrangement of the skin barrier lipids with rigid layers separated with two different dynamic “fillings” i) agrees well with ultrastructural data, ii) satisfies the need for simultaneous rigidity (to ensure low permeability) and fluidity (to ensure elasticity, accommodate enzymes, or antimicrobial peptides), and iii) offers a straightforward way to remodel the lamellar body lipids into the final lipid barrier.  相似文献   

13.
Mammalian phospholipase D (PLD) enzyme family consists of six members. Among them, PLD1/2/6 catalyzes phosphatidic acid (PA) production, while PLD3/4/5 has no catalytic activities. Deregulation of the PLD-PA lipid signaling has been associated with various human diseases including cancer. However, a comprehensive analysis of the regulators and effectors for this crucial lipid metabolic pathway has not been fully achieved. Using a proteomic approach, we defined the protein interaction network for the human PLD family of enzymes and PA and revealed diverse cellular signaling events involving them. Through it, we identified PJA2 as a novel E3 ubiquitin ligase for PLD1 involved in control of the PLD1-mediated mammalian target of rapamycin signaling. Additionally, we showed that PA interacted with and positively regulated sphingosine kinase 1. Taken together, our study not only generates a rich interactome resource for further characterizing the human PLD-PA lipid signaling but also connects this important metabolic pathway with numerous biological processes.  相似文献   

14.
Arginine phosphorylation was only recently discovered to play a significant and relevant role in the Gram-positive bacterium Bacillus subtilis. In addition, arginine phosphorylation was also detected in Staphylococcus aureus, suggesting a widespread role in bacteria. However, the large-scale analysis of protein phosphorylation, and especially those that involve a phosphoramidate bond, comes along with several challenges. The substoichiometric nature of protein phosphorylation requires proper enrichment strategies prior to LC-MS/MS analysis, and the acid instability of phosphoramidates was long thought to impede those enrichments. Furthermore, good spectral quality is required, which can be impeded by the presence of neutral losses of phosphoric acid upon higher energy collision–induced dissociation. Here we show that pArg is stable enough for commonly used Fe3+-IMAC enrichment followed by LC-MS/MS and that HCD is still the gold standard for the analysis of phosphopeptides. By profiling a serine/threonine kinase (Stk1) and phosphatase (Stp1) mutant from a methicillin-resistant S. aureus mutant library, we identified 1062 pArg sites and thus the most comprehensive arginine phosphoproteome to date. Using synthetic arginine phosphorylated peptides, we validated the presence and localization of arginine phosphorylation in S. aureus. Finally, we could show that the knockdown of Stp1 significantly increases the overall amount of arginine phosphorylation in S. aureus. However, our analysis also shows that Stp1 is not a direct protein-arginine phosphatase but only indirectly influences the arginine phosphoproteome.  相似文献   

15.
The tumor microenvironment (TME), which comprises cellular and noncellular components, is involved in the complex process of cancer development. Emerging evidence suggests that mesenchymal stem cells (MSCs), one of the vital regulators of the TME, foster tumor progression through paracrine secretion. However, the comprehensive phosphosignaling pathways that are mediated by MSC-secreting factors have not yet been fully established. In this study, we attempt to dissect the MSC-triggered mechanism in lung cancer using quantitative phosphoproteomics. A total of 1958 phosphorylation sites are identified in lung cancer cells stimulated with MSC-conditioned medium. Integrative analysis of the identified phosphoproteins and predicted kinases demonstrates that MSC-conditioned medium functionally promotes the proliferation and migration of lung cancer via the ERK/phospho-c-Fos-S374 pathway. Recent studies have reported that extracellular ATP accumulates in the TME and stimulates the P2X7R on the cancer cell membrane via purinergic signaling. We observe that ectopic ATP synthase is located on the surface of MSCs and excreted extracellular ATP into the lung cancer microenvironment to trigger the ERK/phospho-c-Fos-S374 pathway, which is consistent with these previous findings. Our results suggest that ectopic ATP synthase on the surface of MSCs releases extracellular ATP into the TME, which promotes cancer progression via activation of the ERK/phospho-c-Fos-S374 pathway.  相似文献   

16.
The addition of excess glucose to the diet drives a coordinated response of lipid metabolism pathways to tune the membrane composition to the altered diet. Here, we have employed targeted lipidomic approaches to quantify the specific changes in the phospholipid and sphingolipid populations that occur in elevated glucose conditions. The lipids within wild-type Caenorhabditis elegans are strikingly stable with no significant changes identified in our global mass spectrometry–based analysis. Previous work has identified ELO-5, an elongase that is critical for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs), as essential for surviving elevated glucose conditions. Therefore, we performed targeted lipidomics on elo-5 RNAi-fed animals and identified several significant changes in these animals in lipid species that contain mmBCFAs as well as in species that do not contain mmBCFAs. Of particular note, we identified a specific glucosylceramide (GlcCer 17:1;O2/22:0;O) that is also significantly upregulated with glucose in wild-type animals. Furthermore, compromising the production of the glucosylceramide pool with elo-3 or cgt-3 RNAi leads to premature death in glucose-fed animals. Taken together, our lipid analysis has expanded the mechanistic understanding of metabolic rewiring with glucose feeding and has identified a new role for the GlcCer 17:1;O2/22:0;O.  相似文献   

17.
A significant proportion of patients with elevated LDL and a clinical presentation of familial hypercholesterolemia do not carry known genetic mutations associated with hypercholesterolemia, such as defects in the LDL receptor. To identify new genes involved in the cellular uptake of LDL, we developed a novel whole-genome clustered regularly interspaced short palindromic repeat-Cas9 KO screen in HepG2 cells. We identified transgelin (TAGLN), an actin-binding protein, as a potentially new gene involved in LDL endocytosis. In silico validation demonstrated that genetically predicted differences in expression of TAGLN in human populations were significantly associated with elevated plasma lipids (triglycerides, total cholesterol, and LDL-C) in the Global Lipids Genetics Consortium and lipid-related phenotypes in the UK Biobank. In biochemical studies, TAGLN-KO HepG2 cells showed a reduction in cellular LDL uptake, as measured by flow cytometry. In confocal microscopy imaging, TAGLN-KO cells had disrupted actin filaments as well as an accumulation of LDL receptor on their surface because of decreased receptor internalization. Furthermore, TAGLN-KO cells exhibited a reduction in total and free cholesterol content, activation of SREBP2, and a compensatory increase in cholesterol biosynthesis. TAGLN deficiency also disrupted the uptake of VLDL and transferrin, other known cargoes for receptors that depend upon clathrin-mediated endocytosis. Our data suggest that TAGLN is a novel factor involved in the actin-dependent phase of clathrin-mediated endocytosis of LDL. The identification of novel genes involved in the endocytic uptake of LDL may improve the diagnosis of hypercholesterolemia and provide future therapeutic targets for the prevention of cardiovascular disease.  相似文献   

18.
19.
Cisplatin is a commonly used chemotherapeutic for the treatment of many solid organ cancers; however, its effectiveness is limited by the development of acute kidney injury (AKI) in 30% of patients. AKI is driven by proximal tubule cell death, leading to rapid decline in renal function. It has previously been shown that sphingolipid metabolism plays a role in regulating many of the biological processes involved in cisplatin-induced AKI. For example, neutral ceramidase (nCDase) is an enzyme responsible for converting ceramide into sphingosine, which is then phosphorylated to become sphingosine-1-phosphate, and our lab previously demonstrated that nCDase knockout (nCDase?/?) in mouse embryonic fibroblasts led to resistance to nutrient and energy deprivation–induced cell death via upregulation of autophagic flux. In this study, we further characterized the role of nCDase in AKI by demonstrating that nCDase?/? mice are resistant to cisplatin-induced AKI. nCDase?/? mice display improved kidney function, reduced injury and structural damage, lower rates of apoptosis, and less ER stress compared to wild-type mice following cisplatin treatment. Although the mechanism of protection is still unknown, we propose that it could be mediated by increased autophagy, as chloroquine treatment resensitized nCDase?/? mice to AKI development. Taken together, we conclude that nCDase may represent a novel target to prevent cisplatin-induced nephrotoxicity.  相似文献   

20.
Syntrophus aciditrophicus is a model syntrophic bacterium that degrades fatty and aromatic acids into acetate, CO2, formate, and H2 that are utilized by methanogens and other hydrogen-consuming microbes. S. aciditrophicus benzoate degradation proceeds by a multistep pathway with many intermediate reactive acyl-coenzyme A species (RACS) that can potentially Nε-acylate lysine residues. Herein, we describe the identification and characterization of acyl-lysine modifications that correspond to RACS in the benzoate degradation pathway. The amounts of modified peptides are sufficient to analyze the post-translational modifications without antibody enrichment, enabling a range of acylations located, presumably, on the most extensively acylated proteins throughout the proteome to be studied. Seven types of acyl modifications were identified, six of which correspond directly to RACS that are intermediates in the benzoate degradation pathway including 3-hydroxypimeloylation, a modification first identified in this system. Indeed, benzoate-degrading enzymes are heavily represented among the acylated proteins. A total of 125 sites were identified in 60 proteins. Functional deacylase enzymes are present in the proteome, indicating a potential regulatory system/mechanism by which S. aciditrophicus modulates acylation. Uniquely, Nε-acyl-lysine RACS are highly abundant in these syntrophic bacteria, raising the compelling possibility that post-translational modifications modulate benzoate degradation in this and potentially other, syntrophic bacteria. Our results outline candidates for further study of how acylations impact syntrophic consortia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号