首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The authors submit the results of taxonomic comparative studies of the strainStreptomyces sp. 246, which produces a polypeptide type cytostatic antibiotic. Strain 246 is characterized by tufts of straight sporophores of the “Rectus-Flexibilis” type, smooth spores arranged in chains (over 10 spores in a chain), yellow aerial and substrate mycelium, a negative test for melanin synthesis, utilization of glucose, arabinose, xylose, mannitol, fructose and rhamnose and inability to grow on sucrose, inositol, raffinose and cellulose. The taxonomic characters ofStreptomyces sp. 246 are identical with those of the strainStreptomyces chrysomallus JA 1449-1 and differ manifestly from those ofStreptomyces antibioticus strains (producing actinomycins, antimycin A and oleandomycin), fromStreptomyces cinereoruber ETH 7451 (producing rhodomycin) and from the strainStreptomyces sp. 4127 (producing actinomycin D).  相似文献   

3.
Most ofthe human Not I linking clones identified to date areconsidered to be derived from CpG islands because ofthe recognitionsequence of this enzyme, and CpG islands have been reportedto be located around the 5' regions of genes. As a pilot study,we determined the complete nucleotide sequence (41,924 bp) ofa human cosmid clone (LL21NC02Q7A10) containing the marker D21S246originating from a Not I linking clone. As a result of sequenceanalysis, we successfully mapped and revealed the genomic genestructure for KIAA0002 previously reported as a cDNA clone.This gene consists of 15 exons and was shown to exist at theD21S246 locus on human chromosome 21q21.3–q22.1. Theseresults demonstrated that genomic marker-anchored DNA sequencingis a useful approach for the human genome project.  相似文献   

4.
[目的] 研究贵州紫云县刺葡萄自然发酵过程中野生酿酒酵母的基因型多样性,分析不同基因型酵母在不同发酵时期的动态变化,为优良酿酒酵母资源的开发利用提供理论依据。[方法] 采用Interdelta指纹图谱分析方法和微卫星分子标记法,研究贵州紫云县刺葡萄自然发酵中野生酿酒酵母的基因型多样性,并通过DPS软件分析不同基因型之间的遗传关系。[结果] 贵州紫云县刺葡萄自然发酵中共分离野生酿酒酵母75株,经Interdelta指纹图谱分析方法和微卫星分子标记法鉴定为10个基因型,其中基因型6、9、10、11、14、15、16为野生酿酒酵母独有的7个基因型,7、17和18为野生与商业酿酒酵母共有的3个基因型,此外,本研究所用其他商业酿酒酵母另有独有的9个基因型(1、2、3、4、5、8、12、13和19)。75株野生酿酒酵母中基因型17的占比最高为36%,其次为基因型10占比为13.3%。在自然发酵过程中不同基因型呈现此消彼长的变化,每一种基因型的菌株细胞密度在104-107 CFU/mL之间。[结论] 贵州紫云县刺葡萄自然发酵样品展现了丰富的酿酒酵母菌株基因型多样性,其中基因型10和17为主导基因型,该研究为贵州刺葡萄优良野生酿酒酵母资源的开发奠定了基础。  相似文献   

5.
Four positively-charged residues, namely βLys-155, βArg-182, βArg-246, and αArg-376 have been identified as Pi binding residues in Escherichia coli ATP synthase. They form a triangular Pi binding site in catalytic site βE where substrate Pi initially binds for ATP synthesis in oxidative phosphorylation. Positive electrostatic charge in the vicinity of βArg-246 is shown to be one important component of Pi binding.  相似文献   

6.
The low-molecular-weight compound APR-246 (PRIMA-1MET) restores wild-type conformation and function to mutant p53, and triggers apoptosis in tumor cells. We show here that APR-246 also targets the selenoprotein thioredoxin reductase 1 (TrxR1), a key regulator of cellular redox balance. APR-246 inhibited both recombinant TrxR1 in vitro and TrxR1 in cells. A Sec-to-Cys mutant of TrxR1 was not inhibited by APR-246, suggesting targeting of the selenocysteine residue in wild-type TrxR1. Preheated APR-246 and its conversion product methylene quinuclidinone (MQ) were much more efficient TrxR1 inhibitors than APR-246 itself, indicating that MQ is the active compound responsible for TrxR1 enzyme inhibition. TrxR1 inhibited by MQ was still functional as a pro-oxidant NADPH oxidase. Knockdown of TrxR1 caused a partial and reproducible attenuation of APR-246-induced tumor cell death independently of p53 status. Cellular TrxR1 activity was also inhibited by APR-246 irrespective of p53 status. We show that APR-246 can directly affect cellular redox status via targeting of TrxR1. Our findings provide an explanation for the previously observed effects of APR-246 on tumor cells lacking mutant p53.  相似文献   

7.
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5′ flanking DNA sequence from the str246C gene fused to the β-glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized. histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5′ deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 by was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.  相似文献   

8.
Threonine 246 in Bacillus stearothermophilus L-lactate dehydrogenase has been changed to valine, serine, and alanine by site-directed mutagenesis. Kinetic analyses show a decrease in substrate inhibition for pyruvate reduction with the T246S mutant and virtual elimination of substrate inhibition for the T246A and T246V mutants. The results indicate that the absence of substrate inhibition in the 246A/V-catalyzed reactions is due to the elimination of a key hydrogen bond between the hydroxyl group of threonine and pyruvate in the wild-type complex that is an important contributor in the formation of the abortive enzyme-NAD(+)-pyruvate complex responsible for substrate inhibition.  相似文献   

9.
This report presents refined genetic mapping data for the gene causing familial Mediterranean fever (FMF), a recessively inherited disorder of inflammation. We sampled 65 Jewish, Armenian, and Arab families and typed them for eight markers from chromosome 16p. Using a new algorithm that permits multipoint calculations for a dense map of markers in consanguineous families, we obtained a maximal LOD score of 49.2 at a location 1.6 cM centromeric to D16S246. A specific haplotype at D16S283-D16S94-D16S246 was found in 76% of Moroccan and 32% of non-Moroccan Jewish carrier chromosomes, but this haplotype was not overrepresented in Armenian or Arab FMF carriers. Moreover, the 2.5-kb allele at D16S246 was significantly associated with FMF in Moroccan and non-Moroccan Jews but not in Armenians or Arabs. Since the Moroccan Jewish community represents a relatively recently established and genetically isolated founder population, we analyzed the Moroccan linkage-disequilibrium data by using Luria-Delbrück formulas and simulations based on a Poisson branching process. These methods place the FMF susceptibility gene within 0.305 cM of D16S246 (2-LOD-unit range 0.02-0.64 cM).  相似文献   

10.
Naturally occurring smallpox has been eradicated, yet it remains as one of the highest priority pathogens due to its potential as a biological weapon. The majority of the US population would be vulnerable in a smallpox outbreak. SIGA Technologies, Inc. has responded to the call of the US government to develop and supply to the Strategic National Stockpile a smallpox antiviral to be deployed in the event of a smallpox outbreak. ST-246(?) (tecovirimat) was initially identified via a high-throughput screen in 2002, and in the ensuing years, our drug-development activities have spanned in vitro analysis, preclinical safety, pharmacokinetics and efficacy testing (all according to the 'animal rule'). Additionally, SIGA has conducted Phase I and II clinical trials to evaluate the safety, tolerability and pharmacokinetics of ST-246, bringing us to our current late stage of clinical development. This article reviews the need for a smallpox therapeutic and our experience in developing ST-246, and provides perspective on the role of a smallpox antiviral during a smallpox public health emergency.  相似文献   

11.
It was found recently that acrolein (CH2=CH–CHO), mainly produced from spermine, is more toxic than ROS (reactive oxygen species, O2−·, H2O2, and ·OH). In this review, we describe how the seriousness of brain infarction, dementia, renal failure, and Sjӧgren’s syndrome is correlated with acrolein. In brain infarction and dementia, it was possible to identify incipient patients with high sensitivity and specificity by measuring protein-conjugated acrolein (PC-Acro) in plasma together with IL-6 and CRP in brain infarction and Aβ40/42 in dementia. The level of PC-Acro in plasma and saliva correlated with the seriousness of renal failure and Sjӧgren’s syndrome, respectively. Thus, development of acrolein scavenger medicines containing SH-group such as N-acetylcysteine derivatives is important to maintain QOL (quality of life) of the elderly.  相似文献   

12.
Two main causes of platinum resistance are mutation in the tumor suppressor gene TP53 and drug-induced increase in intracellular glutathione concentration. Mutations in TP53 occur in about 50% of human tumors. APR-246 (PRIMA-1MET) is the first clinical-stage compound that reactivates mutant p53 and induces apoptosis. APR-246 is a prodrug that is converted to the active compound methylene quinuclidinone (MQ), a Michael acceptor that binds to cysteine residues in mutant p53 and restores its wild-type conformation. Here, we show that MQ also binds to cysteine in glutathione, thus decreasing intracellular free glutathione concentration. We also show that treatment with APR-246 completely restores the cisplatin and doxorubicin sensitivity to p53-mutant drug-resistant ovarian cancer cells. We propose that this unique ability of APR-246/MQ to bind to cysteines in both mutant p53 and glutathione has a key role in the resensitization as well as in the outstanding synergistic effects observed with APR-246 in combination with platinum compounds in ovarian cancer cell lines and primary cancer cells. However, MQ binding to cysteines in other targets, for example, thioredoxin reductase, may contribute as well. Strong synergy was also observed with the DNA-damaging drugs doxorubicin and gemcitabine, while additive effects were found with the taxane docetaxel. Our results provide a strong rationale for the ongoing clinical study with APR-246 in combination with platinum-based therapy in patients with p53-mutant recurrent high-grade serous (HGS) ovarian cancer. More than 96% of these patients carry TP53 mutations. Combined treatment with APR-246 and platinum or other DNA-damaging drugs could allow dramatically improved therapy of a wide range of therapy refractory p53 mutant tumors.APR-246 (also called PRIMA-1MET) is the first compound in clinical development that reactivates mutant p53 in cancer cells by promoting its correct wild-type (wt) folding, thus triggering apoptosis.1, 2 The lead compound of APR-246, PRIMA-1, was originally discovered by Bykov et al.3 APR-246 showed a good safety profile in a Phase I/II clinical dose-finding study on hematological malignancies and prostate cancer and both clinical and p53-dependent biological responses were observed.4 A Phase Ib/II Proof of Concept study with APR-246 in combination with platinum-based therapy, in patients with recurrent p53-mutant high-grade serous (HGS) ovarian cancer, is ongoing. More than 96% of patients with HGS ovarian carcinoma carry TP53 mutations.5Platinum-based drugs have an important role in the treatment of many solid tumors including ovarian cancer. Cisplatin, the first drug of this class, has had a major impact in treatment of cancer but is also associated with severe adverse effects like nephrotoxicity. This prompted the development of the less toxic analog carboplatin.6 The primary mechanism of action of platinum compounds is adduct formation with nucleophilic groups in tumor cell DNA. This triggers the DNA damage response pathway, in which p53 has a key role, leading to cell-cycle arrest, senescence and/or apoptosis.7Patients with ovarian cancer often respond well to the first-line platinum-based chemotherapy, but the majority of the patients with advanced stage tumors relapse and eventually die of chemotherapy-refractory disease. Platinum resistance is most often associated with decreased platinum levels at the site of action (i.e., DNA) and/or failure to trigger the DNA damage response after adduct formation.6, 7 The underlying molecular mechanisms of resistance to platinum compounds are multifactorial, involving drug-induced increase in cellular glutathione (GSH) levels leading to enhanced efflux of platinum compounds, reduced drug uptake, increased drug inactivation and DNA adduct repair, as well as inactivation of the tumor suppressor protein p53.7, 8, 9, 10 Mutation in p53 is one of the main mechanisms for inhibiting propagation of the DNA damage signal to the apoptotic machinery. About 50% of all tumors carry mutant p53 (see p53.free.fr, 2015) and cancer cells with defects in p53 are in general more resistant to conventional chemotherapy. In many tumors, including ovarian cancer, p53 mutations are correlated to shortened time to progression and decreased patient survival time.11, 12 Thus, restoration of wt function of p53 is a promising strategy for cancer therapy.13, 14Here, we describe a new aspect of therapeutic activity of APR-246. APR-246 not only reactivates p53 but also decreases intracellular glutathione levels in a dose-dependent manner. Moreover, APR-246 completely restored cisplatin and doxorubicin sensitivity to mutant p53-carrying resistant ovarian cancer cells. Our results may open possibilities for greatly improved treatment of a wide range of platinum-resistant tumors.  相似文献   

13.
TP53 is the most frequently mutated gene in human cancer and thus an attractive target for novel cancer therapy. Several compounds that can reactive mutant p53 protein have been identified. APR-246 is currently being tested in a phase II clinical trial in high-grade serous ovarian cancer. We have used RNA-seq analysis to study the effects of APR-246 on gene expression in human breast cancer cell lines. Although the effect of APR-246 on gene expression was largely cell line dependent, six genes were upregulated across all three cell lines studied, i.e., TRIM16, SLC7A11, TXNRD1, SRXN1, LOC344887, and SLC7A11-AS1. We did not detect upregulation of canonical p53 target genes such as CDKN1A (p21), 14-3-3σ, BBC3 (PUMA), and PMAIP1 (NOXA) by RNA-seq, but these genes were induced according to analysis by qPCR. Gene ontology analysis showed that APR-246 induced changes in pathways such as response to oxidative stress, gene expression, cell proliferation, response to nitrosative stress, and the glutathione biosynthesis process. Our results are consistent with the dual action of APR-246, i.e., reactivation of mutant p53 and modulation of redox activity. SLC7A11, TRIM16, TXNRD1, and SRXN1 are potential new pharmacodynamic biomarkers for assessing the response to APR-246 in both preclinical and clinical studies.  相似文献   

14.
Lü Y  Yang H  Hu H  Wang Y  Rao Z  Jin C 《Glycoconjugate journal》2009,26(5):525-534
Family 18 chitinases hydrolyze chitin through a substrate-assisted catalytic mechanism and are to a variable extent able to catalyze transglycosylation reactions. Previously Aspergillus fumigatus AfChiB1 was found to be able to catalyze transglycosylation reactions. Structural analysis reveals that AfChiB1 consists of an eight-stranded β/α-barrel. Like other members of the family 18 hydrolases, AfChiB1 has conserved substrate binding site and catalytic acid, while a suitable nucleophile is missing. In this study, Trp137, Asp246, and Met243, which are close to the glycosidic cleavage site, were mutated to glutamate individually. As a result, the W137E remained its hydrolytic activity and was completely devoid of transglycosyl activity, while the D246E reduced its chitinolytic activity and increased its transglycosyl activity. And the M243E showed a remarkable reduction of chitinolytic activity and complete loss of transglycosyl activity. These results suggested that the transglycosyl reaction catalyzed by the AfChiB1 is due to lacking of nucleophile. Enzymes: exochitinases (EC 3.2.1.14)  相似文献   

15.
We have cloned, expressed, and purified a novel earthworm fibrinolytic enzyme (EFE) of Lumbricus rubellus in Pichia pastoris. Its cDNA sequence revealed a 747bp region containing an intact ORF that encodes a protein of 246 amino acid residues, designated as EFE PM(246). While EFE PM(246) is distinct, its cDNA shows a high degree of sequence homologies with four other EFE cDNAs registered in GenBank. The recombinant EFE PM(246) was active, showing a fibrinolytic activity of 7.5 x 10(6)U/L in basal salts medium, a higher fibrinolytic activity than those produced in other expression systems. The recombinant EFE PM(246) expressed in basal salts medium was purified by a three-step purification procedure with a recovery rate of about 20%. This is the first report detailing the successful purification of a genetically engineered earthworm fibrinolytic enzyme. The main physiochemical features of the EFE PM(246), including temperature stability, pH resistance, and sensitivity to some protein inhibitors, were also characterized.  相似文献   

16.
Residues responsible for phosphate binding in F(1)F(0)-ATP synthase catalytic sites are of significant interest because phosphate binding is believed linked to proton gradient-driven subunit rotation. From x-ray structures, a phosphate-binding subdomain is evident in catalytic sites, with conserved betaArg-246 in a suitable position to bind phosphate. Mutations betaR246Q, betaR246K, and betaR246A in Escherichia coli were found to impair oxidative phosphorylation and to reduce ATPase activity of purified F(1) by 100-fold. In contrast to wild type, ATPase of mutants was not inhibited by MgADP-fluoroaluminate or MgADP-fluoroscandium, showing the Arg side chain is required for wild-type transition state formation. Whereas 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) inhibited wild-type ATPase essentially completely, ATPase in mutants was inhibited maximally by approximately 50%, although reaction still occurred at residue betaTyr-297, proximal to betaArg-246 in the phosphate-binding pocket. Inhibition characteristics supported the conclusion that NBD-Cl reacts in betaE (empty) catalytic sites, as shown previously by x-ray structure analysis. Phosphate protected against NBD-Cl inhibition in wild type but not in mutants. The results show that phosphate can bind in the betaE catalytic site of E. coli F(1) and that betaArg-246 is an important phosphate-binding residue.  相似文献   

17.
A family of genes, the so-called msr genes (multiple stimulus response), has recently been identified on the basis of sequence homology in various plant species. Members of this gene family are thought to be regulated by a number of environmental or developmental stimuli, although it is not known whether any one member responds more specifically to one stimulus, or whether each gene member responds to various environmental stimuli. In this report, we address this question by studying the tobacco msr gene str246C. Using transgenic tobacco plants containing 2.1 kb of 5 flanking DNA sequence from the str246C gene fused to the -glucuronidase (GUS) coding region, the complex expression pattern of the str246C promoter has been characterized. Expression of the str246C promoter is strongly and rapidly induced by bacterial, fungal and viral infection and this induction is systemic. Elicitor preparations from phytopathogenic bacteria and fungi activate the str246C promoter to high levels, as do wounding, the application of auxin, auxin and cytokinin, salicylic acid or copper sulfate, indicating the absence of gene specialization within the msr gene family, at least for str246C. In addition, GUS activity was visualized. histochemically in root meristematic tissues of tobacco seedlings and is restricted to roots and sepals of mature plants. Finally, analysis of a series of 5 deletions of the str246C promoter-GUS gene fusion in transgenic tobacco plants confirms the involvement of multiple regulatory elements. A region of 83 by was found to be necessary for induction of promoter activity in response to Pseudomonas solanacearum, while auxin inducibility and root expression are apparently not controlled by this element, since its removal does not abolish either response. An element of the promoter with a negative effect on promoter activation by P. solanacearum was also identified.Joint first authors  相似文献   

18.
ST-246 is a low-molecular-weight compound (molecular weight = 376), that is potent (concentration that inhibited virus replication by 50% = 0.010 microM), selective (concentration of compound that inhibited cell viability by 50% = >40 microM), and active against multiple orthopoxviruses, including vaccinia, monkeypox, camelpox, cowpox, ectromelia (mousepox), and variola viruses. Cowpox virus variants selected in cell culture for resistance to ST-246 were found to have a single amino acid change in the V061 gene. Reengineering this change back into the wild-type cowpox virus genome conferred resistance to ST-246, suggesting that V061 is the target of ST-246 antiviral activity. The cowpox virus V061 gene is homologous to vaccinia virus F13L, which encodes a major envelope protein (p37) required for production of extracellular virus. In cell culture, ST-246 inhibited plaque formation and virus-induced cytopathic effects. In single-cycle growth assays, ST-246 reduced extracellular virus formation by 10 fold relative to untreated controls, while having little effect on the production of intracellular virus. In vivo oral administration of ST-246 protected BALB/c mice from lethal infection, following intranasal inoculation with 10x 50% lethal dose (LD(50)) of vaccinia virus strain IHD-J. ST-246-treated mice that survived infection acquired protective immunity and were resistant to subsequent challenge with a lethal dose (10x LD(50)) of vaccinia virus. Orally administered ST-246 also protected A/NCr mice from lethal infection, following intranasal inoculation with 40,000x LD(50) of ectromelia virus. Infectious virus titers at day 8 postinfection in liver, spleen, and lung from ST-246-treated animals were below the limits of detection (<10 PFU/ml). In contrast, mean virus titers in liver, spleen, and lung tissues from placebo-treated mice were 6.2 x 10(7), 5.2 x 10(7), and 1.8 x 10(5) PFU/ml, respectively. Finally, oral administration of ST-246 inhibited vaccinia virus-induced tail lesions in Naval Medical Research Institute mice inoculated via the tail vein. Taken together, these results validate F13L as an antiviral target and demonstrate that an inhibitor of extracellular virus formation can protect mice from orthopoxvirus-induced disease.  相似文献   

19.
A strongly conserved threonine residue in the I-helix of cytochrome P450 enzymes participates in a proton delivery system for binding and cleavage of dioxygen molecules. 6-Deoxyerythronolide B hydroxylase (P450eryF) is unusual in that the conserved threonine residue is replaced by alanine in this enzyme. On the basis of the crystal structures of substrate-bound P450eryF, it has been proposed that the C-5 hydroxyl group of the substrate and serine-246 of the enzyme form hydrogen bonds with water molecules 519 and 564, respectively. This hydrogen bonding network constitutes the proton delivery system whereby P450eryF maintains its catalytic activity in the absence of a threonine hydroxyl group in the conserved position. To further assess the role in the proton delivery system of hydroxyl groups around the active site, three mutant forms of P450eryF (A245S, S246A, and A245S/S246A) were constructed and characterized. In each case, decreased catalytic activity and increased uncoupling could be correlated with changes in the hydrogen bonding environment. These results suggest that Ser-246 does indeed indirectly participate in the proton shuttling pathway, and also strongly support our previous hypothesis that the C-5 hydroxyl group of the substrate participates in the acid-catalyzed dioxygen bond cleavage reaction.  相似文献   

20.
A strongly conserved threonine residue in the I-helix of cytochrome P450 enzymes participates in a proton delivery system for binding and cleavage of dioxygen molecules. 6-Deoxyerythronol ide B hydroxylase (P450eryF) is unusual in that the conserved threonine residue is replaced by alanine in this enzyme. On the basis of crystal structures of substrate-bound P450eryF, it has been proposed that the C-5 hydroxyl group of the substrate and serine-246 of the enzyme form hydrogen bonds with water molecules 519 and 564, respectively. This hydrogen bonding network constitutes the proton delivery system whereby P450eryF maintains its catalytic activity in the absence of a threonine hydroxyl group in the conserved position. To further assess the role in the proton delivery system of hydroxyl groups around the active site, three mutant forms of P450eryF (A245S, S246A, and A245S/S246A) were constructed and characterized. In each case, decreased catalytic activity and increased uncoupling could be correlated with changes in the hydrogen bonding environment. These results suggest that Ser-246 does indeed participate in the proton shuttling pathway, and also support our previous hypothesis that the C-5 hydroxyl group of the substrate participates in the acid-catalyzed dioxygen bond cleavage reaction. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号