首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Ceramides (CERs) are key intermediate sphingolipids implicated in contributing to mitochondrial dysfunction and the development of multiple metabolic conditions. Despite the growing evidence of CER role in disease risk, kinetic methods to measure CER turnover are lacking, particularly using in vivo models. The utility of orally administered 13C3, 15N l-serine, dissolved in drinking water, was tested to quantify CER 18:1/16:0 synthesis in 10-week-old male and female C57Bl/6 mice. To generate isotopic labeling curves, animals consumed either a control diet or high-fat diet (HFD; n = 24/diet) for 2 weeks and varied in the duration of the consumption of serine-labeled water (0, 1, 2, 4, 7, or 12 days; n = 4 animals/day/diet). Unlabeled and labeled hepatic and mitochondrial CERs were quantified using liquid chromatography tandem MS. Total hepatic CER content did not differ between the two diet groups, whereas total mitochondrial CERs increased with HFD feeding (60%, P < 0.001). Within hepatic and mitochondrial pools, HFD induced greater saturated CER concentrations (P < 0.05) and significantly elevated absolute turnover of 16:0 mitochondrial CER (mitochondria: 59%, P < 0.001 vs. liver: 15%, P = 0.256). The data suggest cellular redistribution of CERs because of the HFD. These data demonstrate that a 2-week HFD alters the turnover and content of mitochondrial CERs. Given the growing data on CERs contributing to hepatic mitochondrial dysfunction and the progression of multiple metabolic diseases, this method may now be used to investigate how CER turnover is altered in these conditions.  相似文献   

2.
The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome is activated during atherogenesis, but how this occurs is unclear. Here, we explored the mechanisms activating and regulating NLRP3 inflammasomes via the acid sphingomyelinase (ASM)-ceramide signaling pathway. As a neointima formation model, partial left carotid ligations were performed on endothelial cell (EC)-specific ASM transgene mice (Smpd1trg/ECcre) and their control littermates (Smpd1trg/WT and WT/WT) fed on the Western diet (WD). We found neointima formation remarkably increased in Smpd1trg/ECcre mice over their control littermates. Next, we observed enhanced colocalization of NLRP3 versus adaptor protein ASC (the adaptor molecule apoptosis-associated speck-like protein containing a CARD) or caspase-1 in the carotid ECs of WD-treated Smpd1trg/ECcre mice but not in their control littermates. In addition, we used membrane raft (MR) marker flotillin-1 and found more aggregation of ASM and ceramide in the intima of Smpd1trg/ECcre mice than their control littermates. Moreover, we demonstrated by in situ dihydroethidium staining, carotid intimal superoxide levels were much higher in WD-treated Smpd1trg/ECcre mice than in their control littermates. Using ECs from Smpd1trg/ECcre and WT/WT mice, we showed ASM overexpression markedly enhanced 7-ketocholesterol (7-Ket)-induced increases in NLRP3 inflammasome formation, accompanied by enhanced caspase-1 activity and elevated interleukin-1β levels. These 7-Ket-induced increases were significantly attenuated by ASM inhibitor amitriptyline. Furthermore, we determined that increased MR clustering with NADPH oxidase subunits to produce superoxide contributes to 7-Ket-induced NLRP3 inflammasome activation via a thioredoxin-interacting protein-mediated controlling mechanism. We conclude that ceramide from ASM plays a critical role in NLRP3 inflammasome activation during hypercholesterolemia via MR redox signaling platforms to produce superoxide, which leads to TXNIP dissociation.  相似文献   

3.
4.
Aspergillus flavus is a common saprophytic and pathogenic fungus, and its secondary metabolic pathways are one of the most highly characterized owing to its aflatoxin (AF) metabolite affecting global economic crops and human health. Different natural environments can cause significant variations in AF synthesis. Succinylation was recently identified as one of the most critical regulatory post-translational modifications affecting metabolic pathways. It is primarily reported in human cells and bacteria with few studies on fungi. Proteomic quantification of lysine succinylation (Ksuc) exploring its potential involvement in secondary metabolism regulation (including AF production) has not been performed under natural conditions in A. flavus. In this study, a quantification method was performed based on tandem mass tag labeling and antibody-based affinity enrichment of succinylated peptides via high accuracy nano-liquid chromatography with tandem mass spectrometry to explore the succinylation mechanism affecting the pathogenicity of naturally isolated A. flavus strains with varying toxin production. Altogether, 1240 Ksuc sites in 768 proteins were identified with 1103 sites in 685 proteins quantified. Comparing succinylated protein levels between high and low AF-producing A. flavus strains, bioinformatics analysis indicated that most succinylated proteins located in the AF biosynthetic pathway were downregulated, which directly affected AF synthesis. Versicolorin B synthase is a key catalytic enzyme for heterochrome B synthesis during AF synthesis. Site-directed mutagenesis and biochemical studies revealed that versicolorin B synthase succinylation is an important regulatory mechanism affecting sclerotia development and AF biosynthesis in A. flavus. In summary, our quantitative study of the lysine succinylome in high/low AF-producing strains revealed the role of Ksuc in regulating AF biosynthesis. We revealed novel insights into the metabolism of AF biosynthesis using naturally isolated A. flavus strains and identified a rich source of metabolism-related enzymes regulated by succinylation.  相似文献   

5.
Several skeletal muscle diseases are characterized by fibrosis, the excessive accumulation of extracellular matrix. Transforming growth factor-β (TGF-β) and connective tissue growth factor (CCN2/CTGF) are two profibrotic factors augmented in fibrotic skeletal muscle, together with signs of reduced vasculature that implies a decrease in oxygen supply. We observed that fibrotic muscles are characterized by the presence of positive nuclei for hypoxia-inducible factor-1α (HIF-1α), a key mediator of the hypoxia response. However, it is not clear how a hypoxic environment could contribute to the fibrotic phenotype in skeletal muscle.We evaluated the role of hypoxia and TGF-β on CCN2 expression in vitro. Fibroblasts, myoblasts and differentiated myotubes were incubated with TGF-β1 under hypoxic conditions. Hypoxia and TGF-β1 induced CCN2 expression synergistically in myotubes but not in fibroblasts or undifferentiated muscle progenitors. This induction requires HIF-1α and the Smad-independent TGF-β signaling pathway. We performed in vivo experiments using pharmacological stabilization of HIF-1α or hypoxia-induced via hindlimb ischemia together with intramuscular injections of TGF-β1, and we found increased CCN2 expression. These observations suggest that hypoxic signaling together with TGF-β signaling, which are both characteristics of a fibrotic skeletal muscle environment, induce the expression of CCN2 in skeletal muscle fibers and myotubes.  相似文献   

6.
The cancer/testis antigen lactate dehydrogenase-C4 (LDHC) is a specific isoenzyme of the LDH family that regulates invasion and metastasis in some malignancies; however, little is known regarding its role in progression of lung adenocarcinoma (LUAD). Thus, we investigated LDHC expression by immunohistochemistry, and analyzed its clinical significance in 88 LUAD specimens. The role and molecular mechanisms subserving LDHC in cellular proliferation, migration, and invasion were explored both in vitro and in vivo. As a result, we found that high LDHC expression was significantly correlated with clinicopathological features of aggressive LUAD and a poor prognosis. Overexpression of LDHC induced LUAD cells to produce lactate and ATP, increased their metastatic and invasive potential—, and accelerated xenograft tumor growth. We further demonstrated that overexpression of LDHC affected the expression of cell proliferation-related proteins (cyclin D1 and c-Myc) and epithelial-mesenchymal transition (EMT)-related proteins (MMP-2, MMP-9, E-cadherin, Vimentin, Twist, Slug, and Snail) both in vitro and in vivo. Finally, excessive activation of LDHC enhanced the phosphorylation levels of AKT and GSK-3β, revealing activation of the PI3K/Akt/GSK-3β oncogenic-signaling pathways. Treatment with a PI3K inhibitor reversed the effects of LDHC overexpression by inhibiting cellular proliferation, migration, and invasion, with diminished levels of p-Akt and p-GSK3β. PI3K inhibition also reversed cell proliferation-related and EMT-related proteins in LDHC-overexpressing A549 cells. In conclusion, LDHC promotes proliferation, migration, invasion, and EMT in LUAD cells via activation of the PI3K/Akt/GSK-3β pathway.  相似文献   

7.
8.
It has been postulated that inflammasomes, in particular the NLRP3 (NLR family pyrin domain containing 3) inflammasome, mediate the necroinflammation and fibrosis that characterize nonalcoholic steatohepatitis (NASH) by engaging innate immune responses. We aimed to investigate the impact of genetic deletion or pharmacologic inhibition of the NLRP3 inflammasome on experimental steatohepatitis. Global Nlrp3 KO (expected to inhibit the NLRP3 inflammasome) or Casp1 KO (expected to inhibit all inflammasomes) mice were compared to wild type controls after 6 months on a high-fat, high-cholesterol (HFHC, 1% cholesterol) diet known to induce fibrosing steatohepatitis. Additionally, wildtype mice on a HFHC diet (0.75% or 0.5% cholesterol) for 6 months were either treated or not treated with an oral, pharmacologic inhibitor of Nlrp3 (MCC950) that was delivered in the drinking water (0.3 mg/ml). We found that genetic deletion or pharmacologic inhibition of the NLRP3 inflammasome did not ameliorate any of the histological components of fibrosing NASH in HFHC-fed mice. Collectively, these results do not support NLRP3 inhibition as a potential target for human NASH.  相似文献   

9.
Parkinson’s disease (PD) is the most common neurological movement disorder characterized by the selective and irreversible loss of dopaminergic neurons in substantia nigra pars compacta resulting in dopamine deficiency in the striatum. While most cases are sporadic or environmental, about 10% of patients have a positive family history with a genetic cause. The misfolding and aggregation of α-synuclein (α-syn) as a casual factor in the pathogenesis of PD has been supported by a great deal of literature. Extensive studies of mechanisms underpinning degeneration of the dopaminergic neurons induced by α-syn dysfunction suggest a complex process that involves multiple pathways, including mitochondrial dysfunction and increased oxidative stress, impaired calcium homeostasis through membrane permeabilization, synaptic dysfunction, impairment of quality control systems, disruption of microtubule dynamics and axonal transport, endoplasmic reticulum/Golgi dysfunction, nucleus malfunction, and microglia activation leading to neuroinflammation. Among them mitochondrial dysfunction has been considered as the most primary target of α-syn-induced toxicity, leading to neuronal cell death in both sporadic and familial forms of PD. Despite reviewing many aspects of PD pathogenesis related to mitochondrial dysfunction, a systemic study on how α-syn malfunction/aggregation damages mitochondrial functionality and leads to neurodegeneration is missing in the literature. In this review, we give a detailed molecular overview of the proposed mechanisms by which α-syn, directly or indirectly, contributes to mitochondrial dysfunction. This may provide valuable insights for development of new therapeutic approaches in relation to PD. Antioxidant-based therapy as a potential strategy to protect mitochondria against oxidative damage, its challenges, and recent developments in the field are discussed.  相似文献   

10.
《Fungal biology》2021,125(8):630-636
The emergence of drug-resistant pathogens has urged researchers to discover alternatives for traditional antibiotics. β-amyrin, which is included in the category of triterpenoids extracted from plants, is known for its antimicrobial activity, although the underlying mechanism has not yet been revealed. This study was conducted to elucidate the antifungal mode of action of β-amyrin against Candida albicans. Based on the relevance between triterpenoids and oxidative molecules, reactive oxygen species (ROS) concentrations were detected, which showed a noticeable increment. Disruption of Ca2+ homeostasis in the cytosol was additionally analyzed, which was supported by interactions between two. Subsequently, decrease in mitochondrial membrane potential, increment of mitochondrial Ca2+, and ROS concentration were monitored, which suggested mitochondrial dysfunction modulated by Ca2+. Further investigation confirmed oxidative damage through glutathione reduction and DNA fragmentation. Accumulation of lethal damages resulted in the activation of caspases and externalization of phosphatidylserine, indicating the induction of yeast apoptosis by β-amyrin in C. albicans.  相似文献   

11.
12.
Several epidemiological studies suggest a correlation between eating time and obesity. Night eating syndrome characterized by a time-delayed eating pattern is positively associated with obesity in humans as well as in experimental animals. Here, we show that oil intake at night significantly makes more fat than that at day in wild-type mice, and circadian Period 1 (Per1) contributes to this day–night difference. Per1-knockout mice are protected from high-fat diet–induced obesity, which is accompanied by a reduction in the size of the bile acid pool, and the oral administration of bile acids restores fat absorption and accumulation. We identify that PER1 directly binds to the major hepatic enzymes involved in bile acid synthesis such as cholesterol 7alpha-hydroxylase and sterol 12alpha-hydroxylase. A biosynthesis rhythm of bile acids is accompanied by the activity and instability of bile acid synthases with PER1/PKA-mediated phosphorylation pathways. Both fasting and high fat stress enhance Per1 expression, increasing the fat absorption and accumulation. Our findings reveal that Per1 is an energy regulator and controls daily fat absorption and accumulation. Circadian Per1 controls daily fat absorption and accumulation, suggesting Per1 is a potential candidate of a key regulator in stress response and the relevant obesity risk.  相似文献   

13.
Mutations in PRKN cause the second most common genetic form of Parkinson's disease (PD)—a debilitating movement disorder that is on the rise due to population aging in the industrial world. PRKN codes for an E3 ubiquitin ligase that has been well established as a key regulator of mitophagy. Together with PTEN-induced kinase 1 (PINK1), Parkin controls the lysosomal degradation of depolarized mitochondria. But Parkin's functions go well beyond mitochondrial clearance: the versatile protein is involved in mitochondria-derived vesicle formation, cellular metabolism, calcium homeostasis, mitochondrial DNA maintenance, mitochondrial biogenesis, and apoptosis induction. Moreover, Parkin can act as a modulator of different inflammatory pathways. In the current review, we summarize the latest literature concerning the diverse roles of Parkin in maintaining a healthy mitochondrial pool. Moreover, we discuss how these recent discoveries may translate into personalized therapeutic approaches not only for PRKN-PD patients but also for a subset of idiopathic cases.  相似文献   

14.
IntroductionBreastmilk contains proteins and cells which have stem cell properties. The human breastmilk stem cell mimick mesenchymal stem cells and expresses pluripotency genes. The protein level of breastmilk is high in colostrum and gradually subsides in the first year of lactation. The mesenchymal stem cells from breastmilk can be an alternative source of stem cells that can potentially affect cardiovascular therapy. This study aimed to identify the proteomic analysis of secretome mesenchymal stem-like cells under hypoxia compared to non-hypoxia from human breastmilk stem cells.Material and methodsThe human breastmilk was collected from six healthy breastfeeding women and transported to the laboratory under aseptic conditions. The breastmilk cells were isolated then cultured. After 72 h, the human breastmilk stem cells reached confluence then cleaned up and isolated in serum-free media (spheroid) to allow serial passaging every 48 h. The acquisition stem cell was made with flow cytometry. The cells were divided into hBSC secretomes under hypoxia (A) and non-hypoxia (B) and analyzed for LC-MS to identify the peptide structure.ResultsThe human breastmilk cells contained several mesenchymal stem-like cells in density 2.4 × 106 cell/mL for hypoxia and 2 × 106 cell/mL for non-hypoxia conditions. The human breastmilk stem cell surface markers derived from the third cell passage process were 93.77% for CD44, 98.69% for CD73, 88.45% for CD90, and 96.30% for CD105. The protein level of secretome mesenchymal stem -like cells under hypoxia was measured at 5.56 μg/mL and 4.28 μg/mL for non-hypoxia. The liquid chromatography-mass spectrometry analysis identified 130 and 59 peptides from hypoxia and non-hypoxia of the human breastmilk stem cell secretome sequentially. Some important proteomics structures were found in the hypoxic human breastmilk stem cell secretome, such as transforming growth factor-β, VE-cadherin, and caspase.ConclusionThe human breastmilk cells contain mesenchymal stem-like cells and a high concentration of CD44, CD73, CD90, and CD105 as surface markers at third passage culture. The hypoxic hBSC secretome produces a higher protein level compare to non-hypoxia. The transforming growth factor -β was found in the hypoxic hBSC secretome as a modulator of VEGF-mediated angiogenesis.  相似文献   

15.
16.
17.
Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1β and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties.  相似文献   

18.
《Genomics》2022,114(4):110400
Endive (Cichorium endivia L.) is a leafy vegetable in the Asteraceae family. Sesquiterpene lactones (STLs) in endive leaves bring a bitter taste that varies between varieties. Despite their importance in breeding varieties with unique flavours, sesquiterpenoid biosynthesis pathways in endive are poorly understood. We assembled a chromosome-scale endive genome of 641 Mb with a contig N50 of 5.16 Mb and annotated 46,711 protein-coding genes. Several gene families, especially terpene synthases (TPS) genes, expanded significantly in the C. endivia genome. STLs biosynthesis-related genes and TPS genes in more bitter varieties have shown a higher level of expression, which could be attributed to genomic variations. Our results penetrate the origin and diversity of bitter taste and facilitate the molecular breeding of endive varieties with unique bitter tastes. The high-quality endive assembly would provide a reference genome for studying the evolution and diversity of Asteraceae.  相似文献   

19.
During cultivation under nitrogen starvation, Yarrowia lipolytica produces a mixture of citric acid and isocitric acid whose ratio is mainly determined by the carbon source used. We report that mitochondrial succinate–fumarate carrier YlSfc1 controls isocitric acid efflux from mitochondria. YlSfc1 purified and reconstituted into liposomes transports succinate, fumarate, oxaloacetate, isocitrate and α-ketoglutarate. YlSFC1 overexpression determined the inversion of isocitric acid/citric acid ratio towards isocitric acid, resulting in 33.4 ± 1.9 g/L and 43.3 ± 2.8 g/L of ICA production in test-tube cultivation with glucose and glycerol, respectively. These titers represent a 4.0 and 6.3-fold increase compared to the wild type. YlSFC1 gene expression was repressed in the wild type strain grown in glucose-based medium compared to olive oil medium explaining the reason for the preferred citric acid production during Y. lipolytica growth on carbohydrates. Coexpression of YlSFC1 and adenosine monophosphate deaminase YlAMPD genes together with inactivation of citrate mitochondrial carrier YlYHM2 gene enhanced isocitric acid accumulation up to 41.4 ± 4.1 g/L with an isocitric acid/citric acid ratio of 14.3 in a small-scale cultivation with glucose as a carbon source. During large-scale cultivation with glucose pulse-feeding, the engineered strain produced 136.7 ± 2.5 g/L of ICA with a process selectivity of 88.1%, the highest reported titer and selectivity to date. These results represent the first reported isocitric acid secretion by Y. lipolytica as a main organic acid during cultivation on carbohydrate. Moreover, we demonstrate for the first time that the replacement of one mitochondrial transport system for another can be an efficient tool for switching product accumulation.  相似文献   

20.
FXR regulates bile acid metabolism, and FXR null (Fxr?/?) mice have elevated bile acid levels and progressive liver injury. The inositol-requiring enzyme 1α/X-box binding protein 1 (XBP1) pathway is a protective unfolded protein response pathway activated in response to endoplasmic reticulum stress. Here, we sought to determine the role of the inositol-requiring enzyme 1α/XBP1 pathway in hepatic bile acid toxicity using the Fxr?/? mouse model. Western blotting and quantitative PCR analysis demonstrated that hepatic XBP1 and other unfolded protein response pathways were activated in 24-week-old Fxr?/? compared with 10-week-old Fxr?/? mice but not in WT mice. To further determine the role of the liver XBP1 activation in older Fxr?/? mice, we generated mice with whole-body FXR and liver-specific XBP1 double KO (DKO, Fxr?/?Xbp1LKO) and Fxr?/?Xbp1fl/fl single KO (SKO) mice and characterized the role of hepatic XBP1 in cholestatic liver injury. Histologic staining demonstrated increased liver injury and fibrosis in DKO compared with SKO mice. RNA sequencing revealed increased gene expression in apoptosis, inflammation, and cell proliferation pathways in DKO mice. The proapoptotic C/EBP-homologous protein pathway and cell cycle marker cyclin D1 were also activated in DKO mice. Furthermore, we found that total hepatic bile acid levels were similar between the two genotypes. At age 60 weeks, all DKO mice and no SKO mice spontaneously developed liver tumors. In conclusion, the hepatic XBP1 pathway is activated in older Fxr?/? mice and has a protective role. The potential interaction between XBP1 and FXR signaling may be important in modulating the hepatocellular cholestatic stress responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号