首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A membrane-bound D-gluconate dehydrogenase [EC 1.1.99.3] was solubilized from membranes of Pseudomonas aeruginosa and purified to a homogeneous state with the aid of detergents. The solubilized enzyme was a monomer in the presence of at least 0.1% Triton X-100, having a molecular weight of 138,000 on polyacrylamide gel electrophoresis or 124,000--131,000 on sucrose density gradient centrifugation. In the absence of Triton X-100, the enzyme became dimeric, having a molecular weight of 240,000--260,000 on sucrose density gradient centrifugation. Removal of Triton X-100 caused a decrease in enzyme activity. Enzyme activity was stimulated by addition of phospholipid, particularly cardiolipin, in the presence of Triton X-100. The enzyme had a cytochrome c1, c-554(551), which might be a diheme cytochrome, and it also contained a covalently bound flavin but not ubiquinone. In the presence of sodium dodecyl sulfate, the enzyme was dissociated into three components with molecular weights of 66,000, 50,000, and 22,000. The components of 66,000 and 50,000 daltons corresponded to a flavoprotein and cytochrome c1, respectively, but that of 22,000 dalton remained unclear as to its function.  相似文献   

2.
J R Carias  R Julien 《Biochimie》1976,58(3):253-259
From wheat germ, a phenylalanyl-tRNA synthetase (E.C.6.1.1.20) has been isolated and purified 187 fold by means of ammonium sulfate fractionation (40-50 per cent) followed by Sephadex G-200 gel filtration, chromatographies on DEAE-cellulose and hydroxyapatite. The enzyme appears to be homogeneous on Sephadex G-200 molecular filtration and polyacrylamide gel electrophoresis. Molecular weight determinations by sucrose gradient centrifugation, gel filtration and gel electrophoresis give an average of 250 00 daltons. The enzyme is dissociated in 1 per cent sodium dodecyl sulfate into two different equimolar components of 80 000 and 50 000 daltons ; this result suggests that the phenylalanyl-tRNA synthetase has a subunit structure : alpha2 beta2. Dissociation with sodium dodecyl sulfate and dithiothreitol gives four other components, probably resulting from the breakdown of the subunits. Optima values of pH, Mg2+ and K+ concentrations, effect of SH-compnents, kinetic parameters have been determined in the aminoacylation reaction. Physical and catalytic properties of wheat germ phenylalanyl-tRNA synthetase appear very similar to those of the yeast and E. coli enzymes.  相似文献   

3.
RNA polymerase II from larvae of the brine shrimp, Artemia salina, was highly purified by two cycles of DEAE-cellulose chromatography followed by centrifugation through discontinuous sucrose gradients. Gradient fractions were subjected to elctrophoresis is polyacrylamide gels containing sodium dodecyl sulfate. The subunit structure of RNA polymerase II was determined by quantitative comparison of the polypeptides and enzyme activity present in each gradient fraction. The enzyme contains one copy of each of four subunits with estimated molecular weights of 170,000, 130,000, 36,000 and 24,000. The total molecular weight agrees well with the molecular weight estimated for the native enzyme by density gradient centrifugation.  相似文献   

4.
Crystallization and properties of human liver ornithine aminotransferase   总被引:3,自引:0,他引:3  
Ornithine aminotransferase [EC 2.6.1.13] was purified and crystallized from human liver by a procedure involving heat treatment, chromatographies on DEAE-cellulose, Octyl-Sepharose CL-4B and Sephadex G-200, and crystallization. The purified enzyme appeared to be homogeneous on polyacrylamide gel electrophoresis with and without sodium dodecyl sulfate. The molecular weight of the enzyme was estimated as 44,000 by sodium dodecyl sulfate electrophoresis and as 177,000 by sucrose density gradient centrifugation, indicating that the enzyme is tetrameric. Various properties of the enzyme from human liver are similar to those of the enzyme from rat liver, including its molecular weight, pH optimum, Km values for ornithine, alpha-ketoglutarate and pyridoxal phosphate and specificity for amino acceptor from ornithine. The amino acid compositions of the two enzymes also have certain similarities, but the enzymes differ in electrophoretic mobility and antigenicity: the human enzyme moved more slowly to the anode, and on immunodiffusion analysis, the single precipitin lines formed between anti-human enzyme serum or anti-rat liver enzyme and the enzyme from human liver or lymphoblastoid cells and the rat liver enzyme fused with spur formation.  相似文献   

5.
Delta-Aminolevulinic acid synthase (succinyl-CoA: glycine C-succinyltransferase (decarboxylating) EC 2.3.1.37) was purified from Rhodopseudomonas spheroides. The purity of the enzyme preparation was established by its behavior in disc electrophoresis in the presence and absence of sodium dodecyl sulfate and by analytical ultracentrifugation. The molecular weight of the enzyme as determined by sedimentation equilibrium was found to be about 80,300, a value similar to those obtained by gel filtration, polyacrylamide gel electrophoresis, and sucrose gradient centrifugation. The molecular weight of the enzyme, denatured with either sodium dodecyl sulfate or guanidine hydrochloride, was found to be about 45,000 and 41,000, respectively. The dimeric structure was supported by sedimentation in sucrose gradients. Further evidence for the dimetic nature of the enzyme was obtained by gel electrophoresis of the enzyme treated with dimethylsuberimidate and sodium dodecyl sulfate.  相似文献   

6.
1. A method characterizing the fully active gramicidin S-synthetase (EC. 6.3.2.-) multienzyme in protein mixtures by a combination of sedimentation and polyacrylamide gel electrophoretic mobility data has been described. 2. The molecular weight of 280000 has been reevaluated by gradient centrifugation, gel filtration, and polyacrylamide gel electrophoresis in presence of sodium dodecyl sulfate. The size of the multienzyme is not changed by sodium dodecyl sulfate treatment. 3. In polyacrylamide gel electrophoresis dimerisation occurs in Tris, while two bands, which may represent monomer and dimer, are observed in phosphate. 4. Reliability of molecular weight determinations of sodium dodecyl sulfate-protein complexes of sizes up to 300000 daltons has been determined, correlating either mobilities or retardation coefficients.  相似文献   

7.
A major cytochrome b peptide was purified from yeast mitochondria by a procedure involving solubilization in deoxycholic and cholic acids, ammonium sulfate fractionation, proteolytic digestion, and sucrose gradient centrifugation in the presence of Tween 80. The homogeneity of the purified protein was established by the criteria that the product was spectrally pure and yielded a single band on both sodium dodecyl sulfate polyacrylamide gel electrophoresis, and by gel isoelectric focusing. The purified cytochrome b polypeptide had absorption maxima at 562, 532, and 430 nm in the reduced form and at 525 to 570 nm and 419 nm in the oxidized form. The reduced minus oxidized difference spectra revealed absorption bands at 562, 532, and 430 nm at room temperature and 559, 529, and 429 nm at 77 K, respectively. The heme group was identified as protoheme by formation of the reduced pyridine hemochromogen. Treatment of the reduced form with carbon monoxide affected the absorption spectrum, indicating that the isolated hemoprotein was modified compared to native cytochrome b. The apparent molecular weight of the preparation was 28,000 based on sodium dodecyl sulfate polyacrylamide-gel electrophoresis and 28,800 based on sucrose gradient centrifugation. The isolated cytochrome b polypeptide showed a strong tendency to aggregate.  相似文献   

8.
Cytochrome c oxidase was purified from mitochondria of Candida utilis yeast cells. The purification procedure involved the hypotonic incubation of mitochondria followed by washes with increasing concentrations of KCl. The membrane fragments derived from this procedure were subjected to ammonium sulfate fractionation in the presence of 2% cholate. The purified active enzyme contained 8.5–9.2 nmol heme a per mg protein and was free of other types of hemoproteins. Upon Sephadex G200 gel filtration in the presence of cholate, an apparent molecular weight of 200,000 was estimated. A single band was observed for the active enzyme upon DEAE-cellulose chromatography, sucrose density gradient centrifugation, and Sephadex G200 gel filtration.Electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate resolved the enzyme into six polypeptide bands with apparent molecular weights of 49,000, 32,000, 28,000, 20,000, 13,500, and 8,000, respectively. The six components were also resolved by gel filtration on Sephadex G200, equilibrated with 0.1% sodium dodecyl sulfate, giving apparent molecular weights of 46,000, 35,000, 23,000, 19,000, 12,500, and 7,800.  相似文献   

9.
NADH:nitrate reductase (EC 1.6.6.1) from Chlorella vulgaris has been purified 640-fold with an over-all yield of 26% by a combination of protamine sulfate fractionation, ammonium sulfate fractionation, gel chromatography, density gradient centrifugation, and DEAE-chromatography. The purified enzyme is stable for more than 2 months when stored at minus 20 degrees in phosphate buffer (pH 6.9) containing 40% (v/v) glycerol. After the initial steps of the purification, a constant ratio of NADH:nitrate reductase activity to NADH:cytochrome c reductase and reduced methyl viologen:nitrate reductase activities was observed. One band of protein was detected after polyacrylamide gel electrophoresis of the purified enzyme. This band also gave a positive stain for heme, NADH dehydrogenase, and reduced methyl viologen:nitrate reductase. One band, corresponding to a molecular weight of 100, 000, was detected after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains FAD, heme, and molybdenum in a 1:1:0.8 ratio. One "cyanide binding site" per molybdenum was found. No non-heme-iron or labile sulfide was detected. From a dry weight determination of the purified enzyme, a minimal molecular weight of 152, 000 per molecule of heme or FAD was calculated. An s20, w of 9.7 S for nitrate reductase was found by the use of sucrose density gradient centrifugation and a Stokes radius of 89 A was estimated by gel filtration techniques. From these values, and the assumption that the partial specific volume is 0.725 cc/g, a molecular weight of 356, 000 was estimated for the native enzyme. These data suggest that the native enzyme contains a minimum of 2 molecules each of FAD, heme, and molybdenum and is composed of at least three subunits.  相似文献   

10.
Purification and properties of spinach leaf debranching enzyme   总被引:1,自引:1,他引:0       下载免费PDF全文
Starch debranching enzyme was purified from intact spinach (Spinacia oleracea L. cv Vital) chloroplasts and from a spinach leaf extract using affinity chromatography on Sepharose 6B-bound cycloheptaamylose (Schardinger β-dextrin). The enzyme from both sources was homogeneous upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Spinach leaf debranching enzyme appears to consist of a single polypeptide chain, since the molecular weight of the native protein (110,000 daltons) was not changed by treatment with sodium dodecyl sulfate. Only one spinach leaf debranching enzyme band could be detected after electrophoresis of a leaf extract on amylopectin-containing polyacrylamide gel, the retardation factor of which coincided with that of the single band seen with the chloroplast enzyme. The purified enzyme exhibited strong pullulanase activity, the specific activity being 69 units per milligram protein with pullulan and 22 units per milligram protein with amylopectin. Cycloheptaamylose is a potent competitive inhibitor of spinach leaf debranching enzyme. The pH optimum of the enzyme was found to be 5.5. The purified enzyme is rather unstable at both 20° and 0°C. Part of the activity lost under storage or at a suboptimal pH could immediately be restored by the addition of thiols. The reactivatable protein, being of the same molecular weight as the native enzyme, exhibited a somewhat altered electrophoretic mobility resulting in one or two minor bands on a zymogram.  相似文献   

11.
DNA-cytosine-methylase I was isolated and purified to homogeneity. The yield made up to about 30% of total activity. The enzyme molecular weight as determined by centrifugation in a sucrose gradient, by gel filtration and by electrophoresis in polyacrylamide gel in the presence of sodium dodecyl sulfate was found to be 45,000. The Michaelis constant was 1,8 . 10(-6) M for SAM and 2 . 10(-4) M for DNA. DNA-cytosine-methylase I modifies phage lambda DNA in 60 sites. This modification does not protect DNA from the effects of restriction endonucleases HpaII and BsuRI. The enzyme methylates DNA in the nucleotide sequence: 5'...Pur-MC-C-G-G-Pyr...3'.  相似文献   

12.
Tetrahydrodipicolinate succinylase, an enzyme involved in the diaminopimelate-lysine pathway, was purified 1900-fold from crude extracts of Escherichia coli. The enzyme catalyzes the formation of CoA and N-succinyl-2-amino-6-keto-L-pimelate from succinyl-CoA and tetrahydrodipicolinate. The purified enzyme was shown to be homogeneous by polyacrylamide gel electrophoresis. The Stokes radius of the enzyme was determined from its elution volume on a Sephacryl S300 column and its sedimentation constant from sucrose density gradient centrifugation. These were 35 A and 4.7 (S20,w), respectively. The enzyme consists of two subunits each with a mass of 31,000 daltons, as determined using sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Tetrahydrodipicolinate succinylase was shown to be a sulfhydryl enzyme. It has a pH optimum of 8.2. The equilibrium lies predominantly in favor of product formation but the reverse reaction can be demonstrated in vitro.  相似文献   

13.
Sweet potato cytochrome c oxidase (EC 1.9.3.1) was purified 45-fold with respect to its specific activity, with a high recovery by solubilization of the enzyme from the submitochondrial particles with deoxycholate, diethylaminoethyl-cellulose column chromatography, and fractionation with ammonium sulfate. Impurities, if any, could be removed by sucrose density gradient centrifugation of the purified enzyme preparation, although a considerable inactivation of the enzyme took place during centrifugation. The purified enzyme contained approximately 12 nmol of heme a per milligram of protein and about 2.5% phospholipid. The cytochrome c oxidase consisted of at least five polypeptides with molecular weights of 39,000, 33,500, 26,000, 20,000, and 5700, as determined by polyacrylamide gel electrophoresis of the purified enzyme preparation in the presence of sodium dodecyl sulfate and urea. Phosphatidylcholine and phosphatidylethanolamine stimulated the activity over 3-fold. The optimal pH of the purified enzyme was 7.0 to 7.5 in the presence of phosphatidylcholine (egg yolk or soybean) and pH 6.5 in the presence of phosphatidylethanolamine.  相似文献   

14.
N-Acetylglutamate 5-phosphotransferase (ATP: N-acetyl-L-glutamate 5-phosphotransferase EC 2.7.2.8), the second enzyme of arginine biosynthesis, was purified over 2000-fold from Pseudomonas aeruginosa. The purification procedure involved a heat treatment, ammonium sulfate precipitation, and chromatography on DEAE-cellulose, Sephadex G-150, and hydroxyapatite. The purified enzyme was greater than 90% pure as judged by analytical polyacrylamide gel electrophoresis. A molecular weight of approximately 230000 was obtained by gel filtration. Electrophoresis in sodium dodecyl sulfate gels gave a single band corresponding to a molecular weight of 29000. Due to the capacity for self-association, the enzyme can exist in different states of aggregation depending on the nature of ligands and the concentrations of phosphate buffer. As estimated by gel filtration, the molecular weight was about 230000 in the presence of N-acetyl-L-glutamate. With L-arginine, the feedback inhibitor, and MgATP forms of smaller molecular weight (minimum of approximately 65000) were found. A concurrent change in the sedimentation coefficient as a function of ligands was demonstrated by sucrose gradient centrifugation. The synthesis of N-acetylglutamate 5-phosphotransferase was not repressed by exogenous L-arginine or its precursors.  相似文献   

15.
Ribulose bisphosphate carboxylase (EC 4.1.1.39) has been purified to homogeneity from glutamate-CO2-thiosulfate-grown Thiobacillus intermedius by pelleting the protein from the 93,000 X g supernatant fluid followed by ammonium sulfate fractionation and sedimentation into a discontinuous sucrose density gradient. The molecular weight of the native protein approximated that of the higher plant enzyme (550,000) based on its relative electrophoretic mobility in polyacrylamide disc gels compared with that of standards of known molecular weight, including crystalline tobacco ribulose bisphosphate carboxylase. Sodium dodecyl sulfate electrophoresis in 12% polyacrylamide disc gels and Sephadex G-100 chromatography in the presence of sodium dodecyl sulfate indicated that the purified Thiobacillus protein, like the tobacco enzyme, consisted of two types of nonidentical subunits. The molecular weights of the large and small subunits were estimated to be about 55,000 and 13,000, respectively, by means of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The carboxylase activity of the protein purified from spinach leaves and T. intermedius responded similarly to the effectors reduced nicotinamide adenine dinucleotide phosphate and 6-phosphogluconate. Contrary to a previous report (K. Purohit, B. A. McFadden, and A. L. Cohen, J. Bacteriol. 127:505-515, 1976), these results indicate that ribulose bisphosphate carboxylase purified from Thiobacillus intermedius closely resembles the higher plant enzyme with respect to quaternary structure, molecular weight, and regulatory properties.  相似文献   

16.
Alanine-glyoxylate aminotransferase and 2-aminobutyrate aminotransferase were co-purified from rat kidney to a single protein (about 500-fold purified from the homogenate). The activity ratios of alanine-glyoxylate aminotransferase to 2-aminobutyrate aminotransferase were constant during co-purification steps suggesting the 2-aminobutyrate aminotransferase activity was catalysed by only alanine-glyoxylate aminotransferase. The molecular weight of the enzyme was estimated to be approx. 213 000, 220 000 and 236 000 by analytical ultracentrifugation, Sephadex G-150 gel filtration and sucrose density gradient centrifugation, respectively. From the polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, the enzyme consisted of four apparently similar subunits having a molecular weight of approx. 56 000. The enzyme was almost specific to L-alanine and L-2-aminobutyrate as amino donor and to glyoxylate, pyruvate and 2-oxobutyrate as amino acceptor. The enzyme was identified with rat liver alanine-glyoxylate aminotransferase isoenzyme 2 but not with rat liver alanine-glyoxylate aminotransferase isoenzyme 1 from Ouchterlony double diffusion analysis. Absorption spectra and some kinetic properties of the enzyme were clarified.  相似文献   

17.
The pea cotyledon mitochondrial F1-ATPase was released from the submitochondrial particles by a washing procedure using 300 mM sucrose/2 mM Tricine (pH 7.4). The enzyme was purified by DEAE-cellulose chromatography and subsequent sucrose density gradient centrifugation. Using polyacrylamide gel electrophoresis under non-denaturing conditions, the purified protein exhibited a single sharp band with slightly lower mobility than the purified pea chloroplast CF1-ATPase. The molecular weights of pea mitochondrial F1-ATPase and pea chloroplast CF1-ATPase were found to be 409 000 and 378 000, respectively. The purified pea mitochondrial F1-ATPase dissociated into six types of subunits on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Most of these subunits had mobilities different from the subunits of the pea chloroplast CF1-ATPase. The purified mitochondrial F1-ATPase exhibited coupling factor activity. In spite of the observed differences between CF1 and F1, the mitochondrial enzyme stimulated ATP formation in CF1-depleted pea chloroplast membranes. Thus, the mitochondrial F1 was able to substitute functionally for the chloroplast CF1 in reconstituting photophosphorylation.  相似文献   

18.
Nitrate reductase was purified about 3,000-fold from spinach leaves by chromatography on butyl Toyopearl 650-M, hydroxyapatite-brushite, and blue Sepharose CL-6B columns. The purified enzyme yielded a single protein band upon polyacrylamide gel electrophoresis under nondenaturing conditions. This band also gave a positive stain for reduced methylviologen-nitrate reductase activity. The specific NADH-nitrate reductase activities of the purified preparations varied from 80 to 130 units per milligram protein. Sucrose density gradient centrifugation and gel filtration experiments gave a sedimentation coefficient of 10.5 S and a Stokes radius of 6.3 nanometers, respectively. From these values, a molecular weight of 270,000 ± 40,000 was estimated for the native reductase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured enzyme yielded a subunit band having a molecular weight of 114,000 together with a very faint band possessing a somewhat smaller molecular weight. It is concluded that spinach nitrate reductase is composed of two identical subunits possessing a molecular weight of 110,000 to 120,000.  相似文献   

19.
L C Seefeldt  D J Arp 《Biochimie》1986,68(1):25-34
Azotobacter vinelandii hydrogenase has been purified to homogeneity from membranes. The enzyme was solubilized with Triton X-100 followed by ammonium sulfate-hexane extractions to remove lipids and detergent. The enzyme was then purified by carboxymethyl-Sepharose and octyl-Sepharose column chromatography. All purification steps were performed under anaerobic conditions in the presence of dithionite and dithiothreitol. The enzyme was purified 143-fold from membranes to a specific activity of 124 mumol of H2 uptake . min-1 . mg protein-1. Nondenaturing polyacrylamide gel electrophoresis of the hydrogenase revealed a single band which stained for both activity and protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed two bands corresponding to peptides of 67,000 and 31,000 daltons. Densitometric scans of the SDS-gel indicated a molar ratio of the two bands of 1.07 +/- 0.05. The molecular weight of the native enzyme was determined by three different methods. While gel permeation gave a molecular weight of 53,000, sucrose density gradient centrifugation and native polyacrylamide gel electrophoresis gave molecular weights of 98,600 +/- 10,000 and 98,600 +/- 2,000, respectively. We conclude that the A. vinelandii hydrogenase is an alpha beta dimer (98,000 daltons) with subunits of 67,000 and 31,000 daltons. Analyses for nickel and iron indicated 0.68 +/- 0.01 mol Ni/mol hydrogenase and 6.6 +/- 0.5 mol Fe/mol hydrogenase. The isoelectric point of the enzyme was 6.1 +/- 0.01. In addition, several catalytic properties of the enzyme have been examined. The Km for H2 was 0.86 microM, and H2 evolution was observed in the presence of reduced methyl viologen. The pH profile of enzyme activity with methylene blue as the electron acceptor has been determined, along with the Km and Vmax for various electron acceptors.  相似文献   

20.
Arnost Horak  Mary Packer 《BBA》1985,810(3):310-318
The pea cotyledon mitochondrial F1-ATPase was released from the submitochondrial particles by a washing procedure using 300 mM sucrose /2 mM Tricine (pH 7.4). The enzyme was purified by DEAE-cellulose chromatography and subsequent sucrose density gradient centrifugation. Using polyacrylamide gel electrophoresis under non-denaturing conditions, the purified protein exhibited a single sharp band with slightly lower mobility than the purified pea chloroplast CF1-ATPase. The molecular weights of pea mitochondrial F1-ATPase and pea chloroplast CF1-ATPase were found to be 409 000 and 378 000, respectively. The purified pea mitochondrial F1-ATPase dissociated into six types of subunits on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Most of these subunits had mobilities different from the subunits of the pea chloroplast CF1-ATPase. The purified mitochondrial F1-ATPase exhibited coupling factor activity. In spite of the observed differences between CF1 and F1, the mitochondrial enzyme stimulated ATP formation in CF1-depleted pea chloroplast membranes. Thus, the mitochondrial F1 was able to substitute functionally for the chloroplast CF1 in reconstituting photophosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号